Using Continuations for Flexible Provision of
Grid Services

Maurizio Giordano and Claudia Di Napoli

Istituto di Cibernetica “E. Caianiello” - C.N.R.
Via Campi Flegrei 34, 80078 Pozzuoli, Naples - ITALY
{m.giordano,c.dinapoli}@cib.na.cnr.it

Abstract. The main challenge of grid computing is to provide a uni-
fied computational infrastructure composed of networked heterogeneous
resources that makes effective use of the computational power delivered
by each resource. To reach this objective management of computational
resources is a crucial aspect because of the decentralized, heterogeneous
and autonomous nature of these resources that usually belong to different
administrative domains. As such they cannot be managed by adopting a
centralized approach, but more sophisticated computing methodologies
are necessary. In this context, the possibility to manage the execution
of services is advisable to control their provision in dynamic and chang-
ing environments. In the present work an infrastructure to model service
providers is proposed to allow for flexible provision of grid services, i.e. to
allow providers to dynamically adapt the execution of services according
to both the changing conditions of the environment where they operate
in, and the requirements of service users. The infrastructure is based on
continuations, a programming paradigm that allows to control the state
of code execution at programming level without directly using operating
system facilities.

1 Introduction

Computational grids represent the new research challenge in the area of dis-
tributed computing. They aim to provide a unified computational infrastruc-
ture composed of geographically distributed heterogeneous resources cooperating
with each other through middleware software to enable usage of the collection
of these resources in an easy and effective manner.

In the present work a service-oriented approach is adopted as described in [1],
where grid resources are abstracted as grid services, i.e. computational capabili-
ties exposed to the network through a set of well-defined interfaces and standard
protocols used to invoke the services from those interfaces, and they have to be
identified, published, allocated, and scheduled. Services are not subject to cen-
tralized control (i.e. they live within different control domains and they do not
rely on a central management system), they use standard, open, general-purpose
protocols and interfaces (i.e. not application-specific), and they can be combined
in order to deliver added value functionalities so that the utility of the resulting

96

system is significantly greater than that of the sum of its parts. In order to pro-
vide such a computational infrastructure, grid technologies should support the
sharing and coordinated use of diverse resources in a dynamic environment [1].

A service is provided by the body responsible for offering it, we refer to as
service provider, for consumption by others, we refer to as service consumers, un-
der particular conditions. In this view, service providers (that can be individuals,
organizations, groups, government, and so on) are independent and autonomous
entities representing the interface between a service consumer and a required
functionality, i.e. a grid service. Users will be able to access and share these
computational capabilities on demand over the Internet, relying on an infras-
tructure that is expected to be resilient, self-managing, and always available,
and above all that is perceived as a unified framework by end users.

A service request is fulfilled when the consumer requirements can be met by
the service provider that received the request, i.e. when consumers’s Quality-
of-Service requirements can be met by provider’s Quality-of-Service capabilities
[2]. The term Quality-of-Service is used in a general sense referring to a very
wide range of non-functional service characteristics. It is beyond the scope of
the present work to study how complex the quality of a service can be, and how
to characterize it, i.e. how many parameters should be considered to express the
quality of a service, and how it can be represented. This is mainly a domain-
specific problem.

In this approach, service providers must be equipped with mechanisms within
their architectures to allow for the provision of known quality levels and for the
possibility to change quality levels when necessary. So, providers need to have
control on the execution of the services they provide in order to accommodate
for the changing conditions under which a service could be provided. In such a
way providers are able to decide at run-time “how” to fulfill a service request,
i.e. what Quality-of-Service they can provide the service with.

In this work we propose an infrastructure to model service providers to con-
trol the execution of services by allowing for service suspension and resuming in
a way similar to process preemption in traditional operating system design.

The infrastructure relies on continuation programming paradigm [3] in or-
der to provide execution state saving/restoring mechanisms for services. These
mechanisms will support the possibility of dynamically controlling the execution
of services to allow providers to change at run-time parameters affecting service
provision either driven by consumer or system requirements.

