Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

Supporting the Model-Driven Organization Vision through
Deep, Orthographic Modeling

Christian Tunjic*’a, Colin Atkinson?, Dirk Draheim®

4 Software Engineering Group * University of Mannheim * Mannheim, Germany
b Large-Scale Systems Group * Tallinn University of Technology Tallinn, Estonia

Abstract. In a model-driven organization, all stakeholders are able to deal with information about an
organization in the way that best supports their goals and tasks. In other words, they are able to select
models of the organization at the optimal level of abstraction (e. g. platform independent) in the optimal
form (e. g. graph-based) and with the optimal scope (e. g. a single component). However, no approach exists
today that seamlessly supports this capability over the entire life-cycle of organizations and the IT systems
that drive them. Enterprise architecture modeling approaches focus on supporting model-based views of
the static “architecture” of organizations (i. e. enterprises) but generally provide little if any support for
operational views. On the other hand, business intelligence approaches focus on providing operational views
of organizations and usually do not accommodate static architectural views. In order to fully support the
model-driven organization (MDQO) vision, therefore, these two “worlds” need to be unified and a common,
natural and uniform approach for defining and supporting all forms of views on organizations, at all stages
of their life-cycles, needs to be defined and implemented in an efficient and scalable way. This paper
presents a vision for achieving this goal based on the notions of deep and orthographic modeling. After
explaining the background to the problem and introducing these two paradigms, the paper presents a novel
approach for unifying them, along with a prototype implementation and example.

Keywords. Orthographic System Modeling * Enterprise Architecture Modeling * Business Intelligence

Communicated by T. Clark. Received 2016-10-25. Accepted after 1 revision on 2018-01-23.
1 Introduction organization’s structure, behavior and knowledge
(Bittmann 2014).

The key requirement implied by this vision is
support for views or perspectives — that is, rep-
resentations of (parts of) an organization that
let stakeholders see and manipulate its proper-
ties in the optimal form for their needs. Since
such views provide “a simplified mapping for
a special purpose” they conform to the widely
accepted definition of “model” by Stachowiak
(1973). More specifically, they provide or repre-
sent a “mapping to the original”, the information
they provide is a “reduction of the original” and

The core idea behind the MDO vision is to allow
all stakeholders in an organization to fulfill their
assignments using representations of (parts of)
that organization that best suit their skills and tasks
(Clark et al. 2013). This need occurs across all
phases of an organization’s life-cycle (from analy-
sis and design to operation and maintenance), at all
levels of abstraction (from platform-independent
to platform-specific) and for all manner of tasks
(from planning and development to delivery and
usage). Moreover, it must be supported in the

face of constant change across all aspects of the

* Corresponding author.
E-mail. tunjic @informatik.uni-mannheim.de

they are created for highly “pragmatic purposes”.
The idea of describing a complex architecture
via a collection of “models” that each provide a

http://dx.doi.org/10.18417/emisa.13.7
tunjic@informatik.uni-mannheim.de

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Christian Tunjic, Colin Atkinson, Dirk Draheim

distinct view of the subject is also proposed in
the IEEE1471/ISO42010 standard for Systems
and Software Engineering — Architecture Descrip-
tion (IEEE Architecture Working Group 2000;
ISO/IEC/IEEE 2011).

To support such a vision across an organiza-
tion’s entire life-cycle some views need to por-
tray relatively static “architectural” aspects of
the organization (i. e. its enterprise architecture)
while others need to portray relatively dynamic
“operation-time” aspects of the system (i. e. busi-
ness intelligence). The discipline in which the
idea of using views to capture the static, architec-
tural properties of an organization is most mature
in the Enterprise Architecture (EA) modeling
discipline, characterized by approaches such as
Zachman (Zachman 1987), TOGAF (The Open
Group 2009), RM-ODP (ISO/IEC/ITU-T 1997),
Archimate (Iacob et al. 2012) and MEMO (Frank
2002). These all define some kind of “viewpoint
framework™ defining the constellation of views
available to stakeholders and the kind of “models”
which should be used to portray them. Some, like
Archimate, RM-ODP and MEMO, define their
own specialized languages (with multiple sub-
languages) to portray views, while others are less
prescriptive about precisely what kind of language
should be used.

At the operational level, the discipline that
focuses on providing operational information (run-
time and historical) to business stakeholders of
enterprises is commonly known as “business in-
telligence”. Modern business intelligence ap-
proaches also rely heavily on the notion of views,
but primarily in the form of tables (e. g. spread-
sheets) or pictorial visualizations rather than as
expressions in formal languages (e.g. process
modeling languages, programming languages, on-
tology modeling languages). Second, business
intelligence views tend to be organized and iden-
tified in a completely different way to EA mod-
eling views. They are typically defined using
multi-dimensional data models (e. g. Online An-
alytical Processing (OLAP)) in so called “data
warehouses” which allow information to be aggre-
gated by users on demand. In contrast, the view

Special Issue on Model-Driven Organisations

types available in EA modeling approaches are
usually predefined (i. e. before domain modeling
begins) and fixed.

At the present time, there is little commonal-
ity between the EA modeling approaches used to
describe the static, architectural views of organi-
zations and their IT systems (including software
specifications and code), and the business intel-
ligence approaches used to provide operational
views. Moreover, transitioning from one to the
other at the end of the development phase when
a system is first deployed and put into operation,
is usually a laborious and error prone process
which requires many transformations of informa-
tion (variously called compilation, deployment
and configuration steps). Many observers have
recognized that this paradigm shift between the
development and operation phases of a system’s
life-cycle introduces significant accidental com-
plexity and causes many problems (De Lara et
al. 2014). A new research area called DevOps
has emerged in recent years with the aim of sim-
plifying the process of software deployment and
blurring the boundaries between development and
operations (Davis and Daniels 2015; Lwakatare
et al. 2015). At the model level, similar underly-
ing goals are being explored under the label of
“models at run-time” (ABmann et al. 2014).

In order to realize the full vision of the MDO,
therefore, view-based paradigms used in the de-
velopment and operation phases of a system’s life-
cycle need to be unified and a common, natural and
uniform framework for defining and supporting all
views of an organization, regardless of their focus,
needs to be defined and implemented in an efficient
and scalable way. The premise of this paper is that
the optimal way to achieve this is through the inte-
gration of two alternative, emerging paradigms for
modeling — so called “deep modeling” (De Lara et
al. 2014) and “orthographic modeling” (Atkinson
et al. 2010). The first of these contributes to the
MDO vision by providing a natural way to support
“models at run-time” and allows operation and
instance data to be incorporated seamlessly into
a “multi-level” model. The second contributes
to the MDO vision by supporting a natural and

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

scalable strategy for supporting views, and pro-
viding a natural metaphor for navigating around
them, that accommodates both the architectural
(e. g. EA modeling) and operational (e. g. OLAP)
interpretation of views.

The goal of this paper is to present this vi-
sion, and demonstrate its practicality through a
prototype implementation and a small example.
The next section starts by presenting the three
main established domains and disciplines that
form the background to the approach — enterprise
architecture management, business intelligence
and multi-level modeling. Sect. 3 then describes
the MEMO approach to EA modeling which has
pioneered the use of the latter to streamline the in-
tegration of, and transition between, architectural
and operational views of an organization. Sect. 4
presents the final ingredient for the presented ap-
proach by explaining the motivation for, and key
ideas behind, the orthographic modeling approach.
Sect. 5 then presents the contribution of the paper
which is a new, general purpose environment for
deep orthographic modeling, which synergetically
leverages the deep and orthographic modeling
approaches. To demonstrate the conceptual fea-
sibility of the approach and show that it at least
has the capabilities of existing methods, Sect. 6
then uses the new environment to model a small
example. Finally, Sect. 7 and Sect. 8 conclude
with a summary and some closing remarks.

2 Background

In this section we set the scene for the rest of the
paper by describing the emerging technologies
and disciplines which are relevant to the proposed
approach. We first provide overviews of the fields
of EA management and business intelligence from
the perspective of the viewpoint frameworks they
use to organize models. After that we provide an
overview of multi-level modeling.

2.1 Enterprise Architecture Management

The importance of Enterprise Architecture Man-
agement (EAM) is reflected in the wide range of
modeling tools that are marketed as EAM tools

(Brand 2015; Roth et al. 2014). The goal of these
tools is to impose a certain bookkeeping discipline
on enterprise architecture management and ensure
that information is only manipulated and updated
in appropriate ways. This is clearly shown in
the collection of critical features contained in the
magic quadrant for enterprise architecture tools
(Brand 2015). Essentially, EAM tools represent
an IT landscape’s meta data repository (or meta-
model repository in the terminology of Brand
(2015)) and through this facilitate an organiza-
tion’s decision support capabilities, presentation
capabilities and various other advanced analysis
capabilities.

Deploying an EAM tool within a system land-
scape initiates a trail of IT system documentation,
but this trail exists in its own right and is not gen-
uinely integrated in the IT system landscape. Inte-
gration with the rest of the landscape is a crucial
problem for the current generation of EAM tools.
For example, Brand (2015) states that an EAM
tool “must integrate with project and portfolio
management (PPM), application portfolio man-
agement (APM), governance, risk and compliance
(GRC), and IT financial management”. However,
interoperability with, and traceability against, IT
development systems is not among the critical ca-
pabilities identified. Consequently, the traditional
EAM tool market sticks, non-disruptively, to the
established categories of IT tools, projects and
work organization.

The sub-discipline of EAM which focuses most
strongly on supporting the alignment of all ingre-
dients of an enterprise, including IT systems is
EA modeling. The systematic modeling of EAs
can be traced back to the introduction of the Zach-
man Framework in 1987 (Zachman 1987), and
since this time a large number of alternative EA
modeling frameworks and approaches have been
developed ranging from proprietary approaches,
e. g., SAP PowerDesigner (SAP 2016) and govern-
mental reference architectures, e. g., FEAF (US
Federal Government 2013) to open, consortium-
managed standards, e.g., TOGAF (The Open
Group 2009). The one thing that they all share in
common is reliance on some kind of “viewpoint

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Christian Tunjic, Colin Atkinson, Dirk Draheim

framework” to define the constellations of models
that should be used to represent an enterprise ar-
chitecture. Apart from that, however, they differ
tremendously in their precise goals, scope and
level of detail.

2.2 Business Intelligence

The general term used to describe approaches that
focus on providing operational views of organi-
zations and their execution history is “business
intelligence”. In particular, the consolidation
and analysis of operational information is typi-
cally referred to as data warehousing (Draheim
2012). The multi-dimensional data model of
data warehousing with its specific combination of
subject-orientation and time-variance (Codd et al.
1993) has become a central pillar in today’s busi-
ness analytics and decision support (Inmon 1992).
Data warehousing offers analysts exactly what
they need in order to understand the operational
performance of an organization — a transformed,
de-normalized presentation of the operational data
as an easy-to-explore data universe (i. e. a model
that invites the data analyst to delve into it and start
navigating: dicing, slicing, aggregating, querying,
testing hypotheses and so forth).

The data warehousing paradigm represents a
step towards the model-driven organization vi-
sion from two different and important perspec-
tives. On the one hand, it demonstrates the power
of a multi-dimensional conceptual model for se-
lecting views, and on the other hand it helps to
reduce barriers and tensions in the business/IT
alignment of today’s organizations. However,
data warehousing comes with a lot of baggage —
namely, the legacy of current enterprise system
landscapes. This is unavoidable because data
warehousing approaches address how to integrate
a multi-dimensional data model into an existing
system landscape. This is ultimately the goal of
the non-volatile aspect of data warehousing, i. e.,
ETL (extraction-transformation-loading) (Vassil-
iadis 2009), data marts, data integration strategies
and so forth. However, the pragmatic, engineering
flavour of data warehouses that made them such a
huge success in the past hinders the transition to

Special Issue on Model-Driven Organisations

the next higher conceptual level, i. e. the level of
the model-driven organization.

One of the most important application areas for
the data warehousing paradigm is management
accounting. Initially, when budgets are first elab-
orated in the individual departments, accounting
information is usually represented in spreadsheets
in a multi-dimensional manner. It is then put into
the process-oriented ERP (enterprise resource
planning) systems (e. g. SAP FI/FM) by hand, be-
cause of the ubiquitous ERP/spreadsheet-divide
usually favoured in today’s organizations (Dra-
heim 2012). The information is then extracted
again from the ERP systems, cleansed and trans-
formed into the data warehouse to support business
analytic (i. e. the process by which managers make
decisions that impact the budgeting process, using
for example the spreadsheet cockpits of a rolling
budgeting process). The whole process is there-
fore a big cycle — multi-dimensional budgeting
information is captured in spreadsheets, saved in
process based ERP systems, extracted into a multi-
dimensional data warehouse and finally used for
multi-dimensional budgeting work using spread-
sheets. The big problem for today’s enterprises is
that this cycle is slow, error-prone, opaque, com-
plex, unreliable, obfuscated, non-automatic and
non-standardized.

2.3 Multi-Level Modeling

One of the main causes of the current complexity
in transitioning from the development phase to
the operation phase of a system’s life-cycle is the
“hard” shift in classification levels usually involved
(De Lara et al. 2014). This is because today
the technologies used to represent information
in the two phases are almost always two-level
technologies that can only support a single type-
level and a single instance-level at a given time.
For example, traditional models used in software
engineering (e.g. UML diagrams) can usually
not be directly instantiated in the tool used to
define them (Gerbig 2017). In order to deploy the
types described in models they usually need to

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

be transformed to the types supported in the run-
time execution environments of a programming
language.

As pointed out by Frank (2014) and others, the
key to moving towards an MDO vision where
the transition between development (views) and
operational (views) is seamless and smooth, is
to adopt information-representation technologies
which do not require hard shifts between classifi-
cation levels (Clark et al. 2013; Frank 2016). Such
technologies are increasingly being called multi-
level or deep modeling approaches in the literature
(Igamberdiev et al. 2016; Neumayr et al. 2016).
The key characteristic of multi-level modeling
technologies is that they can seamlessly support
an unlimited number of classification hierarchies
without any kind of deployment or compilation
step to make types modeled at one classification
level available for instantiation at the next classifi-
cation level. On the contrary, since all levels are
“soft”, types are instantly available for use at the
level below. In recent years a number of multi-
level modeling approaches have been published
and there is a growing number of multi-level tool
implementations (Igamberdiev et al. 2016).

One particular form of multi-level modeling is
the so called “deep modeling” approach which sup-
ports multi-level modeling using a particular set
of inter-related concepts. The first is the Orthogo-
nal Classification Architecture (OCA) (Atkinson
and Kiihne 2001, 2002) which separates linguis-
tic classification from ontological classification
(Kiihne 2006) and organizes them in two orthog-
onal dimensions as shown in Fig. 1. An OCA
environment usually has three linguistic levels
(Lo—Lyg), where L, contains the linguistic (meta-
)model (i. e. the basic set of concepts which are
used to represent the deep model), L; contains the
domain content (i. e. the deep model containing
the user data) and L containing the “real world”
objects that are described in the deep model.

