Deriving Software Architectures
from Problem Descriptions

Denis Hatebur and Maritta Heisel
Universitdt Duisburg-Essen
denis.hatebur @uni-duisburg-essen.de, maritta.heisel @uni-duisburg-essen.de

Abstract: We show how software architectures (including interface descriptions) can
be derived from artifacts set up in the analysis phase of the software lifecycle. The
analysis phase consists of six steps, where various models are constructed. Especially,
the software development problem is decomposed into simple subproblems. The mod-
els set up in the analysis phase form the basis for (i) defining software architectures
related to single subproblems, (ii) merging the subproblem architectures to obtain the
overall software architecture, and (iii) to define the interfaces between the compo-
nents of the overall architecture. The approach is based on problem patterns (problem
frames) and the architectural style of layered software architectures.

1 Introduction

Software development problems occurring in practice are mostly complex in nature. Their
solution requires a thorough requirements analysis and a careful design. Requirements
analysis and the development of an appropriate software architecture are closely related
and should be conducted in a systematic way.

In this paper, we present a method to derive software architectures from artifacts that
are set up during the requirements analysis phase of the software lifecycle. That method
makes use of patterns for requirements analysis as well as for developing software ar-
chitectures. Requirements patterns are related to architectural patterns. Furthermore, the
decomposition of complex problems into simpler subproblems plays an important role.
Finally, information about the environment in which the software will operate is taken into
account.

In the following, we describe a model-driven process for requirements analysis that is
based on problem frames [JacO1] in Sect. 2. This process produces a number of artifacts
that can be used to systematically derive a software architecture. Section 3 describes this
derivation. Section 4 describes related work. Section 5 summarizes the contributions of
this paper.

2 Requirements Engineering Using Problem Frames

Our method for deriving software architectures works in connection with a pattern-based
approach to requirements analysis. It makes use of patterns capturing different classes of
software development problems, called problem frames [Jac01].

383

2.1 Problem Frames

Problem frames are a means to describe software development problems. They were in-
vented by Jackson [JacO1], who describes them as follows: “A problem frame is a kind of
pattern. It defines an intuitively identifiable problem class in terms of its context and the
characteristics of its domains, interfaces and requirement.” Problem frames are described
by frame diagrams, which consist of rectangles, a dashed oval, and links between these
(see frame diagram in Fig. 1). All elements of a problem frame diagram act as placehold-
ers which must be instantiated by concrete problems. Doing so, one obtains a problem
description that belongs to a specific problem class.

ETIE1 Y4
WPIY2 Workpieces A
e
Editing I/ Command ‘\
tool ' !
N effects !
USIE3 User =
[B]
E3: wuser commands
El: editing operations
Y2: workpieces status
Y4: workpieces properties

Figure 1: Simple workpieces problem frame

Plain rectangles denote problem domains (that already exist in the application environ-
ment), a rectangle with a double vertical stripe denotes the machine (i.e., the software)
that shall be developed, and requirements are denoted with a dashed oval. The connect-
ing lines between domains represent interfaces that consist of shared phenomena. Shared
phenomena may be events, operation calls, messages, and the like. They are observable by
at least two domains, but controlled by only one domain, as indicated by an exclamation
mark. For example, in Fig. 1 the notation US!E3 means that the phenomena in the set E3
are controlled by the domain User. A dashed line represents a requirements reference. It
means that the domain is mentioned in the requirements description. An arrow at the end
of such a dashed line indicates that the requirements constrain the problem domain. In
Fig. 1, the Wworkpieces domain is constrained, because the Editing tool has the role
to change it on behalf of user commands for achieving the required Command effects.

Each domain in a frame diagram has certain characteristics. In Fig. 1 the x indicates that
the corresponding domain is a lexical domain, and B indicates that a domain is biddable
[JacO1].

Problem frames greatly support developers in analyzing problems to be solved. They show
what domains have to be considered, and what knowledge must be described and reasoned
about when analyzing the problem in depth. Other problem frames besides simple work-
pieces frame are required behaviour, commanded behaviour, information display, and
transformation.

384

After having analyzed the problem, the task of the developer is to construct a machine
based on the problem described via the problem frame that improves the behavior of the
environment it is integrated in, according to its respective requirements.

2.2 Requirements Analysis Method

We use problem frames in a model-driven requirements analysis process. We call that
process model-driven (in contrast to model-based), because the different models are related
to one another. Thus, developing one model “drives” the development of the models to be
set up in subsequent development steps. The process consists of the following six steps. To
illustrate the different steps, we use a vacation rentals application, where users can book
vacation homes via the Internet.

