Consequences of Meta-Model Modifications within Model
Configuration Management

Jens Weller, Werner Esswein

Technische Universitéit Dresden
Information Systems, esp. Systems Engineering
01062 Dresden
{Jens.Weller|Werner.Esswein } @tu-dresden.de

Abstract: Today, conceptual models are intensively used in the information systems
discipline. They can support the development and adaptation of software systems as
well as the (re-)design of organizations. As conceptual models change during their
lifetime, there is a need to manage different version of models. Thus in the past years,
findings in software configuration management has been transferred to the conceptual
modeling field.

In this paper, we will assign the experiences made in model configuration man-
agement to the meta-modeling field. We discuss consequences of meta-model modifi-
cations and analyze the process of migrating related conceptual models to a modified
meta-model version.

1 Introduction

Conceptual modeling has been established in the past years. While in the beginning, con-
ceptual models were mainly used in software engineering [DJMT00] [FloO1], today they
are used for organizational issues as well [RSDO05]. As conceptual models change during
their lifetime, there can be different versions of a model, each valid for a different period of
time. To support the administration of those versions, the knowledge of software config-
uration management has been transferred to the conceptual modeling field. Configuration
management of models can increase the quality of conceptual models and enable team
work within the modeling process [EGKO02].

In contrast to the software development field, models used for organizational issues are
mostly created using different, company specific modeling languages [BSH98]. To sup-
port the modeling process with different, individual modeling languages, meta-modeling
tools have been widely established. Those tools enable the user to define meta-models,
representing the language that will be used within the modeling project. Afterwards, the
meta-models can be used for conceptual modeling instantly [Sem05] or for creating new
modeling tools based on the defined language [KRTO05].

As meta-models are models as well, different version of meta-models can exist too. Thus,

125

organizations must deal with different meta-model versions [Tol98] [Sae06]. As we will
show in this paper, configuration management can be applied to the meta-modeling field
to handle different versions of these meta-models. Furthermore, we analyze consequences
arising from changes on meta-models that are administrated by such a system.

The paper is structured as follows. In section 2, we explain the fundamentals of conceptual
models and configuration management. Afterwards in section 3, we discuss the main con-
cepts of the configuration management of models and meta-models. Section 4 deals with
consequences arising from meta-model changes and in section 5, we analyze the adapta-
tion of conceptual models according to a modified meta-model. Section 6 summarizes our
findings.

2 Background
2.1 Models and Meta-Models

A model is understood as the result of a construction process ,,... done by a modeler, who
examines the elements of a system for a specific purpose ...“ [SR98], which is defined
by the user of the model. Depending on the kind of system that is examined during the
modeling process (the problem domain), models in the information systems field can be
classified as design models or conceptual models. While design models represent soft-
ware systems or parts of it, conceptual models describe real world phenomena [EWO05]
[DIMT00] [WWO02]. The language used to express the model is called the modeling lan-
guage. Different modeling languages are currently used, which comply with different
problem domains as well as with different modeling purposes [BSH98]. Lastly, models
are valid for a certain time interval leading to constant modifications of these models dur-
ing their lifetime.

model element content representation #1 representation #2
(uml class & package) (uml class diagram) (uml package diagram)
+ Customer (Type: Class) <<people>> people
- name (Type: Attribute) Customer
- people & Customer
(RelationTo: Package) - name
+ people (Type: Package)

Figure 1: Content and representation of model elements
In the information systems discipline, models are used to redesign organizations or to

develop software systems [RSDO05] [FLO2]. Therefore, graphical models have been es-
tablished as ,,...a medium to foster communication with prospective users...” [Fra99]. For

126

reasons of simplicity, complex models often consist of several views showing just a section
of the whole model [Sch98] [Str96]. The different views, however, are not separated but
integrated using the same model elements within different views [Gre03] [SR98]. Thus
we can argue that a model always consists of its content and one ore more graphical rep-
resentation, each of which illustrates a set of the model’s elements and their relationships
(see figure 1).

