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Abstract: An orientation-based face recognition method is proposed and applied

to near infrared images in this paper. Two algorithms, FPW (face pattern word)

and FPB (face pattern byte), are derived from the orientation-based method. The

FPW (or FPB) algorithm actually extracts the orientational information using a set

of Gabor wavelet transforms, and uses Hamming distance (HD) for face

identification. The bit code of orientations are optimized with respect to HD and

put into a 32-bit word (FPW) or 8-bit byte (FPB). The performance is evaluated by

face recognition rate and compared with three classical algorithms, PCA, LDA and

EBGM (elastic bunch graph matching). Our experiments are conducted with a

ASUNIR face database that currently consists of near infrared (NIR) images from

79 subjects. The experimental results show that the FPW algorithm achieves

98.43% of recognition rate; while the results of PCA, LDA and EBGM are

74.68%, 94.94% and 96.20%, respectively.

1 Introduction

Face recognition is a suitable technique for human identification and security

applications especially at highly-populated sites (e.g., airports, borders). Face images can

be acquired at a distance with less subject collaboration. On the other hand, fingerprint

recognition and iris recognition requires closely contact to the imaging devices and much

more collaborations from subjects. In the past two decades, visible face recognition has

been sufficiently investigated. Some well known face recognition methods are Principal

Component Analysis (PCA) [MP01], Linear Discriminant Analysis (LDA) [LPV03],

Elastic Bunch Graph Matching (EBGM) [Wi97], and Local Binary Pattern (LBP)

[BA10], [Xi10]. However, the performance of visible face recognition dramatically

reduces down with poor illumination [SS02], [Be06]. The poor performance caused by

illumination can be improved by using infrared or multispectral face images [GBM10].

The face recognition approaches using thermal (long wave infrared, LWIR) images or

the fusion of thermal and visible images can improve the recognition performance. There

is no illumination (lighting) requirement in thermal face imaging. Buddharaju et al.
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[Bu07] proposed to localize the superficial vessel network using thermal images, and

then to extract the branching points (referred to as thermal minutia points) from the

vascular network as features for face recognition. Similar work was reported by

Akhloufi and Bendada [Ak08], where the blood vessels were used as a thermal faceprint.

Bebis et al. [Be06] suggested two fusion schemes for eigenface recognition, i.e., pixel-

based and feature-based fusion of visible and thermal imagery. Arandjelovic et al.

[AHC06] proposed a decision level fusion of visual and thermal images. Both

experimental results [Be06], [AHC06] showed the improvement of using fusion, and

meanwhile revealed a performance decrease when eyeglasses were present. Kong et al.

[Ko05] concluded that thermal face recognition is especially useful for identifying faces

under uncontrolled illumination conditions or for detecting disguises. Selinger et al.

[SS01] claimed that thermal face imagery is superior to comparable visible imagery.

Near-infrared face recognition is another solution to improve the recognition

performance although it requires proper illumination (lighting) condition. Zhao and

Grigat [ZG05] proposed an automatic near infrared face recognition system with 12 IR-

LEDs for illumination. The eyes were detected and then used for face detection. The

DCT (discrete Cosine transform) and SVM (support vector machine) were employed for

facial feature extraction and classification, respectively. The system performance

depended on the accuracy of eyes detection, and a high recognition rate (96.15%) was

achieved with manual eye localization. Li et al. [Li07] proposed an near infrared face

recognition system equipped with 18 NIR LEDs and claimed their recognition process

was illumination invariant. LBP features were extracted from NIR images, and LDA and

AdaBoost were used as classifiers, respectively. They also proposed a solution for face

and eye detection that could deal with the variations of illumination conditions and the

eyeglasses conditions. Their methods were compared with other literature methods such

as PCA and LDA. They found that LBP features plus AdaBoost classifier gave the

highest verification rate (91.8%).

Multispectral face recognition or score fusion can further increase the system

performance. Chang et al. [Ch08] demonstrated the image quality enhancement of fusing

multispectral face images (e.g., visible and thermal) but did not report any recognition

performance. Bendada et al. [BA10] compared several face recognition algorithms
(PCA, LDA, etc.) by extracting the local binary pattern (LBP) and the local ternary

pattern (LTP) from four-band face images (i.e., Visible, SWIR, MWIR, LWIR), and

found that LDA algorithm performed the best on the Visible dataset (92%). No fusion

results were presented in their work. In addition, the score-level fusion of multispectral

face scores is an efficient approach due to the process of low dimensional data. A few of

work were reported in score-level fusion for face recognition [Na08], [Zh11]. It is lack

of comprehensive study and comparison in the area of multispectral face recognition. A

part of the reason may be lack of publically available multispectral face database. We

will discuss the multispectral face recognition in a separate paper in the near future.