Al Problem elicitation and description

The environment in which the software will operate is described by a context diagram.
The notation of context diagrams is similar to the notation of frame diagrams, but here,
the domains refer to concrete domains in the environment instead of variables, and context
diagrams do not show the requirements'. An example of a context diagram is shown in
Fig. 2. “C” indicates a causal domain. Requirements are expressed in natural language, for
example “A guest can book available holiday offers, which then are reserved until payment
is completed.” In this phase, also domain knowledge is stated, which consists of facts and
assumptions. An example of a fact is that each vacation home can be used by only one
(group of) guests at the same time. An example of an assumption is that each guest either
pays the full amount due or not at all (i.e., partial payments are not considered).

V{Status}
Home

Bl{Payments}

Staff
Member

S!{makeHolidayOffer, recordPayment, browseBookings, rate}

H!{availableHolidayOffer, Bookings
reservedHolidayOffer, paidHolidayOffer}
VRl{makingHolidayOffer, rated, setAvailableHolidayOffer
recordingPayment, bookingHolidayOffer}

Holiday
Offer

VR!{showBookings}

Vacation
Rentals

VRYInvoice,
results}

Gl{payInvoice} GY{browseHolidayOffers, bookHolidayOffer}

Guest
Gl{arrive, leave} B

Figure 2: Context diagram for vacation rentals

A2 Problem decomposition

For decomposing the problem into subproblems, related sets of requirements are identified.
The subproblems should fif fo problem frames, i.e., they should belong to known classes
of software development problems. Fitting a problem to a problem frame is achieved
by instantiating the respective frame diagram. An instantiated frame diagram is called a
problem diagram. An instance of the simple workpieces frame (see Fig. 1) is shown in Fig.

'In [Jac01] context diagrams also do not show the domain types and which domains are in control of shared
phenomena.

385

3. The Editing tool to be implemented is called VR_pay, the Workpieces domain is
instantiated with the domain Holiday Offers, and the domain User is instantiated with
the domain staff Member. The requirement (R06) is “A staff member can record when
a payment is received.” To make the problem diagram more comprehensible, we also
show the relation to the Bank domain, which is not strictly necessary to solve the software

development problem.
Holiday EJaldHoIldayOffer
Offers \\ -
__ (ROB) _:. Payments
recordPaymen;,/‘ T -
Staff .

Figure 3: Instantiated simple workpieces problem frame

H{reservedHolidayOffer}
VR!{recordingPayment}

Bl{Payments}
Sl{recordPayment}

A3 Abstract software specification

Whereas requirements refer to problem domains, specifications describe the machine (i.e.,
the software to be built). Domain knowledge is used to transform requirements into speci-
fications. For more details, see [JZ95]. In our requirements analysis process, specifications
are expressed as UML 2.0 sequence diagrams. These diagrams describe the interaction of
the machine with its environment. Messages from the environment to the machine corre-
spond to operations that must be implemented. These operations will be specified in detail
in Step AS.

Figure 4 shows the abstract specification corresponding to the subproblem shown in Fig. 3.
There is one operation recordPayment to be specified further. Note that often operations
have a return value and that the specifications corresponding to a subproblem may contain
more than one operation. However, abstract specifications do not contain any technical
details like GUI interactions.

X

Staff Member l Vacation Rentals] l Holiday Offer
T

sd Pay J

|
{HOreserved AND
“HOpaid}

recordPayment

recordingPayment

! |

{HOreserved AND H

HOpaid} :
1

1

Figure 4: Abstract specification for Pay subproblem
A4 Technical software specification

In this step, the technical infrastructure in which the machine will be embedded is spec-
ified. For example, a web application may use the Apache web server. The result is a

386

technical context diagram, which refines the context diagram of Step Al by specifying
the technical means used by the machine for communicating with its environment. The
technical context diagram for the vacation rentals example is given in Fig. 5.

SMTP i POP3 T
Mail Server VR leuiztwer ——— MaiClient MU e
c c c B
Guest_Ul
G Web —

Holiday Vacation |Apache API Apache |[HTTP| SMWeb | SM_UI Staff
Offer Rentals P Browser Member
sQL c c B

Cmds

Figure 5: Technical context diagram

In the technical context diagram, the problem-related phenomena like recordPayment are
mapped to technical phenomena like HTTP statements that are usually described by refer-
ence to an API description or a standard.

AS Operations and data specification

In this step, the operations identified in Step A3 are specified in detail, using pre- and
postconditions. The specification format is taken from the Fusion method [CABT94].
Furthermore, the internal data structures to be used by the machine are specified now.
Messages from the machine to its environment are specified using a sends clause. This
information will be used for specifying interfaces of the software architecture to be defined
in the design phase (see Sect. 3).