As mentioned above, models are created using a specific modeling language. Modeling
languages itself can be described by models as well. Models which represent a modeling
language are called meta-models [Str96] [Ham99]. According to Strahringer [Str96], mod-
els describing the process how to create another model can be understand as meta-models
too. In this paper, however, we concentrate on meta-models representing modeling lan-
guages only. Meta-models are mainly used in the method engineering field. To support
the use of company dependent modeling methods, tools have been established to assist the
user with the creation and use of meta-models [Sem05] [KRTO05] [Sae03].

2.2 Configuration Management

Configuration management (CM) has been intensely discussed in theory and established
in practice for many years. Norms like ISO 2000:9000 demand it to increase process
and product quality [Int00] and it is therefore also suggested by process maturity models
[PCCW93] [Kne03]. In general, configuration management is defined as an ,,...activity
that applies technical and administrative direction over the life cycle of a product, its con-
figuration items, and related product configuration information.” [Int03]

While configuration management is an activity, a configuration management system is a
socio-technical system consisting of people, organizational rules, tools and their relation-
ships realizing configuration management. Configuration management tools support one
or more of the CM activities [Est00].

The configuration item is the basic element in configuration management. Configura-
tion items are the elements (source code file, requirements document, model) being under
control of the CM [Int03] [CW98]. To document all modifications of an item, every mod-
ification leads to a new state of the item which are called versions [Zel97] [BEGWO06].
According to the purpose of the modification, versions can be characterized as follows:

e Versions that are created to replace an older version (e. g. for the purpose of devel-
opment or maintenance) are called historical versions or revisions [Zel97] [Tho06].

e In contrast, versions created with the intention to coexists are called variants. Vari-
ants are usually created to support different user purposes, €. g. a car component
for different user groups [Tho97]. The process to create variants can be subsumed
under the term of logical versioning [Zel97].

e Versions can also be created to support parallel working. Thereby, changes made
on configuration items are done in different workspaces. A workspace is an ,,...indi-
vidual area of a developer, isolating him from changes made by others...”“ [Zel97].

127

Coexisting versions for the purpose of the development in different workspaces are
called temporary variants [BEGWO06].

A set of all versions of exactly one configuration item is called a version family. Version
graphs are established to illustrate version families and the different kinds of versions
existing within a version family [CW98]. Figure 2 shows an example of such a graph.

Orlg!nal Revisions
version >
L L Ll L
@
= Ll
)
c
g ’
Permanent variant
(third revision)
v Temporary

veriant

Figure 2: Example of a version graph [Zel97]

As the versions of different configuration items are independent from each other [Est00],
there has to be a container keeping them all together. This container is called the config-
uration. A configuration is a bundle of versions of configuration items, which represent
a complex product [Int03]. It is itself a configuration item. Thus, a new version of a
configuration is created, when modifying an item that belongs to the configuration.

3 Configuration Management of Models and Meta-Models

Most research on configuration management is done in the software development disci-
pline [CW98] [ELCT02] [Zel97]. However, in the past years CM has also been applied
to the information systems field. Esswein et al. used configuration management to sup-
port the creation and maintenance of models [EGKO02]. The so called model configuration
management enables the tracking of changes made on a model and supports cooperative
development of models. The model CM has been enhanced by Greiffenberg [Gre03] and
was finally implemented in a modeling tool [SemO5]. A similar approach has been devel-
oped by Saeki and Oda [SO05] [Sae06]. The authors discussed the configuration manage-
ment of methods (and their meta-models respectively) to embed CM into a CAME! tool.
Further research has been done by adopting configuration management of models to the
reference modeling field [BEGWO06] [Tho06].