The rest of the paper is organized as follows. Section 2 gives an overview
of the notion of continuation and its deployment in some classes of program-
ming languages. Section 3 describes the high-level design of the proposed service
provider infrastructure and its functionalities, together with the APIs to use it.
Section 4 gives details on the infrastructure implementation and Sec. 5 describes
the reference application scenario of the proposed work. Finally Sect. 6 reports
some conclusions and comparison to related work.

97

2 Continuations in Programming Languages

A continuation relative to a point in a program represents the remainder of
the computation from that point [3], so a continuation is a representation of
the program current execution state. Continuation capturing allows to package
the whole state of a computation up to a given point. Continuation invocation
allows to restore that previous state restarting the computation from that point.
Although any programming system maintains the current continuation of each
program instruction it evaluates, these continuations are generally not accessible
to the programmer.

In functional programming languages, the continuation can be represented
as a function and the possibility of explicitly managing it allows to effect the
program control flow [4]. In languages like C the current execution state is rep-
resented by the call stack state, the globals, and the program counter. Some
object-oriented programming languages support continuations by providing con-
structs to save the current execution state into an object, and then to restore
the state from this object at a later time.

Depending on which operations can be done at programming level on the
continuation store object, it is possible to classify the type of support for con-
tinuations in the given programming language. In particular, a first-class con-
tinuation is represented by a first-class object as defined by Abelson & Sussman
in [5]:

a first-class data object is a language element that may be named by
variables, passed as arguments to procedures, returned as results of pro-
cedures, and included in data structures

There are Java language extensions supporting continuations as not-first-class
objects, like RIFE [6] and Jetty 6 [7], in what they provide constructs to capture
and resume continuations, but no mechanisms to store them in data objects that
can be passed as functions call parameters.

In what follows we outline a short and non-exhaustive list of programming
language extensions that support continuations. Our attention is focused on
languages and programming environments providing continuation capturing and
resuming constructs to build up lightweight user-level threads that can be easily
managed and scheduled at application level.

— JavaFlow [8] is a Java component of the Apache Jakarta [9] project that
implements continuations. In JavaFlow a continuation is the state of an
application, i.e. the stack of functions calls including local and global vari-
ables and the program counter. Continuations are captured and saved into
a Java object that allows to restart the processing from the point stored in
it. JavaFlow supports continuations as first-class objects: the continuation
object interface includes methods to suspend and resume it.

— Stackless Python [10] is an experimental implementation of the Python pro-
gramming language that uses continuation support to model concurrency in

98

an easy way. It provides abstractions of microthreads at application level,
named tasklets, whose implementation is based on continuations. Stackless
Python supports tasklets as built-in user-level lightweight threads with con-
structs to control their creation, suspension, resuming and scheduling at
application level.

— Ruby [11] language supports natively continuations as first-class data types.
The callcc{l$ccl} construct is provided to capture continuation of pro-
grams at any location, binding it to the $cc argument variable. Continua-
tion resumption is performed by the $cc.call function invocation. Contin-
uations can be used in Ruby to implement user-level threads with suspen-
sion/resuming and scheduling support at application level.

— Rhino [12] is an opensource Javascript implementation written in Java. There
is a Rhino additional package [13] which introduces an additional mode for
the Rhino (Javascript) interpreter that supports first-class continuations.
In Rhino a continuation is a Javascript object that represents the storing of
the Rhino script execution state. You can return this object, store it in a
variable, assign it to a property of another object. The continuation object is
also a function: when you call it the current execution state of the program is
discarded and the snapshot of the program represented by the continuation
object is resumed in its place. Apache Cocoon web development component-
based framework [14] uses Rhino Javascript to implement its controller logic.

3 Service Provider Design

In order to be able to provide services that meet Quality-of-Service require-
ments both of service consumers (e.g. cost, response-time) and of providers (e.g.
throughput, profit, CPU utilization), it is crucial to be able to control the exe-
cution of services in accordance with new events occurring in the environment
since these requirements cannot be always statically determined.