A6 Software life-cycle

In the final analysis phase, the overall behavior of the machine is specified. The name
“life-cycle model” is again taken from the Fusion method [CAB™94]. In particular, the re-
lation between the sequence diagrams associated to the different subproblems is expressed
explicitly. Sequence diagrams can be related sequentially, by alternative, or in parallel.

3 Deriving a Software Architecture

Conducting requirements analysis according to the process described in Sect. 2.2 brings
considerable advantages for developing the software architecture that expresses the coarse-
grained structure of the machine: (i) Using problem frame makes it possible to obtain a
candidate architecture for each subproblem by instantiating an architectural pattern. (ii)
These subproblem architectures can be combined by applying a set of straightforward
rules. (iii) A large part of the interface descriptions can be derived from the artifacts set up
in the analysis phase.

3.1 Architectural Patterns for Problem Frames

For each problem frame, we have defined an architectural pattern for a software archi-
tecture that is suitable to solve the kind problem described by the respective problem
frame [CHHOS]. These patterns describe what components are necessary and how they
are connected. They follow the layered architectural style. Of course, also other kinds

387

architectures may be used to solve the problems obtained in the analysis phase; however,
the proposed architectural patterns provide an easy way to obtain a workable solution.

The architectural pattern for the simple workpieces frame is shown in Fig. 6, together
with its corresponding instance for the Pay subproblem. The application component is
responsible to implement the overall functionality. All of our architectural patterns contain
an application component. The user interface component consists of an adapter for a
physical input device and an adapter for a (physical) display. The data storage component
may for example be a database or a file. An adapter may be necessary for example to map
editing operations (see Fig. 1) to SQL commands.

Editing Tool) VR_pay)
Application VR_Application
1 1 1 1
i E3_if iE1_Y2_if iSCmds ilHolidayOffer
L LI LI L
User Storage Adapter Staff Member HO Adapter
Interface E1_Y2_jf” Interface
L L
Storage Holiday Offer
1 1
E3_if” \ iApache API ‘\
L L
User (E3) \ Staff Member (E3) \
Workpieces (E1, Y2) Workpieces (E1, Y2)

Figure 6: Architectural pattern for simple workpieces problem frame and instantiation for Pay sub-
problem

3.2 Merging Subproblem Architectures

If the subproblems set up in Phase A2 of our requirements analysis process fit to problem
frames, then a suitable software architecture for a subproblem can be obtained by simple
instantiation of the corresponding architectural pattern. From these subproblem architec-
tures, the architecture of the overall machine must be derived by an appropriate merge.
The crucial point of this step is to decide if two components contained in different sub-
problem architectures should occur only once in the global architecture, i.e., if they should
be merged. To decide this question, we make use of the information expressed in Step A6.
Adapters and storage components belonging to the same physical device or data storage
are merged. User interfaces are merged if they belong to the same user role. Application
components belonging to sequential or alternative subproblems should be merged. Ap-
plication components belonging to parallel subproblems should be merged if they share
output phenomena; they should be kept separately, if the share neither input nor output
phenomena; if they share input phenomena but no output phenomena, they can either be
merged, or the input can be duplicated and the application components remain separate.
These rules are described in more detail in [CHHOG6]. The overall software architecture for
the vacation rentals problem is shown in Fig. 7.

388

VacationRentals

VacationRentalsApplication

]

Z z 1
GCmds SCmds J\ Invoice
IHolidayOffer I I I

LT

Check

Hpn®)
[(—O—1]

DB Adapter : Timer
eMail Adapter
— Guest Staff
Interface Member —
SQLCmds [0..7] Inteﬁrface IModuIAPI
LT 0.7 il
Holiday Offer
(Driver + DBMS) SMTP Client
i
ApacheAPI ; - ApacheAP! SMTF’I
LT -
APa‘Che eMail Server
Staff Member / Guest Guest

Figure 7: Overall software architecture for vacation rentals

3.3 Defining Interfaces of the Software Architecture

Using the techniques described in Sections 3.1 and 3.2, we obtain the structure of the
machine to be built in terms of the necessary components. However, these components
must be connected via interfaces, and these interfaces must also be described. For this
purpose, we make use of the artifacts set up during the analysis process. Figure 8 shows
the sources of information that can be used to define the respective interfaces.

skeleton

is_sent clauses [1achine) | — from problem
from operation diagrams and
| ional
model (optional) \\A@caﬂon ‘ messages
il ™ Il Il in sequence
. g% T~ — g diagrams
operations
from ~——Linternal
operation / operations
is_sent crlglﬁggls’ = - . oy from
ey be as User ‘ AdeEter ‘ ‘ DB Aiapter ‘ ‘ Timer ‘ operation
return values model
Interface j j
/
APlof | | — | L 2
o] - HAL oomponenl Data Base [—machine
reuse —.
HAL component :K ;r:;i:faces
LT LT i
technical
User Hardware

context diagram

Figure 8: Merged software architecture with interface information

The low-level interfaces (belonging to the lowest, i.e., most technical, layer of the archi-
tecture) can be obtained from the technical context diagram set up in Phase A4. The con-
nection to hardware is achieved using a driver that is mostly delivered with the hardware
itself. This driver is called hardware abstraction layer (HAL). Drivers are often re-used
components, and therefore their interfaces provided to the adapters are usually given.

