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Abstract: A novel approach which employs principles of higher order logic
analyses was developed to systematically correlate phylogenetic data with
phenotype profiles by identification of phenotype specific patterns of presence of
multiple proteins. For example, for most genomes expressing trait A, the presence
of protein C presumes the presence of protein B, while for other genomes (not
expressing the trait) the presence of protein C presumes the absence of protein B.
We demonstrate that the phenotype specific patterns reflect fundamental structural
changes in the genotype of microorganisms in relation to conditions provided by
presence/absence of a trait. We discover many previously unidentified genotype–
phenotype associations on the level of fundamental biochemical processes.

1 Introduction

Microbial species express a variety of phenotypic traits and behaviors. Previous studies
have shown that the molecular basis of these traits can be partially understood by
application of comparative genomics. It was demonstrated that genes whose
phylogenetic profiles correlate well with a given microbial phenotypic profile often
belong to the same biochemical pathway directly related to the trait [1-6]. However,
such simple approach does not take into account the complexity of cellular networks [7,
8] and, thus, in most cases do only partially reflect genome variations between
phenotypes analyzed.

185



To extend and generalize this approach we propose to combine principles of higher order
logic analyses with phenotype data to get a deeper understanding of genotype-phenotype
associations. In simple terms, in addition to identification of single genes we are also
looking for gene pairs and triplets that are present only in species with a given phenotype
while in other species the genes are rarely present together. We refer to such protein
pairs and triplets as complex (phenotype) patterns.

What is the logic for the existence of complex phenotype patterns? The logic for high
order relationships inside a group of genes conserved in the genomes expressing a
specific phenotype and absent in other genomes is similar to the originally proposed
scientific foundation described by Bowers et al. [7, 8]. In our case, it is related to
phenotype specific pathways or phenotype specific parts of the pathways. As we
demonstrate further, in most cases these genome modifications are not detectable in the
data based on pairwise similarity of genes phylogenetic and phenotypic profiles.
Consideration of higher order logic involving complex gene patterns is required and
returns highly valuable information.

Our results support that genes involved in complex phenotype patterns are functionally
linked (from the same or closed biochemical pathway(s)). In many cases the identified
biochemical pathways were related to fundamental processes suggesting profound
genome reorganization between analyzed phenotypes.

2 The biological basis of complex phenotype patterns

The species that show variation in the expression of a trait were demonstrated to have
phenotype specific pathways. The profiles of these genes correlate significantly to the
phenotype profile and can be easily recovered by pairwise similarity analyses. This fact
was supported by a number of studies [1, 4]. We refer to such genome variations as
primary, with respect to their visibility on the level of single gene profiles. However, it is
natural to expect extra genome variations of pathways related to fundamental processes
like metabolism, energy, transport. These variations are triggered by different
environmental conditions which are imposed on species from different phenotypes. On
the molecular level, this is reflected by different requirements to the efficiency of the
same biochemical processes. On the genome level, it is likely to expect the different
structural organization of the corresponding pathways (figure 1).

In most cases evolution implements a number of different alternatives to realize
biochemical processes. The most preferable alternative for a particular organism that
would be selected under evolutionary pressure depends on many factors (environmental
conditions, availability in the genome of other biochemical pathways and so on). For
example, for a group of species expressing a particular trait, it may be vital to have all
alternatives to synthesize some metabolite, while for others the availability of one single
alternative is sufficient for survival. As a result, we expect proteins catalyzing the
synthesis to be joined in phenotype specific patterns. Such structural reorganization of
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genome content between species of different phenotypes is visible only on the level of
complex phenotype patterns in most cases.
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Figure 1: An illustrative example for emergence of complex phenotype patterns. The
presence/absence of trait M has caused different evolutionary pressure on the pathway AB due to
the different requirements to the efficiency of synthesis of product B. As a result, genomes that
express phenotype M in most cases have all possible pathways AB while genomes that do not
express phenotype M have only one (maybe two) pathways. The signature of such structural
genome variations between phenotypes is a presence of (E1 AND E2 AND E3) pattern. The profiles
of genes E1 , E2 , E3 is not (in general) deferentially present between phenotypes. Therefore,
differences of genome content between phenotypes is visible only on the level of complex
patterns.
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Consider a simple illustrative example such as a pathway of transforming metabolite A
into metabolite B. Let us assume that only three different enzymes (E1, E2, E3) exist to
transform metabolite A into metabolite B (figure 1) and the species expressing trait M
due to environmental conditions utilize product B more intensively. Let us also assume
that the synthesis of product B is more efficient in the case if all three enzymes (E1, E2,
E3) are present in the organism. Under these assumptions the species expressing trait M
and having all alternative enzymes will get preferences for selection. Therefore, in most
species expressing trait M all alternative pathways AB are most probably available while
most organisms without trait M have only some alternative pathways. If we consider the
phylogenetic profiles of enzymes (E1, E2, E3) that catalyze pathway AB then we observe
the “AND” phenotype pattern (E1& E2& E3). At the same time the single profile of each
enzyme (E1, E2, E3) is not necessarily differentially present between phenotypes (see
(figure 1).