Service preemption mechanisms are a way to provide full control of service
execution and they can be implemented (or simulated) using several approaches,
both at application or operating system level. For examples, at application level
the Java language provides (deprecated) thread suspension/resuming support.
Other approaches [15] use operating systems signals (SIGSTOP/SIGCONT) avail-
able in most operating system infrastructures.

The main objective of the proposed service provider architecture is application-
level preemption of services in order to support at programming level the de-
velopment of dynamic policies for service execution. Service preemption is not
provided at operating system level, but at application-level by managing program
continuations. This choice makes the framework flexible and easily adaptable for
developing and experimenting scheduling facilities, policies and service-control
in different service-oriented architecture applications.

Existing web service frameworks [16,17] make it difficult to implement a
service provider architecture with preemption mechanisms of web services with-
out a deep changing of the control patterns usually implemented as a built-
in feature. This is because most frameworks obey to the Inversion of Control

99

g

Service

u-thread
Suspended Expirequeue

|
expired Srv Result !
|
Terminated Service e Service

ad u-thread u-thread
aitqueue
Request
. AD
WS Client O el
Service
Scheduler | [N 5 .
bt Service e Service
u-thread u-thread u-thread
Runqueue

Fig. 1. Services provider architecture and service state transition

(IoC) programming pattern [18,19] widely used in most Java and object-oriented
web-application environments. So, web service instantiation and life-cycle man-
agement cannot be fully controlled by programmers who develop and add web
services to the framework.

For this reason existing web service frameworks are not suitable to provide
an application-level control of service execution supporting service suspension
and resuming.

For this reason we designed a service provider equipped with mechanisms
to process suspension and resuming notifications. The service provider should
process, from time to time, arrival of notification messages in order to sus-
pend/resume the execution of a service it is providing by capturing/restoring
its continuation. The control of service execution can be driven both by the
service provider itself and by any client program. Service preemption, driven or
not by client requests, is carried out by the provider storing at the preemption
points the execution state of the specified service.

A client program can represent either a service consumer that requires a
service result, or a metascheduler or service broker [20] trying to adapt local
service execution policies so that resources can be shared in a reliable and efficient
way in a heterogeneous and dynamically changing environment like the grid.

3.1 User-Level Control of Services

Our proposal of a service provider architecture supporting user-level preemptible
service execution is depicted in Fig. 1. The provider is represented by a ser-
vice container consisting of a pool of lightweight user-level threads, named u-
threads, whose implementation should support suspension and resuming facilities
of threads at application level.

100

In our design u-threads are wrapper functions that embody and control the
execution of web service WSDL operations [21]. Web service operations are sup-
plied as parameters to u-threads and executed within their contexts (see Fig.
1). Thus the wrapping guarantees the required functionalities to suspend and
resume web service operations.

A u-thread, and hence the enveloped service instance, can be in the following
states:

— running, i.e. the service instance is executing or ready to be scheduled for
execution;

— suspended, i.e. the service instance is not yet terminated, but cannot be
scheduled for execution;

— expiring, i.e. the service instance terminated, but the wrapping u-thread
descriptor is still alive to make the service result available to successive
requests;

— terminated, i.e. the service instance terminated and the wrapping u-thread
descriptor is freed and no longer available because either a specified expi-
ration time elapsed, or the client requested and obtained the service result
before the expiration time.

The service state transition diagram is showed in the leftmost part of Fig. 1.

A main u-thread, always in running state, represents the service provider exe-
cution context. The main u-thread program interleaves messaging and scheduling
activities by running two modules: the Request Handler and the Service Sched-
uler. The Request Handler deals with probing incoming SOAP messages; the
Service Scheduler controls the state transitions of u-threads wrapping service
instances. This is accomplished by means of the following primitives: submit,
suspend, resume, kill. The primitives are reported as black thin lines in the ser-
vice provider architecture of Fig. 1, and as black arrows in the transition state
diagram in the same figure. The submit primitive creates a new u-thread, wrap-
ping up a specified service operation and puts it in the running state.