ICAME = Computer Aided Method Engineering

128

The motivation for developing a CM for models instead of using existing configuration
management systems from the software engineering field are the differences between the
configuration items administrated by these systems. In source code oriented CM systems
configuration items are text files and differences between those files are recovered by com-
paring the files line by line. ,,Since we use diagram documents..., we should manage the
changes on the diagrams, not in the granularity of a line, but of a logical component...
[SOO05], such as a model element. Thus, within model configuration management configu-
ration items represent model elements. A complete model is represented as a configuration
[EGK02] [BEGWO06].2

According to the principles of configuration management to store all changes as revisions,
in model CM it is possible to go back and forth in the revisions graph to restore an older
version of a model. Additionally, the creation of variants and temporary variants is pos-
sible within a model CM. The latter enables the cooperative development of models. ,In
this case, multiple developers work in parallel on different versions. [CW98] Thus, all
modifications on a model are made in workspaces [EGKO02]. Models are interchanged be-
tween the workspaces using a central repository. Different CM operations exists to transfer
models from the repository to a user’s workspace and vice versa (see [BEGWO06] for an
overview).

As meta-models are models as well, model configuration management can also deal with
meta-models [Sae06] [Gre03]. In this case a configuration represents a meta-model and
configuration items represent meta-model elements. While the administration of meta-
models is the same as for models, the dependencies between meta-model versions and
the versions of its instances (the models) have to be analyzed. Thus, when a meta-model
is changed, we might need to check if the existing models are still consistent with the
changed meta-model [Sae06].

This fact, however, has attained only little attention in literature. Non of the existing
approaches discuss in which cases the above mentioned consistency check is necessary.
While Saeki demands in [Sae06] the evaluation of derived models to guide the modeler,
Greiffenberg changes existing models automatically [Gre03]. There might be cases, how-
ever, where it is not necessary or not desirable to adapt the models. Furthermore, changes
on the graphical representation of meta-model elements are mostly disregarded in current
analysis [Sae06]. Thus, in the next section, we discuss the consequences of meta-model
changes within a configuration management system that administrates both, models and
their meta-models. Thereby, we will consider the mentioned deficiencies of existing ap-
proaches.

4 Meta-Model enhancement

As pointed out in the previous section, models are valid within a given period of time.
As basic elements within method engineering projects, meta-models also changes during

2While Saeki and Oda use the term ’product’ for a complete model [SO05], we use the term ’configuration’
to comply with the definitions given by configuration management in general.

129

their lifetime with respect to the modelers individual needs [HBO94] [Tol98]. To analyze
the consequences arising from a meta-model modification, we will first describe different
situations models and meta-models are used in and discuss different ways how to handle
meta-model changes within these situations. Afterwards, we highlight the relationships
between models and meta-models within model configuration management and discuss
the feasibility of different ways from a technical perspective.

4.1 Situations of meta-model modifications

The decision about how to handle meta-model modifications depends on various factors:

1. The philosophy concerning the modeling language used in the company — standard-
ized vs. situation dependent

2. The status of the modeling project — running vs. completed projects

3. The relevance of the meta-model changes for a modeling project — affect of the
modifications on the project

According to these factors it might be preferable that existing models follow the changes
made on the corresponding meta-model. Thus, there are two possible ways how to handle
meta-model changes: Keep the relationships between the old version of the meta-model
and related models or migrate related models to the new version.

4.1.1 Modeling language

Using a given modeling language is sometimes difficult when creating models of a spe-
cific domain, the language was not explicitly made for [BSHO98]. In this case modelers
might want to add new concepts or rules that are not covered by the original modeling lan-
guage. The situational method engineering approach [HBO94] [Tol98] solves that prob-
lem. Following that approach, meta-models used within a modeling project are adapted
permanently according to the needs of the modelers. To use the enhancements of the new
meta-model version within the project, an adaptation of appropriate models is strongly
desired.

There can be, however, organizational or contractual reasons for using a standardized
method within the modeling projects of a company. In these cases models of a project
always refer to a defined meta-model and models are not adapted to changes made on
(successor versions of) the meta-model.

4.1.2 Project status

As it might be useful to adapt models within a running project (see previous section) it
is not useful to adapt models that document situations within already completed projects.