3 Methods

The phylogenetic profile of an arbitrary gene A is formalized as a binary vector g
(elements of g can be either 1 or 0, indicating whether the homolog of gene A is present
in the corresponding genome or not). The phenotype information is similarly formalized
as a binary vector f (elements of f can be either 1 or 0, indicating whether the
corresponding genome expresses the considered phenotype or not). We refer to each
gene profile g as a base (single) profile to differentiate between single gene profiles and
complex profiles (see below). We also refer to base profiles as complex profiles of the
first degree.

Consider a vector C(gA , gB) = (gA ∩ gB) which represents a binary profile indicating
presence of both gene A and gene B in a genome. We refer to such vectors as complex
profiles. In general we can use three logical operations (“AND”, “EXCLUDE”, “OR”).
Here we consider only “AND” logical operation. Each complex phylogenetic profile is
characterized by the number of base profiles required to construct it. We refer to this
characteristic as the degree. For example, we already defined base profiles as complex
profiles of the first degree. The complex profile gA ∩ gB is a complex profile of the
second degree (gene pair), the profile C(gA , gB, gC) = ((gA ∩ gB) ∩ gC) is a third degree
profile (gene triplet).

The relation between a phenotype f and a genotype gA is quantified by a similarity
measure I. The empirical mutual information was proved to be the best choice [1, 3]. An
arbitrary complex profile C(gA , gB, gC) can be related to the phenotype f in the same
way by similarity measure I.

3.1 Extraction of complex patterns

As input the set of phylogenetic profiles related to the genome of interest and the profile
f related to the analyzed phenotype is employed. Single profiles gi whose similarity Ii to
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the phenotype profile f is greater than a given threshold I1 are selected. These genes are
expected to represent primary genetic variations related to the phenotype. We refer to
this set as GF1 (index 1 indicates the degree of phylogenetic profiles). These profiles are
dropped from consideration while searching for the higher degree (complex) profiles.

In the next step we checked all possible combinations of remaining gene pairs to identify
complex profile of the second degree whose similarity to phenotype profile exceeds
threshold value I2. We refer to this set as GF2 (index 2 indicates the degree of
phylogenetic profiles). These profiles are also dropped from consideration while
searching for the set of third degree profiles.

To identify complex patterns of the third degree (gene triplets that differentially present
between organisms of different phenotype f) we applied our searching algorithm[9].
Those third degree patterns whose similarity to phenotype f was found to be significant
(was better then threshold value I3) were selected to the set GF3 (index 3 indicates the
degree of complex profiles).

At each step we dropped from consideration significant low level complex profiles. The
reason for this is the same as been argued earlier[7, 8]. For example, for each triplet of
genes a, b, c that was suspected to be a pattern they require that neither profile a nor b
alone was predictive of c.

The threshold values I1, I2, I3 are identified based on the background distribution of
similarity measure I for patterns of the first, second and third degree respectively. The
background distribution was computed based on random simulation procedure. The
random simulation procedure was repeated 500 times. In the first step each time (k) the
random phenotype fk was generated by random permutation of the bits (genomes) in the
phenotype vector f. In the next step the set of phylogenetic profiles and the random
phenotype fk is used as input to infer complex patterns related to random phenotype fk
(for procedure see above). The best profiles (in respect to similarity measure I) of the
first, second and third degree that were identified are selected and their similarity
measures I1k, I2k , I3k are accumulated. The distributions I1k , I2k, I3k , k = 1..500 are used
as background distributions of similarity measure I for profiles of the first, second and
third degree respectively.