The second is the Clabject concept which
plays the roles of both Classes and Objects si-
multaneously. The Clabject concept has two
sub-classes — Entity and Connection, which can
be used to model entities (cf. classes/objects) and

<«——— Linguistic Dim.

0O, |

VS & e O
: : |O
/Z\ : : 2

— Clabject

Q-] - R
A : A |2
: : . o
0, : . 3
] |UniversityOfMannheimO| ------ l

L, L, L,

Figure 1: Orthogonal Classification Architecture

connections (cf. associations/links) respectively.
Users normally only work with the L linguistic
level since this contains the domain content. In
Fig. 1 there are three ontological levels (Og—0O3),
but the number of levels is unlimited and can be
changed according to the needs of the domain to
be modeled. The Oy level is the most abstract
while the O, is the least abstract. Generally the
O,, level contains the instances of the O,,_; level.
The user data (i. e. the L) is modeled in a unified
way using the basic set of model elements defined
in Lz.

The third concept is the deep instantiation mech-
anism, which gives the approach its name. This
controls the instantiation of Clabjects in the on-
tological levels within L; using a non-negative
Integer property called potency. A Clabject’s
potency governs the extent of its influence over
Clabjects instantiated from it. An instance of
a Clabject in the lower (i. €. less abstract) onto-
logical level has a potency that is one less than
that of the Clabject. Since potency cannot have
a negative value, a Clabject with potency “0”
cannot have further instances in subsequent onto-
logical levels. In the presented example in Fig. 1,
the Clabject OrganizationType in the ontologi-
cal level Og has a potency value of “2”. This
means the model element OrganizationType can
have instances at the next two ontological levels,

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Christian Tunjic, Colin Atkinson, Dirk Draheim

Meta Meta Model

Special Issue on Model-Driven Organisations

Meta Models

Models

Figure 2: MEMO Language Architecture (Frank 2014)

relative to Og, but UniversityOfMannheim with a
potency value of “0” cannot be further instantiated
at the next ontological level (O3). The same ap-
proach is used for Attributes of Clabjects, i.e.
their influence can be controlled using the prop-
erties called durability and mutability. While
durability has the same meaning as the potency,
the mutability states how often the value of an
Attribute can be changed with respect to the in-
stantiation of the Clabject at different ontological
levels.

3 Multi-Level, Enterprise Architecture
Modeling

The advantages of multi-level modeling for EA
modeling have been most clearly articulated and
demonstrated by Frank (1994), who have recently
evolved their MEMO EA modeling method into
a fully-fledged multi-level modeling approach,
implemented using the XModeler tool (Clark and
Willans 2013). The key new piece of technology
that makes this possible is a special, multi-level-
aware meta-meta-model, called FMMLx (Frank

2014). As shown in Fig. 2, which illustrates the
new MEMO environment’s language architecture,
FMMLx is the top level model. This can be
instantiated to define further languages at the
meta-model level (M;) which, in turn, can be
instantiated to create user models at the M; level
below. The data at run-time, normally shown
within models, exists at the My level which is
instantiated from M;.

The key differences to a classical model stack,
such as the UML infrastructure, are that (a) the
number of levels can be extended as needed to
best represent the domain in hand and (b) the
same concepts are usable in the same way at all
levels. Thus, modelers do not need to resort
to different concepts to represent instantiation at
different levels (e. g. stereotypes versus standard
instantiation). This, in turn allow users to define
new languages (e. g. view types) as easily as they
can use languages to model domain content.

MEMO predefines, out-of-the-box, several
domain-specific modeling languages. At the time

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

Aspects
Resource Structure Process
Human Strategic .
R . Value Chain
Strategy Resources Business Units
" Technology Joint Ventures Valllelsystem
(]
= e mmmmmmm——at
B Employees Organisation ! Service
% Organisation Skills Structure E Process
g Machinery Project : Task
.
3 ¢IT Infrastructure Service
Information Platforms ! [;
. + IS Architecture Transaction
System Applications H

!_Object Model

Workflow

.,,.,....,..,.,éoal

Competitiveness
Strategic Goals
.~ Opportunities

Operational
Goals
Performance |
Indicators
SLA
Performance
Indicators

Figure 3: MEMO High-level Framework (Frank 2014)

of writing, these are: the strategy modeling lan-
guage (MEMO-SML) (Frank 2002), the organiza-
tion modeling language (MEMO-OrgML) (Frank
2011), the object-oriented modeling language
(MEMO-OML) (Frank 2002), the organizational
goal modeling language (MEMO-GoalML) (Bock
and Frank 2016) and the IT infrastructure mod-
eling language (MEMO-ITML) (Kirchner 2008).
In addition there are more specific languages to
describe indicator systems (MetricML) (Strecker
et al. 2012) and decision processes (DecisionML)
(Bock 2015). These languages define the view
types that can be used to portray information
about the system or organization in question. As
illustrated in Fig. 3, these are organized as a
two dimensional matrix based on the perspec-
tive they offer and the aspects they convey. For
instance, business process models are assigned
to the perspective “organization” and the aspect
“process”, whereas structural descriptions of the
enterprise are assigned to the aspect “structure”
and a value of the perspective dimension accord-
ing to the needed abstraction level. As illustrated
in Fig. 3, the cells of MEMO’s matrix, which
essentially constitutes its viewpoint framework,
contain (or refer to) views (i. e. models) which are
expressed using one of the languages mentioned
above. MEMO also allows views to be mapped to
combinations of cells in order to support models
which span multiple perspectives and/or aspects.

Fig. 4 shows an example of the use of the
MEMO Framework. In the example, two lan-
guages of the framework, MEMO-SML and
MEMO-OrgML, are used to model aspects of
an Insurance Brokerage company. In terms of
MEMO’s viewpoint framework, the presented
example is situated in the cells represented by
“strategy / process” and “organization / process”.
The view corresponding to the first cell uses the
MEMO-SML language to describe an excerpt
of a strategy model in the example that shows a
value chain with one activity group being decom-
posed into further activities. Similarly, the view
corresponding to the second cell uses the MEMO-
OrgML language to model business processes
which are part of an organization model. In order
to ensure the overall consistency of views covering
all cells shown in the viewpoint framework, the
concepts from the different cells refer to each other.
In the shown example the boundary between the
two cells is the relationship of the Activity and
the Business Process model elements. The activ-
ities coming from the strategy model are related to
one or more business processes which describe the
activities in the organizational model. This pro-
vides clear traceability from the strategic concepts
down to their realization on the organizational and
technical levels.

The key property of the MEMO modeling ar-
chitecture shown in Fig. 2 is that all the levels are

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

Outbound
Logistics

Inbound
Logistics

Activity
Group

[t om0 O D

Marketing
Sales

N o

Risk
Assessme

Claim

Activity %Conﬁacﬁng> %

v

P rocessing> %

Organization Unit

ClaimProcessing
size ...

Position

Strategic
Resource

Clerk

costAwareness ...
motivation ...
qualification

Business
Process
Claim Processing
Liability Fire .~ Cars

.
. Insurance Broker
e

5

Process
Customer
Request

Bezeichner

Claim arrived

Formal Check

Claim Processing , - ’élaim Processing

Claim
rejected
Form not ok

Form ok Verification of
Substantial
Matter

Y

Claim
accepted

Figure 4: MEMO Example (Frank 2002)

“soft” in the sense that they are immediately ac-
cessible and changeable without transformations
or code generation. In fact, from the point of view
of the underlying tools, all levels are just data.
MEMO does not focus on supporting views of
operational information but the multi-view model-
ing framework makes it easy to do so. To support
operational information in a seamless way a fur-
ther layer, Mo, would need to be added containing
instances of the models at level M. To do this
efficiently, of course, MEMO would need to be
extended with additional languages to describe
such things as configuration and operational his-
tory information, and ultimately to support the
definition of executable models (i. e. code). How-
ever, the basic capability for seamless extensibility
and deployability is provided by the underlying
multi-level modeling infrastructure.

4 Orthographic Modeling

Although MEMO represents a significant step
forward over existing EA modeling approaches in

terms of its ability to support seamless, multi-level
modeling, and through this a seamless transition
from development to operation (in the sense of
DevOps), it is much more traditional in terms of its
viewpoint framework. We believe that, to create
the ideal foundation for MDO, it is necessary to
integrate the benefits of multi-level modeling with
a new kind of viewpoint framework that provides
a more systematic and intuitive way of organizing
and navigation around views. In this section we
first motivate the need for such a vision and then
explain the basic idea behind our approach which
we refer to as “orthographic modeling”.

4.1 Multi-View Modeling Realization
Strategies

Although EA modeling approaches agree on the
use of multiple views to describe an enterprise
architecture, there is no consensus on how these
views should be organized and supported. Atkin-
son et al. (2015) present a number of dichotomies
that characterize the range of fundamental design

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

choices available for multi-view specification en-
vironments, including EA modeling approaches,
based on the existing literature and state-of-the-
art. The most important of these are summarized
below.

Rigorous versus Relaxed. This is the most basic
dichotomy which basically characterizes the level
of formality and prescriptive guidance provided
by an approach. “Relaxed” approaches such as
Zachman and TOGAF provide few if any rules
about what specific languages should be used to
represent different views and how they should be
populated, while “rigorous” approaches such as
Archimate, RM-ODP and MEMO provide strong
constraints on these issues. Except for extremely
small organizations, relaxed approaches are unable
to provide the control and discipline needed to
support a fully-fledged MDO.

Synthetic versus Projective Views. One of the
most fundamental design choices when realizing
a multi-view approach is whether views are “syn-
thetic” or “projective”. Although the term was
coined by some of the earliest work on multi-view
approaches (Finkelstein et al. 1992), this terminol-
ogy was popularized in the IEEE1471/ISO42010
standard for Systems and Software Engineering —
Architecture Description (ISO/IEC/IEEE 2011)
which defines the difference in the following way:
“In the synthetic approach, an architect constructs
views of the system-of-interest and integrates these
views within an architecture description using
model correspondences. In the projective ap-
proach, an architect derives each view through
some routine, possibly mechanical, procedure of
extraction from an underlying repository.”

Projective approaches therefore revolve around
a repository that stores a representation (i.e. a
model) of the system from which the views are gen-
erated on demand by an automated transformation.
The term Single Underlying Model (SUM) (Atkin-
son and Draheim 2013; Atkinson et al. 2011)
is often used to refer to this repository as it is
conceptually a single, complete and high-fidelity
model of the real system. Most EA modeling
approaches, including MEMO, do no explicitly
explain whether they are synthetic or projective,

leaving the choice open to individual tools. The ex-
ception is RM-ODP (ISO/IEC/ITU-T 1997) which
is explicitly based on, and strongly advocates, the
synthetic approach. The big problem with syn-
thetic approaches is that inter-view consistency
has to be maintained on a pairwise basis. This
becomes untenable for large MDOs since the num-
ber of inter-view consistency relationships that
have to be maintained grows exponentially with
the square of the number of views.

System-Centric versus Component-Centric
Views. Another important property of multi-view
modeling approaches is how the subject of views
is characterized — using a system-centric strategy
or a component-centric strategy (Atkinson et al.
2015). In the former all views are characterized
(i.e. identified) as being views “of” the same
subject — the system. This means that the view-
points, and thus the viewpoint framework, are
determined only by the view types. In the latter,
all views are characterized (i.e. identified) as
being views of a distinct subject, either the system,
or a component (i. e. a part) of the system. This
means that viewpoints are determined not only by
a view type but also by a view subject.

All mainstream EA modeling approaches today,
including MEMO, support system-centric views.
Of course, users of approaches based on synthetic
views invariably create models that only describe
a part of the system (e. g. a server, a process, a
department etc.) since it is usually impossible to
create views of the whole system. However, when
doing so they have to go outside the viewpoint
framework and use ad-hoc techniques to character-
ize what a view is describing. This in turn leads
to numerous problems, including duplication of
information, confusing characterization of views
and the lack of guidelines for filling them with
content (Atkinson and Tunjic 2014b).

Abstract versus Concrete. Another impor-
tant design issue in EA modeling approaches
is whether views are essentially “abstract” (i. e.
logical) concepts that have no direct represen-
tation, “concrete” (i.e. physical) concepts that
have a physical representation (e. g. on a computer
screen or in a printed document) or a mixture

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

10

Christian Tunjic, Colin Atkinson, Dirk Draheim

of both (Atkinson et al. 2015). The difference
revolves around whether the views are intended
to correspond to individually “viewable” chunks
of information that can be seen in one go on a
computer screen or in a document, or a more
loosely-related collection of model elements that
cannot conveniently be viewed in one piece. The
former kind of view is often referred to as a “dia-
gram”, while the latter is often referred to as an
“abstraction level” or “perspective”.

None of the existing EA approaches make their
position on this issue explicit, but in practice they
invariably adopt just one of the approaches to the
exclusion of the other. Because of the high level of
granularity and abstraction at which they operate,
the views of relaxed EA modeling methods such
as Zachman and TOGAF are abstract. The same is
true of the RM-ODP method, however, which de-
spite being rigorous has very large grained views
that cover information from a particular high level
perspective. According to RM-ODP, the creation
of concrete diagrams is a tool issue which lies
beyond the method itself. The views of most other
rigorous methods such as Archimate and MEMO
are concrete since they are defined using a pre-
scribed language and are intended to be rendered
for physical representations. In practice, to model
large scale approaches, a mixture of both kinds of
views is necessary. Ideally it should be possible to
define both abstract and concrete views using the
same metaphor and to allow the latter to be nested
arbitrarily inside the former. We therefore refer
to this as the requirement for “composite views”
since regarding abstract and concrete views as
being leaves in the composite pattern (Gamma
et al. 1995), and thus being arbitrarily nestable,
provides the perfect model.

In fact, the users of all existing methods already
have to learn to work with both kinds of views
because abstract views have to be broken down
into smaller, individually viewable “models” (i. e.
diagrams), while concrete views have to be orga-
nized in some way into larger, cohesive bodies of
information. The problem with all existing EA
methods is that one or other of the two forms of
views (i.e. abstract or concrete) is implicit and

Special Issue on Model-Driven Organisations

has to be handled by users in an ad-hoc way out-
side the framework of the method. In the case
of MEMO for example, what the method calls
“views” are concrete views, while what the meth-
ods calls “perspectives” or “aspects” are abstract
views.

4.2 Orthographic Software Modeling

As argued in the previous section, none of the
well known approaches to EA modeling provides
the ideal combination of realization choices to
support the view-based modeling of large systems
and organizations. The goal of the Orthographic
Software Modeling (OSM) approach proposed by
Atkinson et al. (2010) is to support such a combi-
nation in an efficient and highly intuitive way by
appealing to the successful notion of orthographic
projection used in CAD tools for engineering
physical artifacts. This is illustrated in Fig. 5.
The left-hand shows orthographic projections of a
physical object (a house) while the right-hand side
shows orthographic projections of some abstract
entity that is not physically visible. As implied
by its name, OSM was originally focused on the
orthographic modeling of software, but in general
the cloud in the middle of the figure can represent
any well defined conceptual or physical object,
including complete IT systems or socio-technical
systems such as organizations.