In this paper, a set of orientation-based face patterns are formed by Gabor wavelet

transforms and the orientation bit code optimized by Hamming distance, which are

termed as face pattern word (FPW) and face pattern byte (FPB). The proposed methods

are tested with an ASUNIR face database and compared with three classical methods
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including PCA, LDA, EBGM. This research work will be integrated into the framework

of multispectral face recognition and score level fusion [Zh11] in the future. The rest of

paper is organized as follows. The orientation-based face recognition algorithms (FPW,

FPB) are described in Section 2. The experiments are conducted on a ASUNIR face

database, and the results and discussions are presented in Section 3. Finally, the

summary and conclusions are given in Section 4.

2 Orientation-based face recognition

A given face image is first preprocessed such as normalization, face detection and

alignment [Zh10]. Gabor wavelet transform (GWT) is then performed to extract facial

features from a face image, which are the binary bit code of maximal orientational

responses. Multiple-band orientational codes are then put into a face pattern word (FPW)

or a fce pattern byte (FPB) pixel-by-pixel. Next, Hamming distance (HD) [HBF09] is

calculated with the extracted face patterns (FPW or FPB) to measure the similarities

among faces, and identification is made with the shortest HD. For algorithm evaluation

and comparison, the verification rate is computed after running a number of tests on a

closed-set. A higher verification rate means a better recognition algorithm.

2.1 Face pattern word

A set of GWTs can be simply parameterized with M bands (frequencies or scales) by N

orientations. For instance, 8×16 GWT means a set of GWTs at 8 bands (M=8) by 16

orientations (N=16). The 8×16 GWT produces 256 coefficients (128 magnitudes plus
128 phases) per pixel. We use the magnitudes of GWT coefficients to create our face

patterns. A face pattern word (FPW) is formed pixel by pixel for each face. At each
pixel, a 32-bit FPW is encoded according to the orientational magnitude strength at each

frequency band. An example of FPW creation with 8×16 GWT is given as follows. At

each frequency band (from 1 to 8), the index (0-15) of maximal magnitude among 16
orientations (0.00°, 11.25°, 22.50°, ..., 157.50°, 168.75) is encoded with 4 bits. The 4-bit

orientational code is put into the FPW by the frequency order, i.e., the lowest (highest)

frequency corresponds to the lowest (highest) 4 bits in the 32-bit FPW. Eventually, the

FPWs come up with the same dimensions of the face image but with the depth of 32 bits.

The FPWs are stored as feature vectors in the database, which will be compared with

that of the probe face during the identification process. A FPW can be stored in a 32-bit

double word as normally mentioned as 32-bit FPW (per pixel) in the context, but its

valid dimension could be of 24 bits per pixel (for 8×8 GWT).

2.2 Face pattern byte

An 8-bit face pattern bye (FPB) is created for each pixel on a face image. First, at each

pixel, an M-dimension vector, Vm, is created to store the orientation code representing

the orientational magnitude strength (Omn) at each frequency (refer to Eq. (1a)). At each
frequency band (from 1 to 8), the index (0-15) of maximal magnitude among 16
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orientations is coded with 4 bits in order to maximize the orientation difference (among

subjects in database). The 4-bit orientational code is first put into an 8-dimension vector

(Vm) by the frequency order, i.e., the lowest (highest) frequency corresponds to the

lowest (highest) index of Vm. A FPB is then formed with the most frequent orientations

(called mode) among some bands (refer to Eqs. (1b-c)). Specifically, the high half-byte

(the most significant 4 bits) in a FPB, FPBHHB, is the mode of high 4 bands (m = 5~8);

whereas FPBLHB is the mode of low 4 bands (m = 1~4). BFM = 1 only when the frequency
of mode, fM, is greater than or equal to 2, otherwise BFM = 0 (see Eq. (1d)). The factor of

BFM will avoid choosing any orientation mode of as a pattern in FPB if its frequency is

only 1. This could make FPB immunized from noise. It is clear that a FPB can code up

to 16 orientations (N x 16) but there is no limit to bands (M). Typically 8 or 16

orientations are good for most applications.
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where Omn is the GWT magnitude at Frequency m and Orientation n; m = 1~M and n =

1~N. The FPBs are stored as the feature vectors of the gallery faces in database, which

will be compared with that of the probe face during the identification process. A FPB is

usually stored in an 8-bit byte, but its valid dimension could be of either 8 bits per pixel

(for 8×16 GWT) or 6 bits per pixel (for 8×8 GWT).