The Service Scheduler maintains three queues to manage u-threads, and the
wrapped services instances, in the different states:

Runqueue - it contains all service instances running or ready to be scheduled
for execution. Services in this queue are by default executed in time-sharing
mode by assigning to each u-thread a time quantum that can be changed by
the Service Scheduler (also in response to incoming SOAP requests).

Waitqueue - it contains all service instances suspended and thus removed from
the Runqueue. The provider may decide to suspend/resume service execution
according to both its own scheduling policy, and upon receiving specific
SOAP requests from an external application, e.g. a metascheduler.

Ezxpirequeue - it contains all u-threads’ descriptors wrapping up terminated
service instances whose results are not yet requested by clients via SOAP
messages. U-threads are maintained in an inactive state in this queue to
temporarily store unused service results until a certain expiration time is
elapsed. The expiration time is not necessarily a system specific parameter,
and it could be specified as a QoS parameter at the submitting phase.

101

It should be noted that in the Service Scheduler module different scheduling
policies can be implemented at application-level overriding the default one both
by changing the time quantum and by accessing and managing the Runqueue in
different modes. In this way the service provider is able to change its own local
scheduling policy at run-time directly invoking the primitives to control service
execution.

3.2 Service Control APIs

As outlined earlier, the proposed infrastructure allows also to access the primi-
tives to control service execution as web services to be invoked by any external
client program. In such a case, a client-provider interaction takes place and it is
implemented as an asynchronous request/response operation with polling [22].
Asynchronicity allows the client to proceed the computation concurrently with
the web service execution until the operation result is required: at this point the
client needs to synchronize with the provider and establishes a new communica-
tion to retrieve the result.

We extend the asynchronous request/response operation mode with func-
tionalities to suspend and resume web service execution. The client-provider
asynchronous interaction pattern is described in Fig. 2 where a client invokes a
web service operation, named ”Operation A”, offered by the continuation-based
service provider.

The primitives to control service execution are exposed as the following
WSDL operations: submit, suspend, resume and probe. They represent meta-
operations because they are invoked by clients to control and to monitor web
service operation executions.

The client-provider interaction pattern is started by clients invoking the
submit WSDL operation to request a service execution. The submit request
invokes the ”Operation A” on a set of input arguments and starts its execution
(see the syntax in Fig. 3(a)). The provider sends back to the client a reply with
an acknowledge that the submission is done together with a correlation ID. The
correlation ID is unique and is set by the provider to be used together with
the client to associate subsequent requests and responses belonging to the same
client-provider transaction.

Correlation tokens to embed multiple messages in transactions are widely
used in most asynchronous web service protocol proposals [23,24]. Approaches
differ for the particular protocol adopted (JMS, SOAP, and so on) and/or the
mechanisms used to implement message correlation. In our approach correlation
is explicitly included in SOAP message bodies as shown in Fig. 3.

The submit request includes a set of qos parameters. QoS attributes are spec-
ified by clients to drive or affect scheduling policy of the web service operation
execution.

The client starts the execution of ”Operation A” and continues its computa-
tion so that it may also decide to suspend the web service execution, to resume
it later on up to completion.

102

Client Web Service
(invoker) (provider)

1: Submit " Operation A" (Request)

2: Ack. "Operation A started” (Reply with Correlation ID)

3: Suspend " Operation A" (Request with Correlation ID)

4: Ack. "Operation A suspended” (Reply)

5: Resume "Operation A" (Request with Correlation ID)

6: Ack. "Operation A resumed” (Reply)

71: Probe result (Request with Correlation ID)

81: Ack. "no result yet” (Reply)

E

7n: Probe result (Request with Correlation ID)

8y: Response of "Operation A" (Reply)

Fig. 2. Asynchronous request/response operation with polling and suspend/resume
facility

To perform suspension and resuming actions the client uses the suspend and
resume meta-operations.

The suspend request uses the correlation ID to refer to the web service
operation (instance) to be suspended. Upon receiving the request, the provider
captures and saves the execution state of ”Operation A”, and it sends back to
the client an acknowledge.