5

Figure 5: Orthographic Projection

a \';The System/f\;

The orthographic projection metaphor inher-
ently suggests the realization choices described in
the previous subsection. First, the approach has
to be rigorous since the rules for determining the
content of a view once the viewpoint is known
have to be completely unambiguous. Second, the
very idea of orthographic projection calls for indi-
vidual views to be thought of as projections from

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

the underlying artifact (i. e. a SUM) rather than as
artifacts in their own right from which the proper-
ties of the viewed object are derived. Third, since
it is practically impossible to include all informa-
tion about a large system in a single concrete view,
it is convenient to employ component-based views
which “zoom in” on one part of the system (e. g.
a particular room or feature of a house). Fourth,
since such fine-grained views need to be though
of as belonging to larger-grained views (e.g. a
front view of the door is a part of the front view
of the house) all views need to be composable to
arbitrary depths.

Cell

Figure 6: View Selection based on Dimensions

Previous papers on OSM have characterized the
challenge of building an OSM environment as hav-
ing three main ingredients (Atkinson et al. 2010).
The first is to identify a suitable dimension-based
metaphor for identifying and navigating around
views of a logical subject rather than a physical
object. Obviously the normal dimensions of the
real world are not suitable for software systems or
organizations. This idea is shown schematically in
Fig. 6. All views are identified and conceptualized
as existing within a multi-dimensional space and
are selected by picking the appropriate coordi-
nates. Concrete views correspond to individual
cells or small combinations of cells, while abstract
cells correspond to large collections of cells that
reflect a slice or sub-cube of the dimension space.

For example, in a viewpoint framework contain-
ing a dimension called Platform Independence,
all the concrete views that share the value PIM
in this dimension (but have different values for
other dimensions) can be regarded as making up
an abstract view corresponding to a “platform
independent model” of the system. Moreover, all
views are inherently identified by the subject they
are portraying as well as the properties they are
displaying.

The second ingredient of OSM is the “on de-
mand generation” generation of views from a
Single Underlying Model (SUM) which holds all
information concerning the system under develop-
ment. The SUM has no visual representation and
is never accessed directly by the user so it can only
be seen and manipulated through the views. Since
they are generated automatically, on demand, such
views naturally represent projections of (parts of)
a system. The consistency between the views is
guaranteed by their continuous synchronization
with SUM. This principle is shown schematically
in Fig. 7.

The third core ingredient is a view-based
method which inherently promotes the use of mul-
tiple dimensions and views to represent a system.
The initial software engineering-oriented version
of the OSM approach adopted the KobrA (Atkin-
son 2002) method for this purpose. However, to
support the MDO vision through orthographic
modeling a more general method (i. e. definition
of views and dimensions) is required.

S Deep Orthographic Modeling

As explained in Sect. 3, the MEMO method has pi-
oneered the use of multi-level modeling technolo-
gies to seamlessly integrate development-time (i. e.
architectural) views and run-time (i. e. operational)
views of organizations to facilitate the MDO vision.
However, its viewpoint framework for identify-
ing, characterizing and navigation around views
is rather traditional. On the other hand, “classic’
OSM proposes a new metaphor for addressing
the latter requirement which naturally supports
component-centric and composite views, but does

>

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

12

Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

e T T TN

4/
¢~ The System

~— =
L r

Model of the
System (SUM)

< '
e View .- e
/ 10] \ -
\ L /
\ Activities /

\ /
\. JavaSource /
.

Figure 7: SUM-based Projective on Demand View Generation

nothing to address the seamless integration of
architectural and operational views. The contri-
bution of this paper is therefore to combine these
two approaches, the deep variant of multi-level
modeling and orthographic modeling into a single
unified approach for enabling the MDO vision.
The motivation for attempting this unification is
the expectation that (a) the two approaches are
naturally compatible and will deliver a powerful
synergy, and (b) the unified, deep orthographic
modeling approach will provide the best platform
for supporting the flexible, view-based modeling
metaphor needed for realizing the MDO.
Essentially, deep orthographic modeling uses
the same principles as “classic” orthographic mod-
eling, but uses deep modeling technology for the
underlying storage and model representation plat-
form. This is illustrated schematically in Fig. 8.
In order to fully exploit the capabilities of deep
modeling we apply the technology also on the
views, which means that the SUM, the projected
views and the projections of the views are based
on the deep modeling technology. Thus each of
the rectangular elements in the figure are intended
to represent instances of the OCA shown in Fig. 1.
The thin orange strip along in each OCA rectangle
is mean to represent the linguistic meta-model
in the L,, while the large grey section of each
OCA rectangle is meant to represent the domain
content distributed over an arbitrary number of

ontological levels.! Note that not only the SUM
and the view are in general deep models, but also
the transformations (i. e. rules and traces). Notice
also that all of content in the SUM is “greyed out”
to convey the idea that it cannot be directly seen
and has not concrete syntax. In contrast, one or
more of the ontological levels in the views are
highlighted in color to convey the idea that they
are physically rendered using a concrete syntax.
The following sections present the main con-
ceptual ingredients and prototype realization of
such a deep orthographic modeling environment.
To support the concepts presented in the next sec-
tions, we use UML class diagram like notations
to describe the environment configuration and
provide a kind of construction kit. The definition
of the construction kit will be modeled in the M;
layer, while the My layer will be used when the
environment is used to specify a concrete project.

5.1 Deep Single Underlying Model

The SUM plays the central role in an orthographic
modeling environment since it serves as the place
where all known information about the system or
organization in question is stored. “All informa-
tion” means the data which is needed to provide a
detailed, precise and full description of the system

I Although only three levels are hinted at in Fig. 1, since
this is a highly schematic diagram, in general, the number of
levels is flexible.

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No.7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

13

Special Issue on Model-Driven Organisations

D

&

()

()

A

@l
£,

Figure 8: Architecture of Deep Orthographic Modeling
(SUM, Views and Projections realized using Deep Modeling)

of interest in the form of a model. The data can
range from the system’s behavioral properties and
feature specifications to its architectural composi-
tion and executable descriptions (and ultimately,
running instances). In the ideal case the real sys-
tem can be derived directly from the SUM, or
“is” the SUM. The SUM should also ideally be
redundancy free, so a given piece of information
about the system is only stored once.

Architects who are working on the SUM to de-
scribe a system work with projective views. This
means they never directly “see” the SUM, so it
does not need to support bindings to concrete syn-
taxes and can be optimized for storing information
efficiently. This allows the SUM to be defined
as a redundancy free model using the “informa-
tion compression” and “information expansion”
approaches described in (Atkinson et al. 2015).
By the term “information compression” we mean
the process by which information belonging to
many concepts in the SUM is compressed into

fewer concepts in a view. This is used in views
which provide some kind of overview by aggre-
gating information similar to OLAP views. By
the term “information expansion” we describe the
process by which information from many views
(or many model elements of one view) is stored
in one model element in the SUM. This can be
applied to conceptual concepts that are relevant
across many abstraction layers (e. g. organization
and information system perspectives of MEMO).
The common concepts of the views exist only
once in the SUM, but can be seen multiple times
in different views by expanding the single SUM
representation. This approach is practicable since
the SUM does not care about the visual represen-
tations of the compressed and expanded concepts.
The visual representations of concepts are han-
dled outside the SUM when they are projected into
views and are visualized according to the rules
and language of each view.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

14

Christian Tunjic, Colin Atkinson, Dirk Draheim

In order to capture all relevant information
about the system under discussion, the SUM must
be sufficiently expressive. The concepts which can
be used in the SUM to store user data are defined in
the most abstract ontological level (the meta-meta
level) of the SUM. The key question, therefore, is
which concepts are needed in the SUM to provide
the needed expressiveness to capture sufficient
information for a detailed and full specification
of a system. This challenge is addressed by the
methodologist who, in orthographic modeling,
has the role of setting up the environment by
defining the ontological meta-model of the SUM,
the needed views and the dimensions used to
navigate around the available views. In short, the
methodologist is responsible for setting up the
framework used to specify the system according
to a specific method.

For a software system, a method such as KobrA
(Atkinson 2002) could be used, while for EA mod-
eling a method such as Archimate or MEMO could
be adapted. Based on the choice of method, the
methodologist can provide a configuration for the
orthographic modeling environment by defining
the needed artifacts. The views and dimensions
for the orthographic modeling environment can
be derived from the chosen method. For KobrA,
natural views are structural, behavioral and func-
tional, as defined by the method. Since KobrA
supports the model-driven development approach,
it also makes sense to reflect the platform indepen-
dence of a view in the definition of the dimensions.
For the MEMO approach, suitable candidates for
dimensions are the two concerns which define the
MEMO high-level Framework as shown in Fig. 3).

When used for a view-based, model-driven or-
ganisation, the SUM is a model containing all
known information about the organization of inter-
est as it can be seen in Fig. 7. When represented
as a deep model, the SUM can represent infor-
mation at all levels of classification seamlessly,
using the same notation and concepts. This in
turn, means that operational data, which typically
occupy the lower ontological levels, and archi-
tectural data, which typically occupy the higher
ontological levels, are accessible seamlessly using

Special Issue on Model-Driven Organisations

the same language and conventions. The most ab-
stract level in a deep model (i. e. Og) contains the
(domain) meta-model for the information shown
in the views. The levels below (i.e. Oy ... 0O,)
contain descriptions of the organization at differ-
ent levels of abstraction and classification (i.e.
architectural and operational). The number of
ontological levels for a particular specification
depends on the domain and the scenario in hand.
Moreover, the number of ontological levels and
types storeable in the SUM is not limited and can
easily be extended as needed without recompila-
tion and redeployment of code.

When a deep modeling infrastructure is used
to store the SUM, the contents of the SUM are
represented using the linguistic concepts of the
deep modeling language (L,). In the presented
approach, the structure of the SUM follows the
OCA as shown in Fig. 8. Since the SUM should
ideally have a predefined ontological meta-model
that defines the types used to capture user data, we
describe the SUM using two distinct parts — the
predefined part which we call the “SUM language”
and the evolving part containing user data which
we call the “SUM content”. The SUM language
is usually contained in the top ontological level(s)
(i.e. Op), while the SUM content is contained in
the subsequent ontological levels. The language
and the content parts can be seen as two disjoint
sets of model elements.

—0| Sum |0—
1 1
| SumContent | | Sumlanguage |

0.* I I 1.*
sumContentConcept SumConcept sumLanguageConcept

Figure 9: Structure of the Deep Model SUM

The structure of the SUM is shown in Fig. 9 as
a UML class diagram. The Sum model element
contains the SumLanguage and SumContent ele-
ments. Both are composed of elements of the
type SumConcept which is used as a placeholder

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

or pointer element for any concept of the deep
modeling language (e. g.Clabject, Attribute,
Level, Classification, ...). For example
if the deep model from Fig. 1 were the SUM,
the SumLanguage would contain instances of
SumConcept pointing to the ontological level
Op and the Clabject OrganizationType. The
SumContent, in turn, would contain instances of
SumConcept pointing to the following concepts
— the ontological levels O; and O,, the Univer-
sity and UniversityOfMannheim Clabjects and
the corresponding Classification relationships
which classify University as an instance of Or-
ganizationType and UniversityOfMannheim as an
instance of University.

The SumLanguage must have at least one
SumConcept in order to enable the creation of
ontological instances to store user data. However,
the SumContent can be empty. This is the case,
for example, when the Sum does not yet contain
any user data at the start of a new project.

5.2 Deep Projective Views

Views are the user interfaces in view-based envi-
ronments. They must be integrated in a way that
ensures the consistency of the distributed infor-
mation used to specify a system. In a projective
approach, consistency must be ensured between
the available views and the SUM since this ensures
the overall consistency of all the views. The views
are automatically consistent with one another if
they are individually consistent with the SUM.

The projective approach implies that views are
projections of the SUM, i. e. they show particular
parts of the SUM which describe the system under
development. But how many views are needed to
specify a system and what content should the views
have? The orthographic modeling environment
must have sufficient views to allow architects to
describe every relevant aspect and part of the
organization in question.

When defining the views in an orthographic
modeling environment to support a particular
method the methodologist must first define the
view language for a view. The view language is
the predefined part of a view which describes the

domain concepts represented in the view. In other
words, it defines the concepts which can be used
to embed user data and thus information about the
organization into the views. The view language
plays the role of a meta-model in classical two-
level modeling and contains the types which can
be instantiated in order to capture user data. Af-
ter defining the view language the methodologist
must define how the view is projected from the
SUM, and vice versa. This step includes manip-
ulations of the SUM, that is — definition of types
in the SUM used in the view and the definition of
concrete relationships between the view and the
SUM.

The relationship between a view and the SUM in
the context of orthographic modeling is shown in
Fig. 10. The view language is the static predefined
part of a view and the projection rules are the static
predefined rules which relate types from the view
language to corresponding types from the SUM
language. The view content is the dynamic content
of a view which contains user data from the SUM.
The projection traces are derived according to
the projection rules and capture the relationship
between the user data from the SUM and the
corresponding user data presented in the view.
The set of types from the SUM language that are
projected to the view language is the scope of the
view. The view scope belongs to the static part
of a view. The view footprint, on the other hand,
belongs to the dynamic part of a view since it is
the user data from the SUM which is mapped to
view content by the projection traces.

The following subsections present the struc-
ture of views in orthographic modeling and their
relationship to the SUM.

5.2.1 View Language and View Content

In order to provide stable projections of views
from the SUM, we divide views into two parts
— the view language and view content. The for-
mer corresponds to the notion of a meta-model in
classical two-level modeling, but in our case the
view language can span more than one ontologi-
cal level. The latter corresponds to the model in
classical two-level modeling environments, which

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

16

Christian Tunjic, Colin Atkinson, Dirk Draheim

=TT T,

/
A
\

AN

The System A

1
7

= N
S J

View Scope

View Footprint

Projection Rules

Model of the
System (SUM)

Special Issue on Model-Driven Organisations

View Language

X / View \ °

View Content
Projection Traces

Figure 10: Projection-based Relationship between SUM and View

is an instance of a meta-model. Again this can
also span multiple ontological classification rela-
tionships, if desired. The two parts are separated
since the projection rules must be defined on the
types in the language part of a view and the SUM.
In contrast to the content part, the language part is
static from the perspective of an architect using the
orthographic modeling environment to describe
an organization.

| ViewConcept I
viewLanguageConceptll..* 0..*lviewContentConcept

ViewLanguage | | ViewContent

L

View
name : String
Tl..* 0..*T
| ProjectionRule | | ProjectionTrace

Figure 11: Structure of a View

The concrete structure of a view is shown in
Fig. 11. The ViewLanguage element contained
by the View element contains the types or the
meta-model of the view. The ViewContent part of
a View is a container for the concepts that repre-
sents user data in the view. The ProjectionRule
part of a View describes how the projection is
realized as a transformation — i.e. it identifies
which concepts from the SUM are projected
to the view. While the ProjectionRules de-
fine the projection on the type-level, i.e. on the

meta-model, the ProjectionTraces hold the map-
pings of the concepts on the instance-level. The
ProjectionTraces of a view are automatically
generated by the orthographic modeling envi-
ronment as soon as a view is projected. The
ProjectionRules are used to query the user-data
from the SUM and show it in the view. During
this process the ProjectionTraces are generated
and assigned to the View.