130

Firstly, the adaptation causes costs and secondly, it might be confusing for documenting
reasons when existing project results (the models) are changed. Thus, wo recommend to
leave those models untouched.

If models of a completed project, however, will be reused within another project adaptation
can be an option within the new project.

4.1.3 Relevance of changes

There might be changes within the meta-model that do not effect a project. This is, when
the concepts added or modified are neither currently used within the dependent models nor
will be used in the future. To use the example given by [SO05]: If a method engineer adds
a timing constraint to a UML sequence diagram this might be useful for real time projects
but it might not for other ones.? In this case we recommend to keep the old meta-model
version for the current modeling situation.

4.2 Relationships between model and meta-model

The meta-model contains meta-model elements — and relationships — representing model-
ing concepts that will be used within the model. Each element of the model can, therefore,
be assigned to exactly one meta-model element [Gre03]. Thus, we can say that every
model element depends on exactly one meta-model element.

Considering configuration management, model and meta-model will be controlled by a
configuration management system. As mentioned in section 2.2, changes on a configura-
tion item do not overwrite older versions, but lead to a new state of the item [Dar91]. Thus,
when changing a meta-model, the old meta-model version still exists and corresponding
models are still consistent with that version.

As pointed out in the previous section, it might be useful that existing models follow
the changes made on the corresponding meta-model. From the technical viewpoint of
the configuration management this means creating new versions for all affected models
and creating new versions for all model elements whose meta-model elements has been
changed. The created model element versions will refer to the new version of the meta-
model element and the new model version to the meta-model version respectively [Gre03]
[Sae06].

4.3 Conclusion

As we have shown, different use cases exist for both ways, staying with the old meta-
model and migrating to the new version. Thus, there is no preferred way how to handle

3 As the authors in [SO05] follow the situational method engineering approach, the meta-model is relevant for
one projects anyway. It might be possible, however, that standardized methods are enhanced in a similar way.

131

meta-model changes. Instead, the modeler shall decide whether or not she or he wants to
use the new meta-model.

If the modeling process is supported by modeling tools with configuration management
support, the tools must not migrate automatically to the new meta-model version. Never-
theless, those tools should support the adaptation process, if the user demands it. While we
have discussed the process from the configuration management perspective already, there
are more things to consider. Newly created models versions that refer to the new meta-
model version must be evaluated and if needed be adapted to ensure their consistency
with the meta-model [SR98] [LSS94] [SO05] [Sae06]. Thus, we will discuss the kind
of changes made on meta-models and the consequences for the consistency of dependent
models arising out of these changes in the following chapter.

5 Model adaptation

Two different techniques must be carefully distinguished according to the amount of mod-
ifications to the meta-model. Firstly, if there are major modifications (like from UML 1.5
to UML 2.0) and the involved meta-models differ strongly from each other, a model migra-
tion is necessary. Secondly, in the case of small meta-model changes as they are necessary
within projects following the situational method engineering approach an evaluation and
possibly an adaptation of the models is required.

The migration of models from one meta-model to another one has already been discussed
in literature. The problem firstly arose in the database field within the migration from
hierarchical to relational to object-oriented database schemas [AHCM94] [FV95]. Later
on the findings have been adopted to the modeling discipline too [OMGO3]. In general, the
migration process consists of two main phases. Firstly, similarities of the two meta-models
(the languages respectively) has to be analyzed and secondly, the model will be ,,copied”
concerning the similarities [PGOS].

In our paper we will not discuss such a model migration. Instead we describe the adapta-
tion process arising from small meta-model changes. Thus, we do not discuss questions
of how to recognize meta-model similarities. As both meta-models are administrated by
a configuration management system and both are part of the same version family (and
their elements respectively), we assume that meta-model elements that are changed still
have the same meaning. To migrate a model from an old meta-model version to a new
one, we have to create a successor version of that model referring to the new meta-model
version (see section 4.2). Because of consistency reasons, we have to evaluate the model
according to the meta-model after the modification. Thereby, the following cases have to
be considered [Zel97]:

e The new meta-model element version might have changed (general case).
e The meta-model element might have been deleted (e. g. construct removed).

e There might be new configuration items in the meta-model (e. g. representing newly
added constructs).