3.2 Analyses of biological relevance of complex phenotype patterns

All unique genes that were linked in significant patterns (sets GF2, GF3) were selected
into the separate gene cluster (genes that were involved in less then 5 patterns were
dropped from consideration). In the next step the cluster was analyzed by automatic
functional profiling. Automatic functional profiling is the standard procedure for the
analysis of biological relevance of a gene set [9-11] or gene networks[12, 13]. Given a
set A (the set of genes identified to be related to some biological phenomena) and a set B
(reference set, usually the set of all genes from the analyzed organism), automatic
functional profiling identifies statistically over/under represented attributes f (f is
usually a functional category from employed annotation vocabulary F, i.e. GO[14] ,
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FunCat[15]. If attribute f is over/under represented in set A it is said to be enriched. The
knowledge of enriched functional categories is helpful for the understanding of the
biological model and mechanism that unite the genes from the set A.

The identified gene clusters were profiled using FunCat[15] annotation. The genes from
the cluster were considered as set A. The set of all genes from the analyzed genome was
considered as the reference set B. To account for multiple testing the statistical
significance of the enrichment was computed by the Monte-Carlo simulation approach
(to adjust p-value for multiple testing). The estimated p-value corresponds exactly to the
definition of an experiment–wise Westfall and Young p-value [16].

4 Results

As the framework for our analysis, we use two well studied bacterial genomes: E.coli
and B.subtilis. We used these genomes as a benchmark to check reliably whether or not
complex phenotype patterns are formed by functionally related genes. Functional catalog
at MIPS [17] contains approximately 80% of manually annotated genes in E.coli genome
and 75% genes from B.subtilis genome. The manual comprehensive genome annotation
guarantees consistent functional analysis of genes from identified patterns. For all genes
from E.coli and B.subtilis genomes the gene phylogenetic profiles in approximately 200
complete microbial genomes were acquired. The profiles were downloaded from
http://tavazoielab.princeton.edu/genphen/.

We investigated the genetic basis of morphological traits, namely genome variations that
took place between gram-negative and gram-positive bacteria. E.coli is a gram-negative
bacterium while B.subtilis is a gram-positive one. Gram-negative bacteria are in general
characterized by the presence of an additional membrane layer, the OM that serves as a
permeability barrier to prevent the entry of toxic compounds while allowing the influx of
nutrient molecules [18].

In the first step we identified 202 genes in E.coli genome and 262 genes in B.subtilis
genome whose single gene phylogenetic profiles correlate significantly (p-value < 0.01)
to the gram-negative and gram-positive phenotype respectively. Functional profiling of
these genes revealed significant (p-value < 0.01) enrichment of functional categories.
Most of categories related to gram-negative case are directly linked to the analyzed
phenotype (table 1). Categories like “bacterial outer membrane only in Gram- bacteria”
reflect on the genomic level the differences between two phenotypes: gram-negatives
develop additional membrane layer. These genotype–phenotype associations were
identified previously [1].

Category
Code Category Name

Set A
statistics

Set B
statistics P-value*

P-value corrected
for multiple
testing

1 42.34.01
bacterial outer membrane only in Gram-
bacteria 11 202 9 4981 2.77E-11 < 0.01
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2 42
BIOGENESIS OF CELLULAR
COMPONENTS 25 202 179 4981 8.54E-08 < 0.01

3 32.05 disease, virulence and defense 19 202 110 4981 2.34E-07 < 0.01

4 32
CELL RESCUE, DEFENSE AND
VIRULENCE 32 202 305 4981 2.86E-07 < 0.01

5 14
PROTEIN FATE folding, modification,
destination 34 202 347 4981 4.19E-07 < 0.01

6 01.20.15.03 biosynthesis of ubiquinone 5 202 1 4981 4.92E-07 < 0.01

7 14.04 protein targeting, sorting and translocation 10 202 26 4981 5.80E-07 < 0.01

8 70.34.01
bacterial outer membrane only present in
Gram- bacteria 12 202 47 4981 1.52E-06 < 0.01