The view language and content parts of a
view are shown in the upper part of Fig. 11.
The ViewConcept element is used in the same
way as the SumConcept element, described
in the previous section. The ViewConcepts
which belong to a ViewLanguage are contained
in the viewLanguageConcept relation of the
ViewLanguage. In a view language there must
be at least one viewLanguageConcept. In a simi-
lar way to the view language, as shown in Fig. 11,
view content is represented by the ViewContent
element contained by a View. The ViewConcepts
which belong to a ViewContent are contained in
the view content’s relation viewContentConcept.
As in the SUM, the data in the view’s content part
can contain information about an organization at
different levels of abstraction and classification
(i. e. architectural and operational).

To realize our approach and exploit the ben-
efits of a deep modeling infrastructure, we use
the level-agnostic modeling language (LML) de-
fined by Kennel (2012) and implemented in the
MELANEE tool by Gerbig (2017), based on the
Eclipse Modeling Framework (EMF) (Budinsky

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

et al. 2003). Beyond the ability to handle the on-
tological levels dynamically, MELANEE provides
advanced features for visualizing deep models
in multiple formats and notations (Gerbig 2017).
These employ visualizers to influence the appear-
ance of the concepts in the deep model. These
visualizers, of which there can be many at the same
time, can be customized by the user at run-time
to provide the most suitable concrete syntax for
each specific holder. Moreover, users can toggle
between domain specific visualizations and gen-
eral purpose visualizations of models or model
elements at any time. For instance a BpMmN like
deep model (OMG 2011a) can have two domain
specific visualizations defined, one presenting the
concepts using the regular BPMN symbols and a
second presenting the concepts using a general
purpose notation (e.g. UML like). While the
former is likely to be preferred by BPMN experts,
the latter is probably more accessible to BPMN
beginners who are not familiar with the graphical
notation.

The visualizers are defined in the context of the
domain concepts, which means that every concept
can have its own visualizer. If no domain specific
visualizer is defined for a concept its instances
will be rendered using a default general purpose
visualization. The general purpose visualization
renders entities (i. e. classes or objects) using the
usual rectangular notation from the UML, and con-
nections using the flattened hexagon notation as
used in entity-relationship diagrams. Furthermore
connections can be collapsed into lines to save
space in a diagram. A strength of MELANEE is its
capability to use the visualizers of a domain spe-
cific visualization across many ontological levels
based on the classification hierarchy. A visualizer
defined for a concept at Og, can be automatically
used for its instances at all the ontological levels
below (O ...0,).

5.2.2 View Projection

This section describes how information in the
SUM is projected into a view. The transformations
that enact the projection process are basically
defined at the level of the types in the SUM and

view languages. Defining the projections at the
type-level makes the views generic since they
can be applied to specific parts of the same as it
evolves. In other words, this approach supports
the notion of component-centric views that portray
a particular component.

* *
L* | sumconcept |[_1-
sum sum
Content Language
Concept Concept
0.* trace
| ProjectionTrace | y | ProjectionRule |
rule 1 0
view view
Content Language
Concept Concept

1% ViewConcept 1.*

_— View

name : String

1

1

0.1
| Environment H Condition |

Figure 12: View Projection Structure

Fig. 12 shows the structure of a view projection.
The figure summarizes the concepts from the
previous sections and extends the structure for the
orthographic modeling environment.

Projection Rules

A projection rule is defined as a relation between
the SUM and a view relating one or more types
from the SUM with one or more types from the
view. This is controlled by a condition expres-
sion which can constrain the projection in or-
der to project a specific set of concepts. The
ProjectionRule element from Fig. 12 therefore
has references to the language concepts from the
SUM and the view (sumLanguageConcept and
viewLanguageConcept) and it contains an element
of type Condition which is used to provide fine-
grained control to the projection rule. Since the
projection rules are defined on the types, they are
applicable to all instances in a specific projection.
Using the Condition, a projection rule can be
configured to project a chosen subset of all the in-
stances of the types. This feature allows the re-use

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

18

Christian Tunjic, Colin Atkinson, Dirk Draheim

of view definitions —i. e. the methodologist defines
one view (-type) which can have many entities
(-instances) in an orthographic modeling environ-
ment. The input to the Condition is derived from
the orthographic modeling environment, or more
specifically, from the dimension-based navigation
mechanism (cf. Sect. 5.3). This mechanism allows
on-the-fly view generation based on the content
of the SUM which is used as a parameter in the
projection rule (Atkinson and Tunjic 2016).

The ability to parameterize a view’s projection
definition follows the idea of component-centric
views, as presented in Sect. 4, and plays an im-
portant role in the generation of subject-oriented
views, which are views of a specific part of the
SUM and are used in Sect. 5.3, for the definition
of the dimension-based navigation approach. The
projection of a view from the SUM is usually
achieved using multiple projection rules. For ex-
ample, there is often at least one projection rule
for each type.

Projection Traces

The views generated by a projective approach con-
tain user data derived from the SUM. Projecting
user data from the SUM into a view populates it
with user data according to its projection rules.
Since the view is derived from the SUM it cannot
contain any user data which is not in the SUM.
The views in our approach are therefore always
abstractions of, or windows onto, the SUM. The
transformation of the information from the SUM
to the view gives rise to projection traces which
map the concepts in the view content with the
corresponding concepts in the SUM content. Pro-
jection traces are created when projection rules
are applied to project (i. e. transform) user data
from the SUM into a view. A projection rule can
lead to many projection traces, but may also lead
to no projection traces — this is the case when the
types from the SUM referred to in the projection
rule have no instances. The ability, to retrieve the
mappings of the concepts on the type and instance-
level allows the definition of rules which can be
used for synchronization mechanisms between the

Special Issue on Model-Driven Organisations

SUM and the views in order to ensure the consis-
tency of all view. This is realized using lens-based
technologies developed by Foster et al. (2007) as
explained by Tunjic and Atkinson (2015).

Fig. 12 shows the structure of the projec-
tion trace elements. A ProjectionTrace re-
sults from the application of a ProjectionRule
and is assigned to it via the rule relation.
In contrast, a ProjectionRule can have many
ProjectionTraces assigned to it, since a sin-
gle ProjectionRule can result in the projection
of many instances of its defined types and thus
create many ProjectionTraces. The concepts
from the view and the SUM which are “traced”
by a ProjectionTrace are referenced via the
sumContentConcept and viewContentConcept
relations. The projected View contains informa-
tion about the alignment of the concepts on both
the type and instance-levels and thus contains the
ProjectionRules and the ProjectionTraces.

5.3 Dimension-based View Navigation

In view-based modeling, every view should exist
for areason. In the IEEE1471/ISO42010 standard,
the existence of views is based on concerns of the
stakeholders, so every view takes at least one con-
cern into account. The problem for architects
when dealing with many views is to find the right
view for their needs. The search for the right views
can be guided by concerns, but since concerns
are predefined and static, the views which can
be derived from them are predefined and static
as well. To be able to support suitable views,
whose contents are defined dynamically as de-
scribed in Sect. 5.2.1, we use a multi-dimensional
cube (hyper-cube) metaphor for navigating around
views. The approach has some similarities to the
OLAP navigation model known from the data
warehouse domain (Kimball and Ross 2013) but
goes beyond it by mixing operational views (pri-
marily at the lower, more concrete ontological
levels) and static views (primarily at the higher,
more abstract ontological levels).

Our approach is a mixture of the two extremes
mentioned above. To define a view, we use prede-
fined static parameters and to describe what the

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

view should be of, we use dynamic parameters.
Both parameter types are mapped to dimensions
which span the hyper-cube. The available views
are contained in the hyper-cube and are situated in
cells — one for each view. A cell, and thus a view,
is selected by picking values for each dimension.
Figure 6 shows the idea of the hyper-cube, in
which a view is assigned to a cell. The content and
type of the view are influenced by the dimension
values of the cell in which the view is located.

5.3.1 Hyper-Cube Definition

This section provides an overview of the structure
of the hyper-cube approach. As shown in Fig. 13,
a Cube contains many Dimension elements which
span the hyper-cube, with the number of dimen-
sions determining the order of the cube. The
Zachman Framework (Zachman 1987), for exam-
ple, can be realized with two dimensions. The
dimensions which span a cube can be static or dy-
namic. A cube must have at least two dimensions
— one static and one dynamic. The Dimension
model element is therefore defined as abstract,
while its sub-classes (i. e.DynamicDimension and
StaticDimension) can be used to create concrete
dimensions. Both dimension kinds are described
by a unique name.

| Cube |

i

Dimension
name : String

11

|DynamicDimension| | StaticDimension |

[

DimensionElement
name : String

A A

0. 0. 1.*
DynamicDimensionElement | |StaticDimensionE|ement|

Figure 13: Hyper-Cube Structure

The dimensions of the cube, as well as the
views themselves, should ideally be orthogonal to
each other with minimal overlap. The dimensions
contain elements of the type DimensionElement
which represent the values of the dimension.
To allow dimension elements to be either
static or dynamic the DynamicDimensionElement
and StaticDimensionElement elements are de-
fined as specializations of the abstract class
DimensionElement.

All values of all dimensions must have names.
Static dimensions can contain only static dimen-
sion values and there must be at least one. They
are used to describe the type of a view, since
the view-type is also static and predefined. An
example of a static dimension is Platform Indepen-
dence, with its static dimension values CIM, PIM
and PSM from the MDA specification (Belaunde
et al. 2003).

A dynamic dimension consists of dynamic di-
mension values derived from the SUM. Addition-
ally, a dynamic dimension can have further static
dimension values. Examples of static dimension
values in dynamic dimensions are: none and all.
These can be used if the values of the dimension
are not relevant for a view, or if all values are
relevant for a view. A dynamic dimension can, in
contrast to a static dimension, also be empty. This
is the case when the dynamic dimension has no
static dimension values defined and no suitable
concepts for the dimension exist in the SUM. An
example of a dynamic dimension is Component.
The dimension values of this dimension would
usually be the list of all available instances of
the type Component. Using the aforementioned
example of a static dimension, it is possible to se-
lect a platform-independent view of a component
by choosing the value PIM from Platform Inde-
pendence and the appropriate component from
Component.

5.3.2 Deriving Values for Dynamic
Dimensions

This section presents the mechanism used to derive

the dynamic values of dynamic dimensions. This

mechanism is an essential part of our approach

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

<| DynamicDimension I‘

0.* 0.*

parent child
1.* 0..*

DynamicDimensionContentProvider

DynamicDimensionElement |

name : String

displayProperty : String
query : Expression

1G]
sumContentConcept L

SumConcept

1 1
| sumLanguageConcept

Figure 14: Dynamic Dimension Content Provider

and supports the usage of content from the SUM
to create dynamic dimension values. Figure 14
gives an overview of the concept by extending
Fig. 13. The parts of Fig. 13 which are not relevant
for this section are omitted.

In order to populate a dynamic dimension with
DynamicDimensionElements we use the concept
of DynamicDimensionContentProviders. Dy-
namic dimension content providers are responsible
for querying the SUM for information about partic-
ular concepts. The results are dynamic dimension
elements which are assigned to the corresponding
dynamic dimensions. A dynamic dimension must
therefore have at least one dynamic dimension
content provider, with a well defined name, which
provides appropriate concepts for querying the
SUM for relevant information using the type of
the concept and a query expression. The type is
given by the sumLanguageConcept relation result-
ing in a SumConcept from the SUM language. The
query expression states which concepts should be
queried. It is possible to accept all available in-
stances, of the type given by sumLanguageConcept,
or to filter it according to a particular condition.
For example, “get all Components at the top level”,
means that all components that are not contained
by other Components should be selected. The re-
sult of a query can be empty if no suitable concepts
in the SUM exist. The dynamicDimensionElement
relation provides all dynamic dimension ele-
ments which result from the considered dy-
namic dimension content provider. In order
to get the DynamicDimensionContentProvider
of a DynamicDimensionElement the relation
dynamicDimensionContentProvider can be used.

The information from the SUM shown us-
ing dynamic dimension elements are instances
of the type defined by sumLanguageConcept.
Therefore the element DynamicDimensionElement
owns the relation sumContentConcept which
points to the SumConcept from the SUM con-
tent. The property displayProperty states which
property of the DynamicDimensionElement’s
sumContentConcept should be displayed as the
dimension value. Usually the name property is
used as the dimension value, so the dynamic di-
mension which contains all components contains
all names of the components.

As shown by the parent — child relationship in
Fig. 14, a dynamic dimension content provider can
contain another content provider. This is the case
when a hierarchical structure is needed within a
dimension. This functionality can be used if, for in-
stance, a dynamic dimension contains all instances
of business processes and business processes can
have sub-processes. A containing dynamic dimen-
sion content provider can be used to reflect this
container-like structure in the dimension. Another
example could be the representation of informa-
tion which belongs together, e.g. the business
processes and their instances. The business pro-
cesses can be represented in the top hierarchical
dimension while their instances would be repre-
sented in the next sub-dimension. In this case
the top hierarchical dimension would contain the
architectural data, while the sub-dimension would
contain the operational data.

5.3.3 Views in a Hyper-Cube
In the previous sections we defined the structure
and the behavior of the dynamic hyper-cube. In

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

this section we discuss the concepts which support
the assignment of views to cells in the dynamic
hyper-cube. To this end, we introduce the concept
of defining a slice or sub-cube of the hyper-cube
in order to assign views to it. The assigned views
correspond to abstract views as defined in Sect. 4.
Since a slice is just a special case, the term sub-
cube will be used in the following. A sub-cube
is defined when one or more of the coordinates
that select cells are left undefined. This occurs,
for example, at framework configuration time
because the values of dynamic dimensions are
no yet available. It is therefore not possible to
identify a particular cell at this stage because
it is not possible to select concrete values for
all dimensions. Selecting concrete values for
only some of the dimensions and leaving the
other unspecified defines a sub-cube of the hyper-
cube. Such sub-cubes correspond to the notion of
abstract views as explained in Sect. 4.