The resume request uses the correlation ID to refer to the web service oper-
ation (instance) whose execution must be resumed. Upon receiving the request,
the provider retrieves the execution state (continuation) stored and tagged with
the specified correlation ID. It then resumes the web service operation and sends
back to the client an acknowledge.

As described in Fig. 3(b), also the resume request includes specifications of
QoS parameters. This means that in our framework a service execution could be
resumed by changing at run-time the web service operation scheduling policies.

Client-provider synchronization is implemented by the probe request. The
probe checks if ”Operation A” is finished. If the request occurs before the web
service operation exits (the first probe of Fig. 2), the client is acknowledged
that the result in not ready yet. After a successful probe request, the client
synchronizes with the provider and gets the result.

103

<submit>
<service>
<name>operationA</name>
<args>
<arg>arg</arg>

<resume>
<cid>correlationI D</cid>
<qos>
<param>
<name>gosparameter</name>

</args>
</service>
<qos>
<param>
<name>qosparameter</name>

<value>qosvalue</value> <value>qosvalue</value>

</param> </param>
. <acknowledge> e <acknowledge>
</qos> <cid>correlation] D</cid> </qos> <cid>correlation] D</cid>
</submito> <msg>text</msg> </resume> <msg>text</msg>

</acknowledge> </acknowledge>

(@) (b)

Fig. 3. Service control primitives syntax: (a) submit; (b) resume

4 Implementation

We outline here that our proposal of a service provider architecture with support
to user-level preemptible service execution can be implemented with one of the
continuation-based languages mentioned in Sec. 2. In fact user-level threads with
suspension and resuming control functions can be implemented in a hosting
language supporting first-class continuation management.

Our service provider current implementation is in Stackless Python [10]. The
choice is due to two main motivations. First, the language directly supplies the
support of user-level threads based on continuations, named tasklets that are
built-in user-level lightweight threads with constructs to control their creation,
suspension, resuming and scheduling at application level. Secondly, the Python
scripting language offers a fast prototyping and testing programming environ-
ment for the proposed SOA framework, with minor performance penalties com-
pared to other languages like C. Furthermore, Python is one of the languages
that provides a satisfactory support of libraries and tools for the development
of web services [25].

We implemented our user-level threads as extensions of tasklets objects (see
Fig. 4), named WSTasklets. WSTasklets are threads wrapping up functions
whose code implements web service operations (in WSDL specification). Web
service operations are given as parameters to a WSTasklet constructor method
and executed within its context (see Fig. 4).

Our u-threads inherit by tasklets the required functionalities to suspend and
resume web service operation executions by means of the Stackless Python con-
tinuation storing and resuming features.

The service provider implementation is a ServiceContainer object man-
aging and controlling a pool of WSTasklets. It executes in the context of the
main WSTasklet, which is always in the running state. Its execution is inter-
leaved with other tasklets that are present in the Stackless Python systemwide
runqueue. Note that this queue contains all tasklets in the system (Phyton in-

104

terpreter) while the service provider Runqueue defined in Sect. 3.1 is used to
manage and control WSTasklets wrapping service instances in the context of
the service container.

As described in Fig. 4, the ServiceContainer object, once started, exe-
cutes a never-ending loop interleaving the execution of the Request Handler
and the Service Scheduler (see respectively the handle _request_noblock() and
timeshared scheduling() functions).

The Request Handler listens to the specified socket address/port to probe
for incoming SOAP requests. If a SOAP message arrived, it is processed by the
TaskletController object: this is the Python module providing access to the
control primitives of services offered by our framework.

In the bottom of Fig. 4 we report only fragments of the TaskletController
code: the tsksubmit method implements the submit primitive WSDL interface.
In the same part of Fig. 4 the foo method represents an example of a web service
of our provider whose execution can be controlled by means of the set of primi-
tives whose semantics and interfaces were defined in Sect. 3. It should be noted
that web service code does not need to be rewritten in order to be integrated
and provided by our service provider. Only one modification is needed to convert
the return construct with a system-dependent version: in fact, according to our
design, service termination leaves the wrapping thread still alive although in an
inactive state (Expirequeue) just for the time required by the service consumer
to gather the result stored in the expiring WSTasklet. Remember that no value is
returned by the service to clients if a maximum expiration time elapses without
no probe incoming requests.