132

Because there are several differences between the adaptation of the model content and its
representation, we analyze content and presentation separately in the following sections.

5.1 Model content

5.1.1 Adding new meta-model elements

Adding new elements to the meta-model has no direct effect on the dependent models
[Sae06]. E. g., if the method engineer added new constructs to the meta-model these
constructs are available after the adaptation process. It depends, however, on the modeler
to use the new constructs according to their domain-world meaning.

In some cases, however, new meta-model elements cause inconsistencies between the
model and the meta-model. This is the case, if the meta-model prescribes that an existing
element has be connected with at least one instance of the new element (see figure 3). To
solve this conflict, a new instance has to be created in the model for each instance of the
related construct to ensure model consistency.

means: "A Relationship-type must

have at least one attribute” added element
Relationship- 1)
type Attribute
meta-model
model
Car Customer

Missing attribute causes
inconsistency

Figure 3: Inconsistency caused by adding meta-model elements

As modeling is a modeler dependent construction process, adding instances of the new
meta-model element cannot be done automatically. Instead, highlighting of erroneous
elements should be done within the models to help the modeler with the identification of
inconsistent model elements.

5.1.2 Removing meta-model elements

Removing an element from the meta-model means that this element cannot be used in the
adapted models anymore. Therefore, all instances of the element must be deleted from
the dependent models to ensure model consistency. While this causes no problems in
general, removing an meta-model element can also lead to inconsistencies when using

133

special meta-model notations.

means: "A R-type must be connected with at
least two elements of {E-type, ER-type}"

Abstract
R-type Element
? ? removed element
E-type ER-type
meta-model
model
Car
Contract
Customer
™ Removing element causes

inconsistency

Figure 4: Inconsistency caused by removing meta-model elements

Meta-model elements like constraints or inheritances [Gre03] [OMGO04] can force the cre-
ation of meta-model instances (see figure 4). As described in the previous section, only
the modeler can solve this conflict.

5.1.3 Changing meta-model elements

A simple case is changing the name of a meta-model element. Because meta-models
express the grammar of a modeling language and not the meaning of their constructs, the
reason for changing meta-model elements remains unknown in the meta-model. As both
meta-model element versions (new and old one) belong to the same version family, we
imply that they still have the same meaning. Therefore, changing meta-mode elements has
no effect on dependent model elements, as they still refer to the same construct represented
by the meta-model element.

A more complex kind of change in the meta-model is modifying the relationships between
meta-model elements. Changing cardinality between constructs can lead to inconsistencies
as described in section 5.1.1 and 5.1.2. When removing relationships, related elements in
dependent models have to be disconnected.

5.2 Model representation

In the previous chapter we discussed modifications on the meta-model content. In sec-
tion 2.1 we proposed, however, that models do not only consist of its content but also of at
least one graphical representation. We discuss aspects regarding the graphical representa-
tion in the following sections.

134

5.2.1 Removing model elements

As discussed in section 5.1.2, removing a meta-model element results in removing all
instances of that element. Thus, in the model representation, the representation of the
elements has to be removed as well. As illustrated in figure 5, this can lead to ’broken’
models.

original model construct 'event' removed

Broken process
—— flow caused by
removing all
enter invoice data
into application

/ instances of
‘event'

enter invoice data
into application

Figure 5: Visual problems caused by removing meta-model elements

Thus, graphical connections between models have to be removed and rearranged. As there
can be different types of relations between model elements (in UML associations and
inheritances, e. g.), a solution for the problem strongly depends on the meaning of the
connection type. As meta-models do not contain any information about the meaning of its
constructs, the process of repairing *broken” models cannot be automated on the basis of
these meta-models only.