Sub-Cubes

View
name : String

1

SubCube

/dimension : List

0.*

StaticDimensionElement

0.*

DynamicDimensionContentProvider
name : String

displayProperty : String

query : Expression

Figure 15: The Concept of a SubCube

Figure 15 shows the mechanism for defining
sub-cubes of a hyper-cube. A sub-cube is defined
by selecting a value for each existing dimension re-
gardless of whether it is a dynamic or static dimen-
sion. The derived list property dimension contains
every dimension that is available for the consid-
ered hyper-cube. The derivation is based on the re-
lationships dynamicDimensionContentProvider

and staticDimensionElement, since both belong
to a dimension. The length of the list dimension
must be equal to the number of dimensions in the
hyper-cube and the content must be distinct.

The relationship staticDimensionElement al-
lows the choice of static dimension values
to define the sub-cube. The static dimen-
sion values can be contained by both static
and dynamic dimensions. The relationship
dynamicDimensionContentProvider allows dy-
namic dimension values to be chosen using the
content providers. The values returned by the
content providers depend on the content of the
SUM and are thus not defined at method configu-
ration time. Hence the sub-cube uses the content
providers and not the concrete dynamic dimension
values.

At configuration time the Views are assigned
to the sub-cubes using the SubCube relation of
View. Every view must be assigned to exactly one
sub-cube in order to be usable in a project. The
view, which is related to a sub-cube is an abstract
view.

Figure 16 shows a view which is assigned to a
sub-cube. The sub-cube is defined by the static
dimension values PIM and Structural and a dy-
namic dimension content provider which returns
all components. When a view is assigned to a
sub-cube only the view language is available but
not the view content, since the dynamic dimen-
sion values from the dynamic dimension content
providers are not available at this point in time and
the view content is thus empty. This is depicted
in the figure by showing only the view language
part of the view assigned to the sub-cube since
the view content part is not available at method
configuration time.

The static dimension values of a sub-cube de-
scribe the view language of the view which is
assigned to the sub-cube. Thus, the view language
of a view depends on the static dimension values.

From Sub-Cubes to Concrete Cells
In this section, the concept of a sub-cube will be
extended to show how concrete cells are derived

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

22

Christian Tunjic, Colin Atkinson, Dirk Draheim

juauodwo)

View-Language

Projection

/

Figure 16: View Assigned to a Sub-Cube

SubCube

|eanionJis

from the previously defined sub-cubes. We there-
fore extend Fig. 15 and introduce the concept of
a Cell which contains information about exactly
one dimension value for each available dimension.
The structure of a cell, and its relationship to the
previously described concepts, is shown in Fig. 17.

The concrete cells are available as soon as a
configured framework is used in a real project
which must have a SUM from which the dy-
namic dimension values can be derived. In this
step, the DynamicDimensionContentProviders
generate DynamicDimensionElements based
on their configuration. As soon as the
dynamicDimensionElement relation of a
DynamicDimensionContentProvider is not empty,
the SubCubes which use the content provider
can retrieve the actual dimension values for this
dynamic dimension. Once this information is
available, the SubCube can generate the concrete
cells by using the concrete dynamic dimension
values. The cell containment relation is used to
get all Cell elements of a SubCube. The relation
can also be empty when no suitable cells exist
(e. g. when there are no components available in
the SUM) so the corresponding cells do not exist.

The Cell elements have the same
staticDimensionElements as their owning
SubCube. Therelation dynamicDimensionElement

Special Issue on Model-Driven Organisations

depends on the result of the content
provider and contains one value for each
dynamicDimensionContentProvider from the
owning SubCube. The derived property dimension
of a Cell must contain exactly one dimension
value from each available dimension.

The relation cell of a View denotes the assign-
ment of a view to a concrete cell, while the view
corresponds to a concrete view. These relations
are generated when the orthographic modeling en-
vironment is used to specify a system in a concrete
project. At run-time, the content providers query
the SUM and produce concrete cells. In this step,
the View which is assigned to a SubCube gets as-
signed to all the generated Cells of that SubCube.
The view content is generated at the moment when
aViewis assigned to a Cell. Then the environment
parameters are used in the conditions of the projec-
tion rules, resulting in the projection of concepts
from the SUM content to the view’s content part.
This procedure is triggered automatically as soon
as the content of the SUM changes, i. e. as soon
as the set of dynamicDimensionElement relations
of a DynamicDimensionContentProvider used by
a SubCube changes. If the set grows by one, at
least one new view is generated. In other words,
when a new component is created, the view having
the component as subject will automatically be
available. The reverse case when the set shrinks
by one is analogous.

The cells to which the views are assigned de-
scribe the content of the views. Hence we can
say that the view content of a view depends on
the dynamic dimension values which define the
cells. Figure 6 shows a view which is assigned to a
cell. The view has a language part because of the
assignment to a SubCube, and it has a content part
because of the automatic assignment to a Cell.

View Projection using Cells

This section extends the view projection defini-
tions from Sect. 5.2.2 using the definitions from
the previous sections concerning the hyper-cube.
We can now replace the Environment element by
the hyper-cube definitions, since the hyper-cube

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

23

Special Issue on Model-Driven Organisations

View
name : String
1 0..1
A4 A4
SubCube 0.* Cell
/dimension : List /dimension : List
0.* 0..* 0. 0.
\ v v v
DynamicDimensionContentProvider | StaticDimensionElement | | DynamicDimensionElement
name : String T
displayProperty : String 0.
query : Expression 1

Figure 17: The Concept of a Concrete Cell

provides the environment for views using dimen-
sions and cells. The updated structure is shown in
Fig. 18.

View 0.1 Cell
name : String /dimension : List
¢ /
0.1
| Condition |
1
1.* 0.*
\
ProjectionRule | [DynamicDimensionElement |
sum sum
Language N 1 Content
Concept | 1. >| SumConcept |< Concept

Figure 18: View Projection-Rule and Cell Properties

The projection rules of a view, project con-
tent from the SUM using concepts from the
SUM language, which are accessable via the
sumLanguageConcept relation. In the projection
rule, all instances of the sumLanguageConcept are
retrieved by “allInstances()”-like operations
and projected to the content part of the view. The
Condition of a ProjectionRule serves as a filter
for the projection rule. The Condition influ-
ences the ProjectionRule using the information
about the elements to which the View is related.
The parameters of the environment are now the
dynamicDimensionElements of the Cell. Since

the DynamicDimensionElements are derived from
the SUM content, they hold the corresponding
information in the sumContentConcept relation.
A projection rule used to project components from
the SUM to a view can be controlled by a condition
which uses the dynamic dimension value of the
component dimension to project only the compo-
nent which is assigned to the dynamic dimension
value. The condition can also be used to query
any possible content from the SUM, using query
languages like the OCL (OMG 201 1c), ModelJoin
(Burger et al. 2016) or other mechanisms like
decision trees (Breiman 1984).

6 Deep Orthographic Modeling Example

To show how the deep modeling approach de-
scribed in the previous section would be applied
in practice, and demonstrate that it at least has the
capabilities of exiting EA modeling frameworks,
in this section we apply it to the MEMO exam-
ple presented in Sect. 3. More specifically, we
show how our framework can be configured to
support a part of the MEMO Framework based
on that example. We therefore extended the proto-
type implementation described by Atkinson et al.
(2013a) to support the approach described in the
previous section. The ability to configure the
orthographic modeling environment to a partic-
ular view-based method with support for deep
modeling and dimension-based view navigation,
significantly extends the power of the tool. The

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

24

Christian Tunjic, Colin Atkinson, Dirk Draheim

current tooling implementation, which we call
DOREEN, uses the ECLIPSE-based MELANEE tool
as the underlying deep modeling platform and the
DEEP-ATL transformation language to realize the
deep modeling projections.

In this case study, we focus on the behavioral
part of the enterprise specification — the other parts
can be realized in a similar way. The behavioral
part of an enterprise is mainly specified by the as-
pect dimension’s “process” value (cf. Fig. 3). The
values of the perspective dimension (i. e. “strat-
egy”, “organisation” and “information system’)
are used to specify the enterprise’s behavior at
different abstraction levels. These range from
strategic views (e. g. for defining value chains)
to implementation views (e. g. for defining the
underlying information systems).

At the strategical level, the value chains of the
enterprise are described. In the MEMO Frame-
work, value chains are composed of the activities
to be performed at the strategical level. These are
further used in the description of business pro-
cesses, situated at the organizational level. The
mapping of the activities to business processes
shows how the activities are realized by the under-
lying business. In this example we focus on this
part of the MEMO Framework and realize it using
two views, one view at the strategical level and one
at the organizational level. The SUM is tailored
to this small excerpt of the MEMO Framework
and provides the needed concepts to capture the
information conveyed by the two identified views.

The method configuration for this example is
intentionally incomplete since it is only intended
to provide an idea of how the MEMO approach
can be supported in the orthographic modeling
framework. Since the artifacts for the models (i. e.
the SUM and the views) are represented using deep
modeling technology (Gerbig 2017), the models
can be easily extended to capture other parts of
the MEMO Framework. The extension of the
orthographic modeling environment is performed
by a person playing the role of the methodologist,
and requires the addition of further model elements
to the SUM language and further views to support
all of the perspective and aspect values. Since the

Special Issue on Model-Driven Organisations

extension would include the modification of the
deep modeling language artifacts, a redeployment
of the environment based on the changes is not
needed. This is because the meta-model of the
deep models can be manipulated at run-time with
the help of emendation services to maintain the
overall consistency of a deep model (Atkinson
et al. 2012). The deep models for the example
are shown using the general purpose visualization,
but can be easily adapted to a MEMO domain
specific visualization by creating the appropriate
visualizers.

6.1 SUM Language

In order to provide a single consistent description
of the enterprise under discussion, all information
from the available views must be integrated into
a SUM which provides a detailed and full spec-
ification of the enterprise. The SUM language
for the part of the MEMO Framework relevant to
this case study is shown in Fig. 19. The shown
SUM language is a simplified version of the more
detailed meta-model presented by Frank (2014).
The language comprises concepts to capture the
activities of a value chain using the Activity
model element. The realization of the activities
on the organizational level is represented by the
implementedBy model element, linking the ac-
tivity to one or more BusinessProcesses. The
business processes are further described using the
model elements Process and Event. The tran-
sition between the Processes to the Events and
vice versa is realized by the 1inkPE model element.
The deep model in the figure is presented using
the general purpose visualization. The entities are
presented using the rectangular notation, while
the connections are presented using the collapsed
notation, which renders a connection as a line with
a black dot.

The model elements used to define the SUM lan-
guage are enhanced with potency and durability
properties to define the influence range of the
model elements.
can be executed in running enterprises, the
BusinessProcess model element has a potency

Since BusinessProcesses

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

25

Special Issue on Model-Driven Organisations

4 MEMO - SUM Language N
00 implementedBy!
activity y bProcess
Activity! BusinessProcess?

name : String?

bProcess’ TbProcess

name : String!

pPartOf2 » ePartOf?
process event
Process? Event?
name : String? name : String?
duration : Integer? svent
process
linkPE?
01
02
\Z /

Figure 19: MEMO — SUM Language

value of “2” so that it can have instances at onto-
logical level O; and O,. The same is true of the
model elements belonging to BusinessProcess
such as (Process and Event) and the correspond-
ing connections (pPartOf, ePartOf and 1inkPE).
The attributes of these model elements are also
defined with the same influence range as their
owning model elements. This means it is possible
to use the attributes in the ontological levels Oy
and O,. The duration attribute of the model
element Process is used in the ontological level
O; to store the execution duration of a Process in
the running enterprise.

6.2 View Language

There are two views of relevance for this example.
One, the activities view, provides the ability to
create activities (instances of Activity) at the
strategic level and one or many business processes
(instances of BusinessProcess) used to realize the
activities. The other, the business process view, is
used to further describe the business processes by
defining the actions and events which occur within
them. Since the second view is more interesting,

we will focus on this view here. Figure 20 shows
the view language for the business process view.
The BusinessProcess model element in this view
is the subject of the view since it is meant to be the
view of a particular business process. The subject-
oriented approach for defining views avoids the
creation of views that convey information about
an arbitrary part of the enterprise and enhances
the structure of the enterprise specification.

The deep model used for the view language of
the business process view as shown in Fig. 20 is
able to capture types of BusinessProcesses in
the ontological level O; as well as their instances
situated in O;. The BusinessProcesses in O,
represent the executed business processes in the
running enterprise. While most of the defined
model elements can be used at both the O; and
O, ontological levels, this is not the case for the
avgDuration attribute of the BusinessProcess
model element. This attribute is only available un-
til O;. The value of this attribute is derived dynam-
ically in the view projection step and aggregated to
show the average duration of a BusinessProcess
type, using the duration information captured in
the instances of the BusinessProcess. Since this
attribute depends on the subsequent ontological
level, it does not make sense to include it in O,
since there are no BusinessProcesses at O3. This
ability to derive information from across many lev-
els of abstraction is also supported in the MEMO
Framework by applying the stereotype “«obtain-
able»” to an attribute. In the context of deep
modeling, this concept can be applied over many
abstraction levels (e. g. to derive some value in Oy
from O3).

The second derived attribute in the presented
view language is the duration attribute of
BusinessProcess. This attribute shows the time
needed for a BusinessProcess instance (on O5) to
finish by summing up the duration values of the
Processes belonging to that BusinessProcess.

In the current example, most of the model
elements used to define the view language are
similar to the corresponding model elements in
the SUM language, but this is not always the
case. The presented framework allows almost any

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

26

Christian Tunjic, Colin Atkinson, Dirk Draheim

/~ MEMO - Business Process View Language N\
00

BusinessProcess?

name : String?
duration : Integer?
avgDuration : Integer!

bProcess! tbProcess

pPartOf?

ePartOf?

process event

Process? Event?

name : String? name : String?

duration : Integer?

event

process
linkPE2

o1

02
\C _/

Figure 20: MEMO — View Language of Business
Process View

arbitrary mapping between the model elements
from the SUM and their counterparts in the views.
This mapping can be defined in the projection rules
based on the goal and intention of a view. The
complexity of the mapping influences the degree
of back propagation of the view’s information to
the SUM when a BusinessProcess is changed
at the O; level for example. In pure read-only
views, which are mostly used for reporting, the
complexity of the projection rules does not matter
since no back propagation is intended.

6.3 View Projection

In order to project information from the SUM to
the views and propagate the information from the
views back to the SUM, view projections are cre-
ated as described in Sect. 5.2.2. In this example,
ATL (ATLAS Transformation Language) (Bézivin
et al. 2003) is used to query the appropriate con-
cepts from the SUM and project them to the view.
However, the approach is not strictly bound to ATL,
other transformation languages like vt (OMG
2011b) can also be used. Listing 1 shows the
ATL code representing the view projection part

[N T N

Special Issue on Model-Driven Organisations

of the view, shown in Fig. 20. The ATL code is
written in the DEEP-ATL dialect which can be used
to transform deep models to deep models, deep
models to classical two-level models or classical
two-level models to deep models. The dialect
extends the standard ATL language with features
to facilitate the direct selection of ontological con-
cepts and their ontological properties. A detailed
description of DEEP-ATL is available in Atkinson
et al. (2013b).