9 32.05.01 resistance proteins 15 202 85 4981 3.74E-06 < 0.01

10 01.20.15
biosynthesis of derivatives of dehydroquinic
acid, shikimic acid and chorismic acid 5 202 4 4981 9.17E-06 < 0.01

Table 1. Functional terms enriched (p-value < 0.01) in the set of 202 genes from E.coli genome.
Single phylogenetic profiles of these genes are significantly associated with gram-negative
phenotype. Functional terms in the table are ordered by statistical significance. Columns “Set A
statistics” and “Set B statistics” disclose detailed statistics for each enriched category in the
selected gene set (202 genes) and in the remaining genes from the whole genome (4981 genes).

* Column indicates p-value (hypogeometric test) without correction for multiple testing. To
account for multiple testing the statistical significance was computed by the Monte-Carlo
simulation approach.

The enriched functional terms related to gram-positives are not phenotype specific (table
2). This means that gram-positives develop no specific (in relation to gram-negatives)
biochemical processes but significantly modify the existing ones by gaining new genes.
For example, more then 30 percent (13 out 36) of genes related to “phosphotransferase
system” in B.subtilis genome are specific for gram-positive genomes only.

Category
Code

Category Name Set A
statistics

Set B
statistics

P-value* P-value corrected
for multiple

testing

1 16.03 nucleic acid binding 39 262 187 3782 9.95E-10 < 0.01

2 16 PROTEIN WITH BINDING FUNCTION
OR COFACTOR REQUIREMENT

structural or catalytic

68 262 556 3782 8.60E-09 < 0.01

3 20.03.09 phosphotransferase system 13 262 23 3782 1.28E-07 < 0.01

4 16.03.01 DNA binding 30 262 160 3782 8.07E-07 < 0.01
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5 01.06.10 regulation of lipid, fatty acid and isoprenoid
metabolism

5 262 0 3782 1.09E-06 < 0.01

6 01.05.04 regulation of C-compound and carbohydrate
utilization

11 262 27 3782 1.34E-05 < 0.01

Table 2. Functional terms enriched (p-value < 0.01) in the set of 262 genes from B.subtilis
genome. Single phylogenetic profiles of these genes are significantly associated with gram-
positive phenotype. Functional terms in the table are ordered by statistical significance. Columns
“Set A statistics” and “Set B statistics” disclose detailed statistics for each enriched category in the
selected gene set (262 genes) and in the remaining genes from the whole genome (3782 genes).

* Column indicates p-value (hypogeometric test) without correction for multiple testing. To
account for multiple testing the statistical significance was computed by the Monte-Carlo
simulation approach.

Application of our computational approach to E.coli genome detects gene pairs and
triplets that present together only in gram-negative bacteria while analysis of B.subtilis
genome reveals gene pairs and triplets that present together only in gram-positive
genomes. Thus, by analyses of these patterns we track variations in the structure of
biochemical processes between gram-negative and gram-positive genomes. These
variations are not triggered by gain of new genes but by different joint distribution
between phenotypes of several phenotype unspecific genes.

We identified 2714 significant patterns (p-value < 0.01) of the second degree (gene
pairs) and 1756 significant patterns (p-value < 0.01) of the third degree (gene triplets)
specific for gram-negative and 6234 gene pairs and 860 gene triplets specific for gram-
positive. We considered only “AND” patterns (pairs and triplets of genes joined by
“AND” logical operation) and at each step removed from further consideration
significant patterns identified at previous steps (while looking for gene pairs we dropped
from consideration 202 genes (gram-negative) and 262 genes (gram-positive) which
represent patterns of the first degree, while looking for gene triplets we dropped from
consideration identified patterns of the second degree (see methods)). The sets of
significant patterns (pairs and triplets) for each case were transformed into the clusters
GCneg and GCpos which consist of all unique genes that were linked in significant patterns
identified for gram-negative and gram-positive phenotype respectively. We dropped
from consideration genes that take part in less then 5 patterns. The size of the clusters
was equal to 299 and 405 genes respectively.