5.2.2 Changing meta-model element representation

While meta-models describe constructs and their relationships, they also contain informa-
tion about the graphical representation of these constructs [Gre03]. According the purpose
of modeling, it can be necessary to change this representation [BDKO04]. Thus a meta-
model element can also be modified according to its graphical representation. In this case,
all instances of the meta-model element have to be adapted according to the new graphic.

While in general this is not a problem, a different size or shape of the new representation,
however, can cause visual discrepancies that negatively effect the quality of resulting mod-
els [SR98]. If the size of the graphic increased, other model elements might overlap with
the new element (see figure 6). To avoid such side effects of the adaptation process, we
recommend to adapt the size of the new model element’s representation according to the
size of the old representation.

135

model with old representation model with
of construct "process” changed representation

check invoice & a new position of
. process name

check invoice within the graphic

B s
int lication
0 applicatio . elements

enter inxfice data

into application
book receipt '.

book receipt

Figure 6: Visual problems caused by changes of meta-model representation

6 Discussion

As we have discussed in the previous chapters, configuration management of meta-models
is similar to the configuration management of related models. In this case, both are ad-
ministrated by a configuration management system and changes on the models as well as
meta-model modifications lead to new versions.

Using new meta-model versions for the creation of new models is unproblematic in gen-
eral. Several problems arise, however, when adapting the meta-model modifications to
existing models. We have firstly shown, that this adaptation is not always necessary. In the
positive case, however, it is important to know the consequences arising from the adapta-
tion. Thus, we discussed several kind of meta-model modification. While configuration
management can ease the comparison between the meta-model versions and most of the
adaptation process can be automated, there is still need for manual review activities. As
tools can support a adaptation process and, therefore, decrease the effort, we demand the
development of appropriate modeling tools.

Our further work will concentrate on examining the problems mentioned in the paper
within the method engineering e®-method [Gre03]. As there is already a configuration
management system included in that method, we can evaluate that CM system as well.
Additionally, existing modeling tools will be evaluated according to their possibilities to
support the adaptation process and depending on the evaluation results, we will afterwards
start with designing and implementing an appropriate modeling tool.

References

[AHCM94] Rateb Abu-Hamdeh, James Cordy, and Patrick Martin. Schema Translation Using
Structural Transformation. In CASCON ’94, IBM Centre for Advanced Studies, pages
202-215, 1994.

[BDKO04] Jorg Becker, Patrick Delfmann, and Ralf Knackstedt. Konstruktion von Referenzmod-
ellierungssprachen: Ein Ordnungsrahmen zur Spezifikation von Adaptionsmechanismen

136

fiir Informationsmodelle. WIRTSCHAFTSINFORMATIK, 46(4):251-264, 2004.

[BEGWO06] Robert Braun, Werner Esswein, Andreas Gehlert, and Jens Weller. Configuration Man-

[BSHO8]

[CWI8]

[Dar91]

agement for Reference Models. In Peter Loos and Peter Fettke, editors, Reference Mod-
eling for Business Systems Analysis. IDEA Group, Hershey, 2006.

Sjaak Brinkkemper, Motoshi Saeki, and Frank Harmsen. Assembly Techniques for
Method Engineering. pages 381-400, 1998.

Reidar Conradi and Bernhard Westfechtel. Version models for software configuration
management. ACM Computing Surveys, 30(2):232-282, 1998.

Susan Dart. Concepts in configuration management systems. In Proceedings of the 3rd
international workshop on Software configuration management, pages 1-18, New York,
NY, USA, 1991. ACM Press.

[DJM+00] Oscar Dieste, Natalia Juristo, Ana M. Moreno, Juan Pazos, and Almudena Sierra. Con-

[EGK02]

ceptual Modelling in Software Engineering and Knowledge Engineering: Concepts,
Techniques and Trends. In Handbook of Software Engineering and Knowledge Engi-
neering, number 1, pages 733-766. World Scientific Publishing Company, 2000.