In order to support the projection of multiple
ontological levels from a source deep model into
a target deep model, we extended the DEEP-ATL
dialect with the concept of “rule potency”. The
rule potency of the source pattern defines the range
of ontological levels which should be transformed.
The ranges are defined by specifying a start and
an end ontological level relative to the ontologi-
cal level of the concept used in the pattern. For
instance, the source pattern in Listing 1 line 5,
selects all instances of the Og.BusinessProcess
ontological concept situated at the ontological
levels O; and O,. The rule potency of the target
pattern has the same semantics — it defines which
ontological level the selected concepts should be
added to. An example of the rule potency for a
target pattern is contained in line 7 of the example
ATL code. Since the value is equal to the rule po-
tency of the source pattern, the rule transforms the
instances (from O1) of the Oy.BusinessProcess
ontological concept and the instances of the in-
stances (from O,), to instances (to O;) of the
target pattern concept Og.BusinessProcess and
to instances of the instances (to O;). If for exam-
ple, only the business process instances from the
ontological level O, from the SUM are needed in
a view, then the rule potency value of “2” must be
applied to the source pattern. This functionality
allows complete classification hierarchies to be
easily transformed from one deep model to another
deep model.

-- @atlcompiler atlMLMcompiler

rule BusinessProcess2BusinessProcess {
from
s : SUM!00.BusinessProcess 1..2 (
thisModule.isSubject(s))
to

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
4
43
44

45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

Special Issue on Model-Driven Organisations

t : VIEW!00.BusinessProcess 1..2 (
name <- S.name,
1.name <- s._1_.name,
duration <- thisModule.
sumDurationOfProcesses(s),
avgDuration <- thisModule.
avgDurationOfInstances(s)
)
}
rule Process2Process {
from
s : SUM!00.Process 1..2 (thisModule.
processBelongToSubject(s))
to
t : VIEW!00.Process 1..2 (
name <- S.name,
1.name <- s._1_.name,
duration <- s.duration
)
}
rule pPartOf2pPartOf {
from
s : SUM!00.pPartOf 1..2 (thisModule.
pPart0OfBelongToSubject(s))
to
t : VIEW!00.pPartOf 1..2 (
bProcess <- s.bProcess,
process <- s.process
)
}
rule Event2Event {
from
s : SUM!00.Event 1..2 (thisModule.
eventBelongToSubject (s))
to
t : VIEW!00.Event 1..2 (
name <- s.name,
1.name <- s._1l_.name
)
}
rule ePartOf2ePartOf {
from
s : SUM!00.ePartOf 1..2 (thisModule.
ePartOfBelongToSubject(s))
to
t : VIEW!00.ePartOf 1..2 (
bProcess <- s.bProcess,
event <- s.event
)
}
rule 1inkPE21inkPE {
from
s : SUM!00.1inkPE 1..2 (thisModule.
linkPEBelongToSubject (s))
to
t : VIEW!00.1linkPE 1..2 (
process <- S.process,
event <- s.event
)
}

Listing 1: ATL Transformation for MEMO Business
Process Views

The view projection definition contains six
ATL rules, each responsible for the projection
of one concept. The projection is defined on
the type-level (i.e. in terms of the concepts con-
tained in the view and SUM language). In this
case the concepts are contained in the Op on-
tological level of the deep models. The rule
BusinessProcess2BusinessProcess projects onto-
logical instances of the Og.BusinessProcess con-
cepts from the SUM to the view as ontologi-
cal instances of the Og.BusinessProcess onto-
logical concept, defined in the view language.
Within the atL rules, the properties of the con-
cepts can also be projected, e. g. the linguistic
and ontological name properties (line 8 and 9)
of the Og.BusinessProcess concepts. Here the
l.name (line 9) corresponds to the linguistic
name, whereas the name (or _o_.name) corre-
sponds to the ontological name property. The
shorthand notation for the ontological properties
can be used since the concepts in the from and to
part of the aTL rule are ontological concepts.

While the concepts of the BusinessPro-
cess2BusinessProcess rule are linguistic Entities
their properties are linguistic Attributes. The
rule linkPE2linkPE on the other hand projects
concepts which are linguistic Connections.
So the binding of the properties defined in
the rule includes linguistic Attributes and
ConnectionEnds. The latter are used to nav-
igate from a Connection to an Entity. In
the rule linkPE2linkPE in line 56 and 57 the
ConnectionEnd properties process and event are
used.

Most of the concepts’ properties are directly
projected to their counterparts (e.g. the name
properties). This is because the view language
largely overlaps with part of the SUM language.
The property assignments in the lines 10 and 11
are an exception. As defined in the view lan-
guage the property duration shows the duration
of the execution of a business process instance
(on Oy). Therefore the helper sumDurationOfPro-
cesses() summarizes the duration property values
of all process instances (on O;), belonging to the
given business process and returns the result as

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

28

Christian Tunjic, Colin Atkinson, Dirk Draheim

an Integer. The property avgDuration shows the
average duration of all business process instances.
To this end, the helper avgDurationOfInstances()
computes the average of the duration property
values over all business process instances. This
aggregation of information crosses the type/in-
stance boundary since information from O; is
aggregated and stored in Oy .

As mentioned earlier, the view showed in the
example overlaps significantly with the SUM, but
this need not be the case. In general, our presented
approach allows any kind of view to be projected
from the SUM. The derivation can be performed
directly (e. g. line 8) or using some aggregation
mechanisms (e. g. line 10). Furthermore, the ag-
gregation is not limited to properties of concepts.
It is possible to aggregate many concepts from
the SUM and generate one single concept in a
view, or to generate many concepts in a view based
on one single concept from the SUM. Since the
prototype relies on atL, all capabilities of the
transformation language (helpers, do-blocks, lazy
rules,...) can be used to derive the contents of
views. By aggregating information, it is possible
to create views which act like reporting views in
business intelligence. For instance, it is possible
to show the frequency of the execution of a par-
ticular Process by considering all executions of
a BusinessProcess type. Another example from
the software modeling area is to create a view
which shows a Class enhanced by the concepts
which it inherits based on its inheritance tree.

Each rule in Listing 1 has a filter which in ATL
is placed in the from part of a rule. Note that the
ATL helpers used by the filters are omitted in the
ATL module shown in order to enhance readability.
The role of a filter is to ensure that only the needed
concepts from the SUM are projected to the view
using information from the orthographic modeling
environment (i. e. what/who is the subject of the
view and how are the other concepts related to
the subject). The views in orthographic modeling
should be minimal in terms of the number of con-
cepts they support, but they should be sufficiently
expressive to fulfill their purpose (Atkinson and
Tunjic 2014a). All the filters in the shown ATL

Special Issue on Model-Driven Organisations

module depend on the subject parameter which is
provided by the orthographic modeling environ-
ment. The resulting view is thus a subject-oriented
view since it omits contain concepts which are
not relevant from the perspective of the view’s
subject.

6.4 Hyper-Cube

In order to provide a navigation mechanism for the
MEMO Framework a hyper-cube must be defined
in terms of orthogonal dimensions as described
in Sect. 5.3. Each cell in the resulting hyper-cube
is identified by a collection of dimension’s values
(i. e. coordinates) and may or may not be associated
with a concrete view. In the following, we first
show the hyper-cube configuration used in our
example and then show the configuration applied
to an exemplary SUM to obtain concrete dynamic
dimension elements using content providers.

The MEMO high-level Framework is based
on two orthogonal dimensions — aspects and
perspectives. In this example, we use these two
dimensions and their values as static dimensions
for the hyper-cube. We further define a dynamic
dimension with the name BusinessProcesses
which is used to show all BusinessProcess model
elements contained in the SUM. It is of course
possible to define further dynamic dimensions for
further views, but to keep the example as simple
as possible we use only one dynamic dimension
to demonstrate the capabilities of our approach.
We define therefore the DynamicDimension
BusinessProcesses, which contains a Dynamic-
DimensionContentProvider. This content pro-
vider provides the DynamicDimensionElements
for this dynamic dimension. Since the un-
derlying deep modeling platform is able to
capture information which span many abstrac-
tion levels, and the example SUM spans three
ontological levels (Op ...0O,), we use the nest-
ing dimension concept to represent instances
of the business process types. We also define
a second DynamicDimensionContentProvider
which is contained by the first via a child rela-
tion. Figure 21 shows the configured hyper-cube

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

29

Special Issue on Model-Driven Organisations

for the MEMO-based example. Again, to en-
hance readability the following abbreviations
are used to refer to the dimension elements:
StaticDimension (SD), DynamicDimension
(DD), StaticDimensionElement (SDE) and
DynamicDimensionContentProvider (DDCP).

| MEMO:Cube |

dimensions _I

Resource:SDE |

—{ Structure:SDE_ |

—| Aspect:SD]

—| Process:SDE |

—I Goal:SDE I

static
DimensionElement

—| Strategy:SDE |

—| Perspective:SD]

—I Organization:SDE I

—I InformationSystem:SDE I

static
DimensionElement

—| BusinessProcesses:DD]

BusinessProcessType:DDCP
displayProperty="name"
query=BusinessProcess->alllnstances()

parent
child
BusinessProcessinstance:DDCP

displayProperty="name"
query=parent->allinstances()

dynamicDimension
ContentProvider

Figure 21: MEMO — Hyper-Cube

Using the project configuration information, the
content providers for the dynamic dimension ex-
tract the appropriate dynamic dimension elements
so they can be shown as values of the dynamic
dimension. Figure 22 shows the application of
the shown configuration to the MEMO example.
The three tables (Aspects, Perspectives and Busi-
nessProcesses) represent the dimensions, while
their contents represent the dimension values. A
cell is selected when a dimension value for each
dimension is picked. In Fig. 22 the selected cell
has the values (i. e. coordinates) “Process — Orga-
nization — CPC_exec-01".

The SUM in the example has two instances
of business process on the ontological level O

& Dimension Explorer

'):' -
Aspects

Resource
Structure
Process
Goal

Perspectives

Strategy
Organization
Information System

Business Processes

v ClaimProcessingCars
CPC_exec-01
CPC_exec-02
CPC_exec-03

v ClaimProcessingFire
CPF_exec-01

Figure 22: MEMO — Hyper-Cube with Navigation
Dimensions

(ClaimProcessingCars and ClaimProcessingFire).
These are queried by the BusinessProcessType con-
tent provider using the query “BusinessProcess-
>alllnstances()”. The operation alllnstances()
returns all instances of a model element situ-
ated at the next ontological level. The two in-
stances of business processes in the SUM are
further types of their instances which are situ-
ated on the ontological level O, (CPC_exec-01,
CPC_exec-02, CPC_exec-03 and CPF_exec-01).
These are queried by the nested content provider
BusinessProcessInstance which calls the opera-
tion alllnstances() on the business process types
provided by their content provider. Finally, the
instances of the business processes (from O; and
0,) are displayed as DynamicDimensionElements
in the DynamicDimension BusinessProcesses us-

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

30

Christian Tunjic, Colin Atkinson, Dirk Draheim

ing a tree structure derived from the structure of
the used content providers. This shows business
process instances as children of the corresponding
business process types.

The presented approach provides the mecha-
nisms to define any needed cell using the concepts
of static and dynamic dimensions. For the current
MEMO example, it would also be possible to show
the sub-processes of the business process types
in the nesting dimension and show the business
process instances in a further dynamic dimension
(e. g. BusinessProcessInstances). In this case the
relationship between the dynamic dimension ele-
ments of the BusinessProcess dimension would be
of kind “contained-by”, rather than “instance-of”,
since the model elements in the top dimension
would be the containers of the model elements in
the nested dimension. This configuration would
be equivalent to OLAP drill-down/roll-up opera-
tions. Beyond the shown use cases the hyper-cube
can also be used to create views which are used
for reporting, as in business intelligence. In this
case the dynamic dimensions could be used as the
grouping and filtering criterion which let the archi-
tect dynamically control the content of views. The
interpretation of the dynamic dimension elements
used for grouping and filtering would be realized
using aggregations in the projection rules. Tech-
nically these would be handled by the underlying
transformation language.

6.5 Views in the Hyper-Cube

As described in Sect. 5.3.3, views are assigned to
cells of the hyper-cube using so-called SubCubes.
The SubCubes are sub-cubes of the hyper-cube
which are defined by StaticDimensionElements
and DynamicDimensionContentProviders. The
business process view in the example is assigned
to the SubCube which is defined by the Organiza-
tion and Process StaticDimensionElements and
the DynamicDimensionContentProvider which
provides all business processes available in the
SUM.

Figure 23 shows the SubCube of the Busi-
nessProcessView from Fig. 20, based on the
hyper-cube configuration shown in Fig. 21.

Special Issue on Model-Driven Organisations

—| BusinessProcessView:View

/subCube Process:SDE
| :SubCube
Organization:SDE

dynamicDimension
ContentProvider

BusinessProcessinstance:DDCP
displayProperty="name"
query=parent->allinstances()

Figure 23: MEMO — SubCube of Business Process
View

The SubCube is defined by the Process
and Organization StaticDimensionElements
(SDE) and the BusinessProcessInstance
DynamicDimensionContentProvider (DDCP). The
BusinessProcessInstance DynamicDimension-
ContentProvider is used to return the instances
of business process types. For this purpose
it uses the business process from its parent
DynamicDimensionContentProvider as can be
seen from the query expression. Note that the
view content part of the view shown in Fig. 23 is
empty since no concrete value for the dynamic
dimension is available at this point.

—| BusinessProcessView:View |

/ce” Process:SDE

[:Cell
Organization:SDE
dynamic
DimensionElement
> CPC_exec-01:DDE |

Figure 24: MEMO — Cell of Business Process View

Since the orthographic modeling environment
uses the method configuration in a project, the
SubCubes are used to generate the Cells which ulti-
mately contain the view content. Based on the Fig-
ures 22 and 23, Fig. 24 shows the generated Cell

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

for the CPC_exec-01 business process instance.
The DynamicDimensionContentProvider’s Dyna-
micDimensionElement (DDE) with the name
“CPC_exec-01" has been picked, leading to a
concrete cell which is defined by a single dimen-
sion value from each dimension. Besides the
“CPC_exec-01” cell, further cells are generated
for all dynamic dimension elements returned by
the content providers. The content of the view,
shown in Fig. 24, is not empty since it contains
at least the subject of the view — the CPC_exec-
01 business process instance. As well as the
business process instance, the view can contain
further concepts which are relevant for the subject,
e. g. instances of the sub-processes, events and
relations.