In both cases, the genes from the identified clusters reflect variations in the structure of
biochemical processes t between gram-negative and gram-positive genomes. Indeed, we
found that the clusters were enriched (p-value < 0.01) by several functional terms.
Tables 3 and 4 supplies detailed information for all functional categories enriched in
each cluster.
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Category
Code

Category Name Set A
statistics

Set B
statistics

P-value* P-value
corrected for

multiple
testing

1 16 PROTEIN WITH BINDING
FUNCTION OR COFACTOR

REQUIREMENT structural or catalytic

127 299 987 4884 5.67E-25 < 0.01

2 01 METABOLISM 118 299 1148 4884 2.44E-16 < 0.01

3 70.03 cytoplasm 66 299 426 4884 1.61E-13 < 0.01

4 14 PROTEIN FATE folding, modification,
destination

48 299 333 4884 8.04E-09 < 0.01

5 01.01.06.06.01 biosynthesis of lysine 7 299 3 4884 1.98E-07 < 0.01

6 02.11 electron transport and membrane-
associated energy conservation

21 299 93 4884 8.26E-07 < 0.01

7 16.03.03 RNA binding 19 299 78 4884 1.11E-06 < 0.01

8 02.11.05 accessory proteins of electron transport
and membrane-associated energy

conservation

12 299 28 4884 1.14E-06 < 0.01

9 01.01.06.06 metabolism of lysine 7 299 5 4884 1.16E-06 < 0.01

10 01.01.06 metabolism of the aspartate family 11 299 26 4884 3.55E-06 < 0.01

11 11.04 RNA processing 10 299 21 4884 4.44E-06 < 0.01

12 42.01 cell wall 10 299 22 4884 6.09E-06 < 0.01

13 01.03.16 polynucleotide degradation 8 299 14 4884 1.55E-05 < 0.01

14 01.03.16.01 RNA degradation 6 299 6 4884 2.26E-05 < 0.01

Table 3. Functional terms enriched (p-value < 0.01) in the cluster GCneg (299 unique genes from
E.coli genome that were linked in significant patterns identified for gram-negative genomes).
Functional terms in the table are ordered by statistical significance. Columns “Set A statistics” and
“Set B statistics” disclose detailed statistics for each enriched category in the selected gene set
(299 genes) and in the remaining genes from the whole genome (4884 genes).

* Column indicates p-value (hypogeometric test) without correction for multiple testing. To
account for multiple testing the statistical significance was computed by the Monte-Carlo
simulation approach.

Among 299 genes that were involved in complex patterns for gram-negative phenotype
we found significant enrichments related to several general functional categories, like,
“metabolism” or “PROTEIN WITH BINDING FUNCTION”. Some specific functional
categories, like, “electron transport and membrane-associated energy conservation” were
enriched as well. Our results suggest that in addition to biochemical processes that were
significantly modified in gram-negative bacteria by gain of new genes (table 1) there
was additional significant reorganization of the structure of some processes reflected by
categories in table 3.
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Category Code Category Name Set A
statistics

Set B
statistics

P-value* P-value
corrected for

multiple
testing

1 20.09.18 cellular import 82 405 161 3639 9.71E-28 < 0.01

2 70.30 prokaryotic cytoplasmic membrane 114 405 403 3639 5.18E-23 < 0.01

3 20.09 transport routes 93 405 266 3639 9.31E-23 < 0.01

4 30 CELLULAR
COMMUNICATION/SIGNAL

TRANSDUCTION MECHANISM

52 405 74 3639 1.08E-21 < 0.01

5 16 PROTEIN WITH BINDING FUNCTION
OR COFACTOR REQUIREMENT

structural or catalytic

122 405 502 3639 8.92E-21 < 0.01

6 01 METABOLISM 157 405 842 3639 1.37E-20 < 0.01

7 30.01 intracellular signalling 44 405 57 3639 1.77E-19 < 0.01

8 30.01.01 unspecified signal transduction 41 405 48 3639 2.89E-19 < 0.01

9 20.01 transported compounds substrates 86 405 306 3639 3.02E-16 < 0.01

10 30.01.05 enzyme mediated signal transduction 31 405 31 3639 5.24E-16 < 0.01

11 20.03.25 ABC transporters 54 405 136 3639 1.94E-14 < 0.01

12 70.03 cytoplasm 103 405 472 3639 2.80E-14 < 0.01

13 20 CELLULAR TRANSPORT, TRANSPORT
FACILITATION AND TRANSPORT

ROUTES

98 405 431 3639 2.93E-14 < 0.01

14 30.05.01.10 two-component signal transduction system
sensor kinase component

21 405 16 3639 1.39E-12 < 0.01

15 20.03 transport facilitation 67 405 237 3639 1.99E-12 < 0.01

16 14.07.03 modification by phosphorylation,
dephosphorylation, autophosphorylation