The Service Scheduler is the module in charge of managing the user-level
thread Runqueue and Waitqueue described in the previous section. In the exam-
ple of Fig. 4 we report a round-robin scheduler module that assigns at each round
a fixed time quantum (timeshare) for execution to all threads in the Runqueue.
As before mentioned the scheduling module is a component of our framework
that can be modified to program and experiment with different scheduling poli-
cies of service execution.

5 The Economic-Grid Scenario

In order to reach the full potential of grid computing, it is well-recognized that
the grid needs to shift towards production-oriented platforms, so that service
providers are motivated to make available the resources they provide.

A computational economy approach can be used to provide the possibility
of buying and selling computational resources in the same way as goods and
services are bought and sold in the real world economy [26]. Adopting a compu-
tational economy-based view [27,28] where services are provided at a given cost
constitutes per se a mechanism for encouraging resource owners to contribute
their resource(s) for the construction of the grid, and compensate them based on
the resource usage, i.e. on the value of the work done. So, the ultimate success
of computational grids as a production-oriented commercial platform for solving

105

problems is critically dependent on the support of market/economy-based mech-
anisms to resource management. In such “commercial” computational grids, re-
source owners act as service providers that make a profit by selling their services
to users that act as buyers of computational resources for solving their problems.

A suitable application domain for the proposed architecture is the economic-
aware grids in which Quality-of-Service features may include the cost of the
service to be provided. In fact, in our framework it is possible to associate to the
request of a service execution a qos parameter taking into account the cost of
a service and to allow both the client and the provider to use its value to drive
suspension and resuming of service execution.

It is likely that in very dynamic and changing computing environments like
the grid, service providers can make different decisions on the Quality-of-Service
they provide their services with, according to the requirements of new service
requests. For example, they may want to break or change some previous agree-
ments when a new consumer comes with a more remunerative request. The pro-
posed framework makes it possible to implement dynamic priority-based service
scheduling policies by means of suspension and resuming facilities and by tak-
ing into account qos parameter changes at run-time, so that more remunerative
service requests can be executed with a higher priority.

6 Conclusions

In this work we propose a service provider architecture based on continuations
management that provides primitives to control web services execution and to
implement different service scheduling policies. The primitives are offered by the
service provider to external (client) applications through SOAP messages.

With this approach we may implement the service execution policies at two
levels: the lower level relies on the service provider layer to implement local
schedulers; the higher level can be a metascheduler that interacts with multiple
service provider schedulers in a distributed setting by means of SOAP messaging.

The close related work we found in literature is the framework proposed
in [15] that allows for two-level approach to process scheduling: the user-level
scheduler divides time into equal size decision intervals (higher-level quantum)
at the beginning of which it decides the processes eligible to run during the
interval; the kernel-level scheduler executes the selected processes according to
the operating system scheduling policy. The selection of processes to be run is
carried out using suspend and resume mechanisms offered by the underlying
operating system. On the contrary, our approach relies completely on user-level
suspend and resume functions, and it provides scheduling mechanisms in the
extent of the service provider application rather than in the operating system
one.

Our approach has similarities to Community Scheduler Framework (CSF)
[29], an infrastructure providing facilities to define, configure and manage meta-
schedulers for the grid. Metascheduling is conceived as a higher level of schedul-

106

ing decisions to coordinate local schedulers (PBS [30], LSF [31]) on hosts and
clusters in a grid environment.

Like CSF we provide high-level scheduling functionalities either to service
consumers or to metascheduler middleware. CSF functionalities mainly target
configuration and management of scheduling policies and their coordination in
a grid environment.

Like CFS, our framework allows service execution control and scheduling
queues configuration and management through SOAP/WSDL messaging.