2.3 Variations of face patterns

Similar to FPB, a set of variant face patterns can be derived from FPW. For example,

using the mode of 8-band FPW (the most common orientation among 8 frequency

bands) can form a 4-bit face pattern nibble (FPN) [Zh11]. We will examine the

performance of using the lower four-band FPW, or using the lower half byte (low

frequencies) of FPB, or using the higher half byte (high frequencies) of FPB.

2.4 Orientation bit code

Because Hamming distance (HD) is computed by checking the bitwise difference

between two face patterns (e.g., FPW), the orientational bit code should favor the HD

calculation. The FPW is designed to reflect the orientational significance (or strength)

along with frequency scales (locations). Therefore, the closer (neighboring) orientations

should have less bitwise difference, whereas the further (orthogonal) orientations should

have more bitwise difference. Notice the nature of that 180°-apart orientations (such as

0° and 180°, 45° and 225°) are actually same (i.e., circularly neighboring). Clearly, the

“natural coding” does not favor the HD calculation because the bit-code difference (HD)
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between two neighboring orientations, 0 (“0000B”, in binary format) and 15 (“1111B”),

is 4.

Two cost functions are defined in the following equations. A set of optimal bit code

should minimize the HD of neighboring orientations ( BC

nbrd ), meanwhile maximize the

HD of orthogonal orientations ( BC

othd ).
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where BC

nO is the bit code (BC) at Orientation n, N is the total number of orientations.

Keep in mind of the fact of circular neighboring. Thus, set n = N-1 when n < 0, and let n

= 0 when n > N-1.

A set of optimal bit code should minimize the HD of neighboring orientations, meanwhile

maximize the HD of orthogonal orientations. According to Eqs. (2), the solutions for N =

8 ( BC

nbrd =16 and BC

othd =16) and N = 16 ( BC

nbrd =32, BC

othd =64) are found as follows.

BC

nO |N=8={110, 100, 000, 010, 011, 001, 101, 111} (3a)

BC

nO |N=16={1110, 1010, 1000, 1100, 0100, 0110, 0010, 0000,

0001, 0101, 0111, 0011, 1011, 1001, 1101, 1111}

(3b)

Examining Eq. (3b), any two neighboring bit code (including left and right neighbors;

using the circular neighbors at two boundaries) has only one bit difference; while any two

orthogonal bit code (e.g., 1st vs. 9th) has four bit difference.

We use the order statistics to create face patterns from GWT magnitudes, which can

eliminate insignificant information (by considering the float-point numbers of GWT

coefficients) but remain sufficient disparity for face identification. One sample face from

(a) (b) (c)

Figure 1: Visualization of FPB (8×16): (a): One NIR face from

ASUNIR database (320×320); (b) low half-byte of FPB features

(low-frequency); and (c) high half-byte of FPB features (high-

frequency).
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the ASUNIR database is presented in Fig. 1a, and the extracted FPB features (M = 8, N =
16) are visualized as two images in Fig. 1b & c, where the colors correspond to 16

different orientations. The FPW features are not presented in this paper.

3 Experimental results and discussions

The experiments of NIR face recognition were conducted on an ASUNIR face database

and evaluated by reporting verification rates. The “ASUNIR face database” currently

consists of the NIR face images from 79 subjects (refer to Fig. 1a). The NIR images were

captured indoors under proper illumination by a FLIR SC6000 near infrared camera

(640×512 pixel original resolution; spectral range: 0.9~1.7{m). Three images per subject

were randomly selected, one of which was used as a probe image (or the test image), two

of which were used as the gallery images (or the training images). All face recognition

algorithms (FPW, FPB, PCA, LDA, EBGM) were implemented and tested on the same

database. Keep in mind that PCA and LDA require a training process, while EBGM,

FPW, and FPB do not need any training.

All images were normalized, and the face portion was then detected and extracted. Notice

that the size of an extracted face is usually smaller than the resolution of original image in

database (refer to Fig. 1a). Next, all faces are automatically lined up. The general

preparation processes (including normalization, face detection and alignment) can be

found somewhere else [Zh11], [Zh10]. For each image, the face patterns (FPW, FPB) are

created by GWT (8×8 or 8×16). The bit code given in Eq. (3a) and Eq. (3b) were used in

the current experiments. All face patterns are then ANDed with the face mask (not

presented in this paper but can be found in Reference [Zh10]). In other words, the facial

features outside the face area are excluded during face matching. The HDs are finally

computed and compared between the probe image and all gallery images in database. The
face verification rate is the percentage of correctly identified images (or subjects) against

the total number of images (subjects) in entire database.