Finally, Fig. 25 shows two versions of the con-
crete content of the view which is contained in the
selected cell shown in Fig. 22. On the left-hand-
side of the double dashed vertical line (a), the view
content is shown using the default general pur-
pose visualization and on the right-hand-side (b)
it is shown using a domain specific visualization.
While the first ontological level (Og) contains the
view language, the content is situated in the second
and third ontological level. In this example, the
ontological level O contains the architectural in-
formation and the O, the operational information.
The concepts in O; and O, are projections of the
corresponding concepts from the SUM created
according to the defined projection rules. The
correspondence between the view and the SUM
concepts is further captured by the projection
traces which are generated by the projection rules
in the projection process. The concepts in the view
content are ontological instances of the concepts
from the view language. The view content of the
presented view spans two ontological levels since
it shows a business process instance along with its
type. According to the hyper-cube, the instance
“CPC_exec-01” is picked as the subject for the
view. Based on the projection rules from Listing 1
both the business process instance and its business
process type are projected into the view. This is
defined by the rule potency value in the ATL rules.

In order to realize the domain specific visual-
ization shown in Fig. 25 (b) every concept from
the view language (see Fig. 20) needs to be pro-
vided with a corresponding visualizer. Since the
instances (O and O) “inherit” the visualizers
from the types (Ogp), the concepts contained in
the view content part will automatically be ren-
dered using the domain specific visualizers. The
domain specific visualizers are taken from the orig-
inal example from Frank (2002) but are slightly
modified to fit to our example. The modification
basically ignores the distinction between “man-
ually”, “semi-automatically” or “automatically
executed processes. In order to support the differ-
ent types the SUM language, view language and
view projection rules need to be extended. In the
view language the three types would be modeled
using one concept per process type, whereas in the
SUM they could be mapped to a single concept.
The concept’s type in the SUM can be identified
using an attribute. This is an example of the “in-
formation expansion” approach, described in in
Sect. 5.1. The view presented in Fig. 25 shows the
two properties obtained by aggregating informa-
tion about operations executed in the projection
process. The duration property of the CPC_exec-
01 model element contains the sum of all duration

L3

values of the owned Process instances in millisec-
onds. The domain specific visualization provides
a more meaningful way of presenting the prop-
erty — the value is converted from milliseconds to
seconds with the corresponding unit indicator as
suffix. The second aggregated value in this view
is the avgDuration of the ClaimProcessingCars
model element. This property value is derived
by accumulating all duration property values of
all instances of the ClaimProcessingCars model
element (in O,). Due to the durability property
value (“1”) of the avgDuration Attribute (see
Fig. 20), the property only exists at the O; onto-
logical level and not at the following levels. This
value indicates that the execution duration of the
CPC(C_exec-01 business process instance is above
the average execution duration of over all business
process instances.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

32

Christian Tunjic, Colin Atkinson, Dirk Draheim

Special Issue on Model-Driven Organisations

e MEMO - Business Process View Content I " /~ MEMO - Business Process View Content)
00 || 00
01 || 01
ClaimProcessingCars:BusinessProcess’ || 4 ClaimProcessingCars A
avgDuration = 17300° " avgDuration = 17,300 sec
ProcessCustome{ CIaileejected
Request:Process :Event " Process clain ived FormalCheck
Customer
A Request
Y " PN
ClaimArrived FormQk VerificationOfSubst- &
:Event’ :Event’ ~=>{ antialMatter:Process’(| ||| ‘
P FormNotOk
\ / \ " 2\
FormalCheck ForleotOk CIaimAiccepted " Hv
:Process —=> :Event :Event A VerificationOf % 4
Q?IalmAccepted SubstantialMatter ClaimRejected j
02 || 02
CPC_exec-01:ClaimProcessingCars® " 4 CPC_exec-01 A
duration = 27800° " duration = 27,800 sec
:Process . 0 :VerificationOf 6,300 sec 7}» 9,400 sec
CustomerRequest’ :FormOk SubstantialMatter’ I —»y —>
duration = 6300° 7y duration = 12100° (Process Claimarrived :FormalCheck
I Request.
| | 7 12,100 7
. :FormalCheck® 5 / < = Y
:ClaimArrived”| g > :ClaimRejected [Veri of
: — . . :Verification
duration = 9400 " ‘ClaimRejected g oo o Matter :FormOk

(a) general purpose visualization

(b) domain specific visualization

Figure 25: MEMO — View Content of Business Process View with Subject CPC_exec-01 (Frank 2002)

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

7 Discussion

In this paper we have presented an approach for
supporting Model Driven Organizations that lever-
ages deep modeling and orthographic modeling in
a unified, view-based environment to seamlessly
support architectural and operational views of the
underlying organization. In this section, we dis-
cuss how the presented approach realizes the goals
set out in Sect. 4, and what benefits this offers
to enterprises. We also discuss limitations and
weaknesses.

7.1 Deep, Projective, Component-based,
Composite Views

The key requirement for the approach, as out-
lined in Sect. 4, is a viewpoint framework that
cleanly and fundamentally supports projective,
component-based, composite views of an organi-
zation. The presented realization approach not
only achieves all these goals, it does so in a generic
way that can be easily customized and used by
normal architects and administrators.

Projective views are supported by the funda-
mental principle of using a SUM to capture all
knowledge about the organization under descrip-
tion and to generate views of the SUM, on demand,
by the application of explicitly modeled transfor-
mations as shown in Listing 1. The languages
for representing the view and SUM content (Fig-
ures 19 and 20), as well as the transformations for
projecting information between them (Listing 1),
are written using mature model-driven develop-
ment principles (i. e. class-based structural model-
ing, ATL-like transformation definition etc.). New
views can thus be added to the modeling envi-
ronment using the basic skills of model-driven
development.

Deep views are supported by realizing both, the
SUM and the views using a multi-level modeling
platform rather than a standard two-level platform.
In our case we used the deep, multi-level platform
known as MELANEE (Gerbig 2017). This provides
two important capabilities for modeling views that
are not available in traditional EA modeling ap-
proaches and tools. First, views can themselves

be multi-level in that they represent information
that exist at two or more levels of classification.
This is illustrated by Fig. 25 which shows a pro-
cess (type) definition (ClaimProcessingCars), at
the Oy level and an executed instance of that pro-
cess (CPC_exec-01) at the operational O, level.
Second, and more importantly, it allows views
to represent information at any level (operation,
type, meta-type,. ..), using the same modeling
techniques.

Component-based views are supported by pa-
rameterizing all projection transformations by the
model element in the SUM representing the com-
ponent (i. e. part) of the organization that is being
looking at. Thus, the various ATL rules in List-
ing 1 which are used to project business process
views are explicitly parameterized by the business
process instance chosen as the subject of a view.
Figure 25 shows a view that results when one
specific instance of one specific business process
of the Insurance Sales organization is selected as
the subject of the view. In the example viewpoint
framework, developed in Sect. 6, views containing
more than one business process cannot be created,
because they cannot even be identified in the ex-
ample hyper-cube, although this could of course
be changed if desired by extending the hyper-cube
and adding further views.

Finally, composite views, in which abstract
views and concrete views can be nested, are sup-
ported by the dimension based navigation/identi-
fication system which uniquely integrates static,
architectural dimensions and dynamic, operational
dimensions. This is perhaps the most innovative
aspect of the approach presented in this paper.
Concrete views, which are intended to be physi-
cally rendered on some device or medium, must
have all of their coordinates explicitly selected.
Thus, the view shown in Fig. 25 corresponds to
the unique set of coordinates shown in Fig. 22.
On the other hand, abstract views, which are in-
tended to encapsulate other abstract and concrete
views, are not required to have all coordinates
explicitly selected. They therefore correspond
to sub-hyper-cubes or slices of the overall hyper-
cubes traced out by the dimension space. Thus,

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

34

Christian Tunjic, Colin Atkinson, Dirk Draheim

for example, the slice represented schematically
in Fig. 16 by selecting the structural dimensions
and leaving the rest unspecified is an abstract view
providing a structural perceptive on the system.
To actually see any information a concrete view
(i. e. a sub-view of the abstract view) would have
to be selected by specifying all the coordinates.
The nesting of abstract and concrete views within
abstract views therefore takes place by the natural
OLAP-like metaphor of “slicing and dicing”.

7.2 Model-Driven DevOps

The original motivation for the approach was to
support the MDO vision by making it possible
for all stakeholders in an organization to fulfill
their assignments using representations of (parts
of) an organization that best suit their skills and
tasks. This includes stakeholders that are more
interested in relatively static, architectural views
such as developers and architects, and stakeholders
who are more interested in dynamic and historical
data, such as managers and system administrators.
In essence, therefore, the key challenge was to
support a model-driven approach to DevOps, in
which the advantages of model-driven develop-
ment could be seamlessly and uniformly exploited
for both development and operation.

The approach presented in this paper achieves
this goal by leveraging the synergy between the
emerging paradigms of multi-level modeling and
orthographic modeling. The first of these, multi-
level modeling, provides the fundamental basis
for the seamless integration of development and
run-time views by allowing information across
all levels of classification to be manipulated and
represented using the same powerful feature of
model-driven development. This is demonstrated
explicitly by Fig. 25 in the example which shows
operational (instance) information presented next
to architectural (type) information within the
same view using the same object-oriented princi-
ples of typing and language definition/application.
Instance-level objects do not always have to be
shown along with their types — views can also focus
on just one ontological level of abstraction such as

Special Issue on Model-Driven Organisations

the instance-level or type-level or meta-type-level
etc.

Orthographic modeling also plays a critical
role in supporting the ability to work seamlessly
with development and operational views at the
same time because it is the key to making the
views accessible within a single, unified viewpoint
framework. More specifically, it provides the ba-
sis for integrating architectural concerns such as
abstraction level, opaqueness and perspective (e. g.
structural, behavioral, etc.) with operational con-
cerns such as aggregation and instance analysis.
As illustrated by Fig. 16, therefore, the set of coor-
dinates used to identify a concrete view combines
relatively static choices about what type of view
is desired (i. e. structural, platform independent)
with more dynamic choices about what the subject
is (i. e. what the view is looking at).

Most EAM tools today cannot support the same
level of flexibility and seamlessness. In most tools,
view types are usually defined by programming
a new kind of editor or dashboard using a stan-
dard programming language and relative low-level
representation of data. The resulting views are
therefore usually not created by model-based tech-
niques and thus cannot benefit from the benefits
of type safety or the productivity enhancements
through domain specific languages. Moreover,
when model-based techniques are used, the re-
sulting views can only display information at one
classification level immediately below the defined
language due to the use of two-level modeling
technology.

The other big problem with most EAM tools
today is that the views are organized in relatively
simple and ad-hoc ways in the form of some
kind of tree with arbitrary nesting and naming
conventions. Moreover, if they make some kind
of distinction between the underlying model ele-
ments and views, they usually allow users to ma-
nipulate the underlying model elements directly
and in arbitrary ways. The approach presented
in this paper essentially balances the discipline
and productivity advantages of model-driven en-
gineering at development-time with the flexibility
and convenience of OLAP-like data analysis at

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

operation-time. It therefore provides a realization
of the interactive data warehouse vision presented
by Draheim (2013).

7.3 Challenges and Future Work

Production-ready implementations of deep, or-
thographic modeling environments that can be
used in industrial projects are clearly still a long
way off, and their development presents numerous
challenges. First, the dynamic, on-the-fly gener-
ation and updating of views whenever the SUM
is changed presents some problems for rendering
them, especially in graphical forms. Users of
graphical models are usually frustrated when the
layout of models changes in between re-renderings.
Finding a good solution to this problem is an open
research question, but should be addressable by
retaining partial layout information at the client
side (i. e. the computers used to visualize views).

There are a lot of issues related to the initial
creation and evolution of SUMs. For example,
given that most companies have many legacy meta-
models and tools, how can they be integrated into
a SUM and how can the SUM be changed? These
are challenging questions, but no harder than the
challenges involved in maintaining multiple data
source. Other research teams are working on this
specific problem (Burger et al. 2016).

Finally, like all new paradigms there are a lot
of issues related to the usability and uptake of
the approach. It is not only unclear what view-
point frameworks (i.e. dimension spaces) and
view types are best suited for particular domains,
it is a major challenge to migrate to the new ap-
proach and help stakeholders learn how to use it
effectively.

8 Conclusion

The core idea behind the MDO vision is to allow
all stakeholders in an organization to fulfill their
assignments using representations of (parts of)
that organization that best suit their skills and
tasks. This includes stakeholders who are mainly
interested in static, architectural aspects of an or-
ganization such as architects and methodologists,

and stakeholders who are more interested in dy-
namic or historical aspects of a system such as line
managers and administrators. The contributions
of this paper are (a) to make the case that a deep,
orthographic modeling framework provides the
best platform for realizing such a vision, based
on experiences in building/using enterprise sys-
tems (Draheim 2010; Draheim and Weber 2002,
2003a,b) and on an analysis of the state-of-the-art
in EA modeling, and (b) to demonstrate the fea-
sibility of the approach by means of a prototype
realization.

Three key innovations were needed to develop a
viewpoint framework to achieve this goal. The first
was to find a way of mixing static, architectural
concerns and dynamic, operational concerns into
a single, dimension-based paradigm for navigating
around concrete and abstract views and allowing
them to be nested. The second was to find a way
of defining transformations (i. e. projections) that
could (a) be parameterized by the subjects of views
as well as their types and (b) allow view subjects
to be derived at run-time from the SUM via the
dimension-based navigation scheme. The third
was to find a way of generalizing the two previ-
ous capabilities so that they support and leverage
deep SUMs, views and transformations, and allow
viewpoint frameworks to be configured by method-
ologists for different methods (i. e. constellations
of views).

While the presented realization and accompa-
nying prototype demonstrates the basic feasibility
of the approach, as explained in Sect. 7 there
are numerous challenges still to be overcome and
many questions still to be answered. Our research
has essentially reached the “design artifact” phase
of the design sciences research approach (Hevner
et al. 2004; Offermann et al. 2009). The next
step is to systematically generate and evaluate
experimental data as well as quantitative and sub-
jective feedback on the MDO approach. In other
words, we are about to enter the case-study/action
research phase (Runeson et al. 2012; Sein et al.
2011) in which we will exercise the prototype on
a realistic scenario.