Although both approaches support suspension/resuming facilities, CSF ap-
plies them to control jobs, i.e. processes running in the hosting operating system
environments. CSF defines high-level scheduling services (in Java) to map con-
sumer requests into job control commands implemented at lower level in the
scheduler running on the target host (kernel scheduler) or clusters (as PBS and
LSF). In both cases, CSF job-control functionality depends on the underlying
operating system layer.

Since in our approach service control does not rely on the operating sys-
tem layer, the framework results in a flexible and easily adaptable program-
ming environment to develop and experiment scheduling facilities, policies and
service-control in different service-oriented architecture applications. Further-
more, portability can be guaranteed across heterogeneous programming envi-
ronments with (explicit) support of continuation capturing and resuming.

We plan to test the proposed architecture by setting up an experimental
application where a service provider can vary its scheduling policy at run-time
according to the incoming service requests by changing the time quantum pa-
rameter representing the cost associated to each request so that it can maximize
its income.

References

1. Foster, 1., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: An open
grid service architecture for distributed system integration. Technical report Open
Grid Service Infrastructure WG (2002)

2. MacLaren, J., Sakellariou, R., Garibaldi, J., Ouelhadj, D.: Towards service level
agreement based scheduling on the grid. In: Proceedings of the second European
Across Grids Conference. (2004)

3. Daniel P. Friedman, C.T.H., Kohlbecker, E.E.: Programming with Continua-
tions. In: Program Transformation and Programming Environments. Springer-
Verlag (1984) 263-274.

4. Di Napoli, C. and Mango Furnari, M.: A continuation—based distributed lisp sys-
tem. In: Proceedings of the First International Conference on Massively Parallel
Computing Systems, IEEE Computer Society Press (1994) 523-527

5. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
2nd edn. Volume ISBN 0-262-01077-1. MIT-Press (1993)

6. RIFE Web Continuations. http://rifers.org/wiki/display/RIFE/Web+
continuations (2007)

7. Jetty Continuations. http://docs.codehaus.org/display/JETTY/Continuations
(2007)

107

10.
11.

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

The Jakarte Project: Commons Javaflow. http://jakarta.apache.org/commons/
sandbox/javaflow (2007)

The Apache Jakarta Project. http://jakarta.apache.org (2007)

Tismer, C.: Stackless python. http://www.stackless.com (2007)

Thomas, D., Fowler, C.; Hunt, A.: Programming Ruby. 2nd edn. Volume ISBN
0-9745140-5-5. (October 2004)

Rhino: Javascript for Java. http://www.mozilla.org/rhino/ (2007)
RhinoWithContinuations. http://wiki.apache.org/cocoon/
RhinoWithContinuations (2007)

The Apache Cocoon Project. http://cocoon.apache.org/ (2007)

Newhouse, T., Pasquale, J.: A user-level framework for scheduling within service
execution environments. In: Proceedings of the 2004 IEEE International Confer-
ence on Services Computing (SCC ’04), Washington, DC, USA, IEEE Computer
Society (September 2004) 311-318

The Apache Software Foundation: Apache web services project - axis. http:
//us.apache.org/axis (2007)

IBM developerWorks: WebSphere. http://www-128.1ibm.com/developerworks/
websphere (2007)

Johnson, R.E., Foote, B.: Designing reusable classes. Journal of Object-Oriented
Programming 1(2) (1988) 22-35

Fowler, M.: Inversion of control containers and the dependency injection pattern.
http://www.martinfowler.com/articles/injection.html (2004)

Vadhiyar, S., Dongarra, J.: A metascheduler for the grid. In: Proceedings of the
11th IEEE Symposium on High-Performance Distributed Computing. (2002)
Booth, D., Liu, C.K.: Web services description language (wsdl) version 2.0 part 0
primer. http://www.w3.org/TR/2007/PR-wsd120-primer-20070523 (2007)
Adams, H.: Asynchronous operations and web services, part 2. http://www-128.
ibm.com/developerworks/library/ws-asynch2/index.html (2002)