Werner Esswein, Steffen Greiffenberg, and Christian Kluge. Konfigurationsmanagement
von Modellen. In E. J. Sinz and M. Plaha, editors, Modellierung betrieblicher Informa-
tionssysteme - MoblS 2002, pages 93—112, Niirnberg, 2002.

[ELC'02] Jacky Estublier, David Leblang, Geoff Clemm, Reidar Conradi, Walter Tichy, Andre

[Est00]

[EWO05]

[FL02]

[Flo01]

[Fra99]

[FV95]

van der Hoek, and Darcy Wiborg-Weber. Impact of the research community on the field
of software configuration management: summary of an impact project report. SIGSOFT
Software Engineering Notes, 27(5):31-39, 2002.

Jacky Estublier. Software configuration management: a roadmap. In ICSE 00: Pro-
ceedings of the Conference on The Future of Software Engineering, pages 279-289, New
York, NY, USA, 2000. ACM Press.

Joerg Evermann and Yair Wand. Ontology based object-oriented domain modelling:
fundamental concepts. Requirements Engineering, 10(2):146-160, 2005.

Peter Fettke and Peter Loos. Klassifikation von Informationsmodellen - Nutzenpoten-
ziale, Methode und Anwendung am Beispiel von Referenzmodellen. Working Papers
of the Research Group Information Systems & Management 9, Johannes Gutenberg-
Universitit Mainz, Lehrstuhl fiir Wirtschaftsinformatik und BWL, Mainz, 2002.

Christiane Floyd. Das Mogliche ermoglichen: Zur Praxis der Realitidtskonstruktion am
Beispiel der Softwareentwicklung. In Albert Miiller, Karl H. Miiller, and Friedrich
Stadler, editors, Konstruktivismus und Kognitionswissenschaft: Kulturelle Wurzeln und
Ergebnisse, pages 115-134. Springer Verlag, Wien, 2001.

Ulrich Frank. Conceptual Modelling as the Core of the Information Systems Disci-
pline - Perspectives and Epistemological Challenges. In D.W. Haseman, S. Nazareth,
and D. Goodhue, editors, Proceedings of the Fifth America’s Conference on Information
Systems (AMCIS 99), pages 695-697, Milwaukee, 1999.

Christian Fahrner and Gottfried Vossen. Transformation relationaler Datenbank-Schemas
in objekt-orientierte Schemas gemd ODMG-93. In Georg Lausen, editor, Daten-
banksysteme in Biiro, Technik und Wissenschaft (BTW), GI-Fachtagung, pages 111-129.
Springer, 1995.

137

[Gre03]

[Ham99]

[HBO94]

[Int0O0]

[Int03]

[Kne03]

[KRTOS]

[LSS94]

[OMGO03]

[OMG04]

Steffen Greiffenberg. Methodenentwicklung in Wirtschaft und Verwaltung. Dr. Kovac,
Hamburg, 2003.

Christoph Hammel. Generische Spezifikation betrieblicher Anwendungssysteme. Shaker
Verlag, Aachen, 1999. Dissertation Otto-Friedrich-Universitit Bamberg.

Frank Harmsen, Sjaak Brinkkemper, and J. L. Han Oei. Situational method engineering
for information system project approaches. In A. A. Verrijn-Stuart and T. William Olle,
editors, Methods and associated tools for the information systems life cycle, Proceedings
of the IFIP Working Conference, pages 169-194. IFIP, Elsevier Science B.V. (North-
Holland), 1994.

International Organization for Standardization (ISO). Quality management systems: Re-
quirements (ISO 2000:9001). Beuth Verlag GmbH, Berlin, 2000.

International Organization for Standardization (ISO). Quality management systems:
Guidelines for configuration management (ISO 10007:2003). Beuth Verlag GmbH,
Berlin, 2003.

Ralf Kneuper. CMMI: Verbesserung von Softwareprozessen mit Capability Maturity
Model Integration. dpunkt, 2003.