To have fair comparisons, the three classical algorithms (PCA, LDA, and EBGM) were

tested with the same ASUNIR database. Taking one image from each subject forms a test

subset; and the rest two images form a train subset. PCA and LDA utilize Euclidean

distance for face matching, while EBGM uses a similarity metric [Wi97] for face

matching. The experimental results are presented in Table 1, where only the top-1 match

(the shortest distance or the highest similarity) results were reported.

TABLE 1: The verification rates (%) of five face recognition algorithms tested on

three databases (# subjects). FPW & FPB were formed with 8×16 GWT.

Database\Method FPW FPB PCA LDA EBGM

ASUNIR (79) 98.43 97.25 74.68 94.94 96.20

ASUDC (96) 97.28 97.92 77.08 90.63 93.75

ASUIR (96) 93.06 96.88 67.61 91.67 93.75
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From the results shown in Table 1, the FPW is the best recognition algorithm (98.43%),

while The FPB is the second best (97.25%). The EBGM is the best one (96.20%) among

three classical algorithms listed in Table 1. The LDA performs very well (94.94%) since

two sample faces per subject are available in the training subset. The performance of PCA

is the worst (74.68%).

In Table 1, the performance of five algorithms tested on other two databases are also

listed (notice that FPW(8×16) using the “bit code” defined in Eq. (3b)). The ASUDC and

ASUIR databases include 288 visible images and 288 thermal images from the same 96

subjects (3 images per subject), respectively (the details are given somewhere else

[Zh11]). The 79 subjects in ASUNIR are the portion of 96 subjects in ASUDC and

ASUIR. The FPB algorithm performed the best on these two databases. Over the three

difference databases, the FPB algorithm has close performance, which demonstrates its

reliability. Let us compare the performance of different databases. Overall, the NIR

database results the best performance against the other two. Meanwhile notice the

illumination requirement for NIR imaging.

The variations of FPW and FPB algorithms were tested on the same ASUNIR database

and their results are shown in Table 2. The performance of FPW(8×16) is slightly better

than that of FPW(8×8), while the FPB algorithm has the same performance under two

parameters (i.e., reliable). FPW(subband_1) actually used the orientation features from

Band 1 through Band 3, while FPW(subband_2) used the orientation features from Band

1 through Band 4. Surprisingly, FPW(subband_1) resulted a slightly higher recognition

rate (98.82%) in comparison with FPW(8×16). FPB(subband_1) used the orientation

features of the lower half byte (low frequencies), while FPB(subband_2) used the

orientation features of the higher half byte (high frequencies). The performance of both

FPB variations dropped down, and the FPB(subband_2) had a bigger decrease.

TABLE 2: The verification rates (%) of the variations of FPW & FPB algorithms

tested on the ASUNIR database

Algor.\Param. 8×16 8×8 Subband_1 Subband_2

FPW 98.43 98.04 98.82 97.25

FPB 97.25 97.25 96.47 94.12

The FPB algorithm has a stable performance over different databases because it uses the

most common orientation features (mode), which makes it less sensitive to noise. For the

similar reason, using low-frequency features (“Subband_1” in Table 2) in FPW or FPB

shows better performance since the high-frequency features are tend to be interfered by

noise.

In the future we will test the proposed algorithms on a large database, and integrate the

NIR face recognition into the framework of multispectral face recognition and score

level fusion [Zh11]. Imagine a human identification system equipped with multispectral

imaging devices (e.g., visible, NIR, LWIR) that works ideally under normal illumination
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condition at daytime (via 3-score fusion), and still functions properly at nighttime (with

the inputs of a thermal imaging camera).

4 Conclusions

Two orientation-based face recognition algorithms are proposed and tested on a near

infrared (NIR) face database, and their performance are compared with three classical

algorithms, PCA, LDA, EGBM. Experimental results show that the FPW algorithm

performs the best (98.43%) with the ASUNIR database. When comparing the

recognition performance across three different databases, the ASUNIR database gives

the best result, furthermore the FPB algorithm is relatively reliable. The most common

orientations are used as FPB features, which makes the FPB algorithm immunized from

noise interferences. The variations of the FPW and FPB algorithms are also explored. It

must be realized that NIR imaging requires a certain level of illumination. Integrating the

NIR face recognition into a framework of multispectral face recognition will have the

potential to develop a robust human identification system. This will be part of our future

research efforts.
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