Swenson, K., Ricker, J.: Asynchronous web service protocol. http://xml.
coverpages.org/AWSP-Draft20020405.pdf (2002)

Sun Developer Network: Developing asynchronous web services with java message
service in sun java studio enterprise 7. http://developers.sun.com/prodtech/
javatools/jsenterprise/reference/techart/jse7/asynch.html (2005)
SourceForge.net: Python web services. http://pywebsvcs.sourceforge.net
(2007)

Wooldridge, M.: Engineering the computational economy. In: Proceedings of the
Information Society Technologies Conference (IST-2000), Nice, France (2000)
Buyya, R., Abramson, D., Giddy, J.: An economy driven resource management
architecture for global computational power grids. In: Proceedings of The 2000
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA 2000), Las Vegas, USA (2000)

Buyya, R., Giddy, J., Abramson, D.: An evaluation of economy-based resource
trading and scheduling on computational power grids for parameter sweep appli-
cations. In: Proceedings of The Second Workshop on Active Middleware Services
(AMS 2000), In conjuction with Ninth IEEE International Symposium on High
Performance, Pittsburgh, USA (2000)

Platform: Open source metascheduler for virtual organizations with the commu-
nity scheduler framework (csf). Technical report, http://www.cs.virginia.edu/
~grimshaw/CS851-2004/Platform/CSF_architecture.pdf (2007)

Open portable batch system. http://www.openpbs.org (2007)

Load sharing facility. http://www.platform.com (2007)

108

class ServiceContainer(ServiceContainer):
sleepingTasklets = {}
runningTasklets = {}
expiredTasklets = {}
Tasklets = {}
timeshare = 1000

def __init__(self, server_address, services=[], RequestHandlerClass=SOAPRequestHandler):
return ServiceContainer.__init__(self, server_address, services=[], RequestHandlerClass=SOAPRequestHandler)

def timeshare_scheduling(self):
"""Round-robin scheduling with fixed time-share"""
if the main u-thread is not the only running...
if stackless.getruncount() != 1:
t = stackless.run(self.gettimeshare())
If we got a tasklet, it was the interrupted one ... we need to reinsert it for rescheduling.
if

t.insert()

def serve_forever(self):
"""Service Container: interleave communication and scheduling activities"""
while 1:
handle incoming requests (SOAP) in not-blocking mode
self.handle_request_noblock()
schedule services
self.timeshare_scheduling()

def AsServer(port=80, services=(), RequestHandlerClass=SOAPRequestHandler):

’?’services -- list of registered and exposed web service instances’’’
address = (*’, port)
sc = PreemptServiceContainer(address, RequestHandlerClass=RequestHandlerClass)
register web services in the service container
for service in services:

path = service.getPost()

sc.setNode(service, path)

service.setContainer(sc)
sc.serve_forever()

print "... starting server"
AsServer (port=12321, services=[TaskletController()],RequestHandlerClass=SOAPRequestHandler)

class TaskletController(ServiceSOAPBinding) :
soapAction = {}

root = {}
container = {}
_wsdl = """<?xml version=\"1.0\" 7> .. . """

def __init__(self, post=
ServiceSOAPBinding.

/TaskletScheduler’, *xkw):
init__(self, post)

def setContainer(self,sc):
self.container = sc

def tsksubmit(self, quanta, service, *args):
if service in dir(self):
create the tasklet and use it to wrap service
t = WSTasklet(eval("self.%s" % service)) (*args)
set qos parameters of tasklet
t.setquanta(quanta)
unID = " % (t.getname(), t.getID())
manage scheduling queues
self.container.Tasklets[unicode (unID)] = t
self.container.runningTasklets [unicode (unID)] = t
schedule tasklet fo execution
t.insert()
if back the tasklet has run for a quanta and now is suspended
return [t.getname(), t.getID(), t.getquanta(), "suspended"]
else:
return "\n...no such service %s"

% service

def foo(self, name):

n
while n < 1000000:

n+=1
self._return("Hello " + name)

Fig. 4. Continuation-based service provider implementation in Python

109