Steven Kelly, Matti Rossi, and Juha-Pekka Tolvanen. What is Needed in a MetaCASE
Environment. Journal of Enterprise Modelling and Information Systems Architectures,
1(1):25-35, 2005.

Odd Ivar Lindland, Guttorm Sindre, and Arne Slvberg. Understanding Quality in Con-
ceptual Modeling. IEEE Software, 11(2):42-49, 1994.

OMG Object Management Group. MDA Guide Version 1.0.1. http://www.omg.org/cgi-
bin/doc?omg/03-06-01, 2003.

OMG Object Management Group. UML 2.0 Superstructure Specification.
http://www.omg.org/cgi-bin/doc?formal/05-07-04, 2004.

[PCCWI3] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Capability

[PGO5]

[RSDO5]

[Sae03]

[Sae06]

[Sch98]

Maturity Model, Version 1.1. IEEE Software, 10(4):18-27, 1993.

Daniel Pfeiffer and Andreas Gehlert. A Framework for Comparing Conceptual Models.
In Jorg Desel and Ulrich Frank, editors, Enterprise Modelling and Information Systems
Architectures: Proceedings of the Workshop in Klagenfurt, number P-75 in Lecture Notes
in Informatics, pages 108—122, Bonn, 2005. Ké6llen Druck + Verlag GmbH.

Michael Rosemann, Ansgar Schwegmann, and Patrick Delfmann. Vorbereitung der
Prozessmodellierung. In Jorg Becker, Martin Kugeler, and Michael Rosemann, edi-
tors, Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestal-
tung, chapter 3, pages 45-103. Springer, 2005.

Motoshi Saeki. CAME : The First Step to Automated Method Engineering. In OOPSLA
2003: Workshop on Process Engineering for Object-Oriented and Component-Based
Development, pages 7-18, Sydney, Australia, 2003. Centre for Object Technology Ap-
plications and Research.

Motoshi Saeki. Configuration Management in a Method Engineering Context. Lecture
Notes in Computer Science, (4001):384-398, 2006.

August-Wilhelm Scheer. ARIS — Vom Geschdftsprozef3 zum Anwendungssystem, vol-
ume 3. Springer-Verlag, Berlin Heidelberg New York, 1998.

138

[SemO05]

[SO05]

[SR98]

[Str96]

[Tho97]

[Tho06]

[Tol98]

[WW02]

[Zel97]

Semture GmbH. Cubetto Toolset, http://www.semture.de/cubetto, Download:
15.07.2005.

Motoshi Saeki and Takafumi Oda. A Conceptual Model of Version Control in Method
Engineering Environment. In O. Belo, J. Eder, J. Falcao e Cunha, and O. Pastor, editors,
Proceedings of the CAISEO5 Forum, pages 89-94. Faculdade de Engenharia da Univer-
sidade do Porto, 2005.

Reinhard Schuette and Thomas Rotthowe. The Guidelines of Modeling: An Approach
to Enhance the Quality in Information Models. Lecture Notes in Computer Science,
1507:240-254, 1998.

Susanne Strahringer. Metamodellierung als Instrument des Methodenvergleichs: Eine
Evaluierung am Beispiel objektorientierter Analysemethoden. Shaker, Aachen, 1996.

S. M. Thompson. Configuration management - keeping it all together. BT Technology
Journal, 15(3):48-60, 1997.

Oliver Thomas. Version Management for Reference Models: Design and Implementa-
tion. In Multikonferenz Wirtschaftsinformatik 2006 (MKWI ’06), 2006.

Juha-Pekka Tolvanen. Incremental Method Engineering with Modeling Tools: Theoreti-
cal Principles and Empirical Evidence. PhD thesis, University of Jyviskyld, 1998.

Yair Wand and Ron Weber. Research Commentary: Information Systems and Conceptual
Modeling—A Research Agenda. Information Systems Research, 13(4):363-377, 2002.

Andreas Zeller. Configuration Management with Version Sets: A Unified Software Ver-

sioning Model and its Applications. PhD thesis, Braunschweig Technical University,
1997.

139