32 405 55 3639 5.44E-12 < 0.01

17 20.01.07 amino acid transport 27 405 38 3639 1.08E-11 < 0.01

18 14.07 protein modification 47 405 137 3639 6.98E-11 < 0.01

19 30.05 transmembrane signal transduction 21 405 28 3639 1.20E-09 < 0.01

20 14 PROTEIN FATE folding, modification,
destination

57 405 221 3639 2.39E-09 < 0.01

21 20.01.03 C-compound and carbohydrate transport 32 405 81 3639 8.71E-09 < 0.01

22 11.02.03.04 transcriptional control 58 405 240 3639 1.07E-08 < 0.01

23 11.02 RNA synthesis 58 405 245 3639 1.92E-08 < 0.01

24 11.02.03 mRNA synthesis 58 405 245 3639 1.92E-08 < 0.01

25 01.03 nucleotide metabolism 32 405 85 3639 2.12E-08 < 0.01

194



26 16.21 complex cofactor/cosubstrate binding 28 405 68 3639 4.08E-08 < 0.01

27 16.21.17 pyridoxal phosphate binding 13 405 13 3639 2.18E-07 < 0.01

28 16.11 amino acid binding 7 405 1 3639 6.86E-07 < 0.01

29 16.17 metal binding 23 405 57 3639 9.24E-07 < 0.01

30 01.03.01.03 purine nucleotide anabolism 9 405 5 3639 1.08E-06 < 0.01

31 20.01.01.01.01.01 siderophore-iron transport 8 405 4 3639 3.04E-06 < 0.01

32 01.01.03.02.01 biosynthesis of glutamate 7 405 5 3639 4.46E-05 < 0.01

Table 4. Functional terms enriched (p-value < 0.01) in the cluster GCpos (405 unique genes from
B.subtilis genome that were linked in significant patterns identified for gram-positive genomes).
Functional terms in the table are ordered by statistical significance. Columns “Set A statistics” and
“Set B statistics” disclose detailed statistics for each enriched category in the selected gene set
(405 genes) and in the remaining genes from the whole genome (3639 genes).

* Column indicates p-value (hypogeometric test) without correction for multiple testing. To
account for multiple testing the statistical significance was computed by the Monte-Carlo
simulation approach.

Among 405 genes that were involved in complex phenotype patterns for gram-positive
phenotype we found significant enrichments related to several general functional
categories, like, “CELLULAR COMMUNICATION”, “CELLULAR TRANSPORT”,
“PROTEIN FATE”, “METABOLISM”. Our results suggest that transport processes
were significantly modified in gram-positive genomes in comparison to gram-negative
ones. Both clusters (GCpos and GCneg ) were significantly enriched by proteins with
binding function. These findings imply that different environment conditions between
gram-positives and gram-negative phenotypes require different binding spectra of the
cell proteome.

5 Discussion

We have extended the ideas underlying the logical analysis of phylogenetic profiles to
the investigation of genomic and phenotype data. Previously the phylogenetic data were
related to phenotype only by pairwise similarity (between phylogenetic and phenotype
profiles). This undemanding approach does not take into account the complexity of
cellular networks (branching, parallel, and alternate pathways). In most cases the simple
correlation of genotype to phenotype identifies only primary genome variations which
were directly caused by (or cause by themselves) the phenotype divergence. However,
these changes reflect only a small fraction of reorganization of genome content that took
place between phenotypes. Our approach makes visible additional genome variations
that took place on the level of fundamental biochemical pathways and processes. Finally,
we would like to point out that the proposed statistical structures (the patterns of multiple
presence of proteins associated with phenotype) have not been explored until now. They
are different from any previously explored statistical patterns in phylogenetic data.
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