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

36

Christian Tunjic, Colin Atkinson, Dirk Draheim

References

ABmann U., Gotz S., Jézéquel J.-M., Morin B.,
Trapp M. (2014) A Reference Architecture and
Roadmap for Models @run.time Systems In: Mod-
els@run.time: Foundations, Applications, and
Roadmaps Bencomo N., France R., Cheng B. H. C.,
ABmann U. (eds.) Springer, Cham, pp. 1-18

Atkinson C. (2002) Component-based Product
Line Engineering with UML. Component Soft-
ware Series. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA

Atkinson C., Draheim D. (2013) Cloud Aided-
Software Engineering — Evolving Viable Software
Systems through a Web of Views. In: Software En-
gineering Frameworks for the Cloud Computing
Paradigm, pp. 255-281

Atkinson C., Gerbig R., Kennel B. (2012) On-the-
fly emendation of multi-level models. In: Euro-
pean Conference on Modelling Foundations and
Applications Lecture Notes in Computer Science
7349, pp. 194-209

Atkinson C., Gerbig R., Tunjic C. (2013a) A
multi-level modeling environment for SUM-based
software engineering. In: Proceedings of the 1st
Workshop on View-Based, Aspect-Oriented and
Orthographic Software Modelling VAO ’13, 2:1—
2:9

Atkinson C., Gerbig R., Tunjic C. V. (2013b)
Enhancing classic transformation languages to
support multi-level modeling. In: Software & Sys-
tems Modeling 14(2), pp. 645-666

Atkinson C., Kiihne T. (2001) The Essence of
Multilevel Metamodeling. In: Proceedings of the
4th International Conference on The Unified Mod-
eling Language, Modeling Languages, Concepts,
and Tools. Springer, London, UK, pp. 19-33

Atkinson C., Kiihne T. (2002) Rearchitecting
the UML Infrastructure. In: ACM Transactions
on Modeling and Computer Simulation 12(4),
pp- 290-321

Special Issue on Model-Driven Organisations

Atkinson C., Stoll D., Bostan P. (2010) Ortho-
graphic Software Modeling: A Practical Approach
to View-Based Development. In: International
Conference on Evaluation of Novel Approaches to
Software Engineering Communications in Com-
puter and Information Science, pp. 206-219

Atkinson C., Stoll D., Tunjic C. (2011) Ortho-
graphic Service Modeling. In: 2011 IEEE 15th
International Enterprise Distributed Object Com-
puting Conference Workshops. IEEE, pp. 67-70

Atkinson C., Tunjic C. (2014a) Criteria for Or-
thographic Viewpoints. In: Proceedings of the
2nd Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling - VAO ’14.
ACM, New York, New York, USA, pp. 43-50

Atkinson C., Tunjic C. (2014b) Towards Ortho-
graphic Viewpoints for Enterprise Architecture
Modeling. In: 2014 IEEE 18th International Enter-
prise Distributed Object Computing Conference
Workshops and Demonstrations. IEEE, pp. 347—
355

Atkinson C., Tunjic C. (2016) Towards a Con-
figuration Framework for Orthographic-Software-
Modeling Environments. In: 4th Workshop on
View-Based, Aspect-Oriented and Orthographic
Software Modelling - VAO ’16 Karlsruhe Reports
in Informatics (2016,7), pp. 7-10

Atkinson C., Tunjic C., Mdller T. (2015) Fun-
damental Realization Strategies for Multi-View
Specification Environments. In: 2015 IEEE 19th
International Enterprise Distributed Object Com-
puting Conference (EDOC), pp. 40-49

Belaunde M., Burt C., Casanave C., et al (2003)
MDA Guide Version 1.0.1 Object Management
Group (OMG) http://www.omg.org/news/
meetings/workshops/UML_2003_ Manual/00-
2_MDA_Guide_v1.0.1.pdf Last Access: 2018-03-
28

Bézivin J., Dupé G., Jouault F., Pitette G., Rougui
J. E. (2003) First experiments with the ATL model
transformation language: Transforming XSLT into

http://dx.doi.org/10.18417/emisa.13.7
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

XQuery. In: 2nd OOPSLA Workshop on Gener-
ative Techniques in the context of Model Driven
Architecture. Vol. 37, pp. 1-18

Bittmann S. (2014) Cooperative-Intrinsic Plan-
ning and Model-Driven Design of Business In-
formation Systems. In: 44. Jahrestagung der
Gesellschaft fiir Informatik (GI). Lecture Notes in
Informatics Vol. 232, pp. 2281-2286

Bock A. (2015) Beyond Narrow Decision Mod-
els: Toward Integrative Models of Organizational
Decision Processes. In: Proceedings of the 17th
IEEE Conference on Business Informatics. IEEE
Computer Society, Lisbon, Portugal, pp. 181-190

Bock A., Frank U. (2016) MEMO GoalML: A
context-enriched modeling language to support
reflective organizational goal planning and deci-
sion processes. In: Comyn-Wattiau 1., Tanaka K.,
Song 1., Yamamoto S., Saeki M. (eds.). Lecture
Notes in Computer Science Vol. 9974. Springer,
Cham, pp. 515-529

Brand S. (2015) Magic Quadrant for Enterprise
Architecture Tools. G00271052. Gartner Inc

Breiman L. (1984) Classification and regression
trees. The Wadsworth statistics/probability series.
Wadsworth International Group, Belmont, Calif.

Budinsky F., Steinberg D., Merks E., Ellersick R.,
Grose T. J. (2003) Eclipse Modeling Framework:
A Developer’s Guide. Addison-Wesley, Boston,
Mass.

Burger E., Henss J., Kiister M., Kruse S., Happe L.
(2016) View-based model-driven software devel-
opment with ModelJoin. In: Software & Systems
Modeling 15(2), pp. 473-496

Clark T., Frank U., Kulkarni V., Barn B. S., Turk
D. (2013) Domain Specific Languages for the
Model Driven Organization. In: First Workshop on
the Globalization of Domain Specific Languages
GlobalDSL *13, pp. 22-27

Clark T., Willans J. (2013) Software Language
Engineering with XMF and XModeler. In: For-
mal and Practical Aspects of Domain-Specific
Languages. IGI Global, USA, pp. 311-340

Codd E., Codd S., Salley C. (1993) Providing
OLAP (On-line Analytical Processing) to User-
analysts: An IT Mandate. Codd & Associates

Davis J., Daniels K. (2015) Effective Devops:
Building a Culture of Collaboration, Affinity, and
Tooling at Scale. O’Reilly Media

De Lara J., Guerra E., Cuadrado J. S. (2014)
When and How to Use Multilevel Modelling. In:
ACM Transactions on Software Engineering and
Methodology 24(2), 12:1-12:46

Draheim D. (2010) The Service-Oriented
Metaphor Deciphered. In: Journal of Computing
Science and Engineering 4(4), pp. 253-275

Draheim D. (2012) Smart Business Process Man-
agement. In: 2011 BPM and Workflow Handbook,
Digital Edition. Future Strategies, Workflow Man-
agement Coalition, pp. 207-223

Draheim D. (2013) Towards Total Budgeting and
the Interactive Budget Warehouse. In: Innovation
and Future of Enterprise Information Systems.
Lecture Notes in Information Systems and Organ-
isation, vol. 4, pp. 271-286

Draheim D., Weber G. (2002) Strongly Typed
Server Pages. In: Halevy A., Gal A. (eds.) Next
Generation Information Technologies and Sys-
tems. Springer, Berlin, Heidelberg, pp. 29-44

Draheim D., Weber G. (2003a) Modeling Sub-
mit/Response Style Systems with Form Charts
and Dialogue Constraints. In: Meersman R., Tari
Z. (eds.) On The Move to Meaningful Internet
Systems 2003: OTM 2003 Workshops. Springer,
Berlin, Heidelberg, pp. 267-278

Draheim D., Weber G. (2003b) Storyboarding
form-based interfaces. In: Rauterberg G., Menozzi
M., Wesson J. (eds.) Proceedings of INTER-
ACT’03. I0S Press, pp. 343-350

Finkelstein A., Kramer J., Nuseibeh B., Finkelstein
L., Goedicke M. (1992) Viewpoints: A Framework
for Integrating Multiple Perspectives in System
Development. In: International Journal of Soft-
ware Engineering and Knowledge Engineering
2(1), pp- 31-57

http://dx.doi.org/10.18417/emisa.13.7

International Journal of Conceptual Modeling

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

38

Christian Tunjic, Colin Atkinson, Dirk Draheim

Foster J. N., Greenwald M. B., Moore J. T., Pierce
B. C., Schmitt A. (2007) Combinators for Bidi-
rectional Tree Transformations: A Linguistic Ap-
proach to the View-update Problem. In: ACM
Transactions on Programming Languages and Sys-
tems 29(3) (17)

Frank U. (1994) Multiperspektivische Un-
ternehmensmodellierung: Theoretischer Hinter-
grund und Entwurf einer objektorientierten En-
twicklungsumgebung. Oldenbourg Verlag

Frank U. (2002) Multi-perspective Enterprise
Modeling (MEMO) — Conceptual Framework and
Modeling Languages. In: Proceedings of the 35th
Annual Hawaii International Conference on Sys-
tem Sciences (HICSS). IEEE, pp. 1258-1267

Frank U. (2011) MEMO Organisation Modelling
Language (1): Focus on Organizational Structure.
48. Institute for Computer Science and Business In-
formation Systems (ICB). University of Duisburg-
Essen, Essen

Frank U. (2014) Multi-perspective enterprise mod-
eling: Foundational concepts, prospects and future
research challenges. In: Software & Systems Mod-
eling 13(3), pp. 941-962

Frank U. (2016) Designing Models and Systems
to Support IT Management: A Case for Multi-
level Modeling. In: Proceedings of the 3rd In-
ternational Workshop on Multi-Level Modelling.
MULTI 2016, pp. 3-24

Gamma E., Helm R., Johnson R., Vlissides J.
(1995) Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA

Gerbig R. (2017) Deep, Seamless, Multi-format,
Multi-notation Definition and Use of Domain-
specific Languages English. PhD thesis, University
of Mannheim

Hevner A. R., March S. T., Park J., Ram S. (2004)
Design Science in Information Systems Research.
In: MIS Quarterly 28(1), pp. 75-105

Iacob M. E., Jonkers H., Lankhorst M. M., Proper
E., Quartel D. (2012) ArchiMate 2.0 Specification:
The Open Group. Van Haren Publishing

Special Issue on Model-Driven Organisations

IEEE Architecture Working Group (2000) IEEE
Standard 1471-2000, Recommended practice for

architectural description of software-intensive sys-
tems ANSI/IEEE-Std-1471-2000. IEEE

Igamberdiev M., Grossmann G., Selway M.,
Stumptner M. (2016) An integrated multi-level
modeling approach for industrial-scale data in-
teroperability. In: Software & Systems Modeling
17(1), pp. 269-294

Inmon W. H. (1992) Building the Data Warehouse.
John Wiley & Sons, Inc., New York, NY, USA

ISO/IEC/IEEE (2011) Systems and Software Engi-
neering — Architecture description ISO/IEC/IEEE
42010:2011. ISO

ISO/IECATU-T (1997) RM-ODP. Reference
Model for Open Distributed Processing ISO/IEC
10746, ITU-T Rec. X.901-X.904. ISO

Kennel B. (2012) A Unified Framework for
Multi-Level Modeling. PhD thesis, University of
Mannheim

Kimball R., Ross M. (2013) The Data Warehouse
Toolkit: The Definitive Guide to Dimensional
Modeling. John Wiley & Sons, Inc., New York,
NY, USA

Kirchner L. (2008) Eine Methode zur Unter-
stiitzung des IT-Managements im Rahmen der Un-
ternehmensmodellierung. Logos-Verlag, Berlin,
Germany

Kiihne T. (2006) Matters of (meta-) modeling. In:
Software & Systems Modeling 5(4), pp. 369-385

Lwakatare L. E., Kuvaja P., Oivo M. (2015) Dimen-
sions of DevOps In: Agile Processes in Software
Engineering and Extreme Programming: 16th In-
ternational Conference, XP 2015, Helsinki, Fin-
land Springer, Cham, pp. 212-217

Neumayr B., Schuetz C. G., Jeusfeld M. A., Schrefl
M. (2016) Dual deep modeling: multi-level mod-
eling with dual potencies and its formalization in
F-Logic. In: Software & Systems Modeling 17(1),
pp- 233-268

http://dx.doi.org/10.18417/emisa.13.7

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 7 (2018). DOI:10.18417/emisa.13.7

Supporting the Model-Driven Organization Vision through Deep, Orthographic Modeling

Special Issue on Model-Driven Organisations

Offermann P., Levina O., Schonherr M., Bub U.
(2009) Outline of a Design Science Research
Process. In: Proceedings of the 4th International
Conference on Design Science Research in Infor-
mation Systems and Technology. DESRIST ’09.
ACM, New York, NY, USA, 7:1-7:11

OMG (2011a) Business Process Model and No-
tation (BPMN), Version 2.0 Object Management
Group http://www.omg.org/spec/BPMN/2.0 Last
Access: 2018-03-28

OMG (2011b) Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Ver-
sion 1.1 Object Management Group http://www.
omg.org/spec/QVT/1.1/ Last Access: 2018-03-28

OMG (2011c) OMG Object Constraint Language
(OCL), Version 2.3.1 Object Management Group
http://www.omg.org/spec/OCL/2.3.1/ Last Access:
2018-03-28

Roth S., Zec M., Matthes F. (2014) Enterprise
Architecture Visualization Tool Survey 2014 Soft-
ware Engineering for Business Information Sys-
tems (sebis), Technical University of Munich https:
//wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/ Last
Access: 2018-03-28

Runeson P., Host M., Rainer A., Regnell B. (2012)
Case Study Research in Software Engineering —
Guidelines and Examples. John Wiley & Sons,
Inc., New York, NY, USA

SAP (2016) SAP Power Designer http://go.sap.
com/product/data- mgmt/powerdesigner- data-
modeling-tools.html Last Access: 2018-03-28

Sein M. K., Henfridsson O., Purao S., Rossi M.,
Lindgren R. (2011) Action Design Research. In:
MIS Quarterly 35(1), pp. 37-56

Stachowiak H. (1973) Allgemeine Modelltheorie.
Springer, Wien, New York

Strecker S., Frank U., Heise D., Kattenstroth H.
(2012) MetricM: A modeling method in support
of the reflective design and use of performance
measurement systems. In: Information Systems
and e-Business Management 10(2), pp. 241-276

The Open Group (2009) TOGAF 9 - The Open
Group Architecture Framework Version 9 The
Open Group https://www.opengroup.org/togaf/
Last Access: 2018-03-28

Tunjic C., Atkinson C. (2015) Synchronization of
Projective Views on a Single-Underlying-Model.
In: Proceedings of the 2015 Joint MORSE/VAO
Workshop on Model-Driven Robot Software En-
gineering and View-based Software-Engineering.
MORSE/VAO °15. ACM, L’Aquila, Italy, pp. 55—
58

US Federal Government (2013) FEAF Version
2 https://obamawhitehouse.archives.gov/sites/
default/files/omb/assets/egov_docs/fea_v2.pdf
Last Access: 2018-03-28

Vassiliadis P. (2009) A survey of Extract—
Transform—Load Technology. In: International
Journal of Data Warehousing and Mining
(IJDWM) 5(3), pp. 1-27

Zachman J. A. (1987) A framework for informa-
tion systems architecture. In: IBM Systems Journal
26(3), pp. 276-292

This work is licensed under

a Creative Commons @ @
“Attribution-ShareAlike 4.0

International” license.

http://dx.doi.org/10.18417/emisa.13.7
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/OCL/2.3.1/
https://wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/
https://wwwmatthes.in.tum.de/pages/6u8f5ki1t2yz/
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
http://go.sap.com/product/data-mgmt/powerdesigner-data-modeling-tools.html
https://www.opengroup.org/togaf/
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/assets/egov_docs/fea_v2.pdf
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