389

The interfaces of the application component should mostly correspond to high-level phe-
nomena, as they are used in the context diagram (Phase A1) and the abstract specifications
(Phase A3). The communication between users and the machine is usually bi-directional.
The provided interface of the application domain connected to the user interface contains
the operations identified in Phase A3 and specified in detail in Phase AS5. The messages
sent from the machine to its environment (defined by sends-clauses in Phase A5) may ei-
ther correspond to return values of operations or to messages / operations contained in a
required interface of the application that is connected to a provided interface of the user
interface component.

If the machine sends signals to some hardware, then these signals are contained in a re-
quired interface of the application component, connected to an adapter component. If the
machine receives signals from some hardware, then these signals are contained in a pro-
vided interface of the application component, connected to an adapter component. (This
case is not shown in Fig. 8). In both cases, the interfaces of the application component
with hardware adapters contain phenomena that are specified in the context diagram of
Phase Al.

Storage or database components correspond to lexical domains. Therefore, such com-
ponents are passive and thus only have provided interfaces, as shown in Fig. 8. The
operations contained in these interfaces include the phenomena contained in the context
diagram and the messages sent from the machine to the respective lexical domain as spec-
ified in the sequence diagrams of Phase A3. Since the phenomena in the context diagram
contain no parameters, some refinement may be necessary.

It may be required that the machine initiates some actions, for example sending out account
statements to customers each month. Such an action corresponds to an internal operation,
because it is not triggered from the environment. To implement internal operations, a timer
component is necessary. The description of the internal operation as specified in Step A5
provides the information that is necessary to set up the interface between the timer and the
application. As is visible in Fig. 8, the artifacts set up in the analysis phase provide enough
information to define the interfaces of the software architecture almost completely.

4 Related Work

Since our approach heavily relies on the usage of patterns, our work is related to research
on problem frames and architectural styles. However, we are not aware of similar methods
that provide such a detailed guidance for developing software architectures as the method
described in this paper.

Aiming to integrate problem frames in a formal development process, Choppy and Reggio
[CROO] show how a formal specification skeleton may be associated with some problem
frames. Choppy and Heisel show that this idea is independent of concrete specification lan-
guages [CHO3, CHO4]. They also give heuristics for the transition from problem frames to
architectural styles. In [CHO3], they give criteria for (i) helping to select an appropriate ba-
sic problem frame, and (ii) choosing between architectural styles that could be associated
with a given problem frame. In [CHO4], a proposal for the development of information
systems is given using update or query problem frames. A component-based architecture
reflecting the repository architectural style is used for the design and integration of the

390

different system parts. In [CHHOS5] a systematic proposal for architectural patterns associ-
ated with basic problem frames is given. The UML 2 composite structure notation allows
one to express interfaces, and the problem frames phenomena are systematically taken into
account.

The approach developed by Hall, Rapanotti et al. [HIL*T02, RHINO4] is quite comple-
mentary to ours, since the idea developed there is to introduce architectural concepts into
problem frames (introducing “AFrames”) so as to benefit from existing architectures. In
[HJL™02], the applicability of problem frames is extended to include domains with ex-
isting architectural support, and to allow both for an annotated machine domain, and for
annotations to discharge the frame concern. In [RHINO4], “AFrames” are presented cor-
responding to the architectural styles Pipe-and-Filter and Model-View-Controller (MVC),
and applied to transformation and control problems.

Barroca et al. [BFJT04] extend the problem frame approach with coordination concepts.
This leads to a description of coordination interfaces in terms of services and events (re-
ferred to respectively here as actuators and sensors) together with required properties, and
the use of coordination rules to describe the machine behavior.

5 Conclusions

We have shown that software architectures can be developed in a routine way, starting
from a rigorous model-driven requirements analysis process. The techniques described
in Sections 3.1 and 3.2 have been published before. The requirements analysis process
described in Section 2.2, however, is new and has not been published previously. It differs
from the process described in [CHHO6] especially by introduction of the technical context
diagram in Phase A4 and the operation model in Phase AS. These two artifacts make it
possible to derive not only the components of a software architecture in a systematic way,
but also its interfaces. Thus, the procedure described in Section 3.3 is also new.

As for the applicability of the method, we do not see any principal limitations. Even
non-functional requirements such as security or usability can be treated in a similar way
[HHS06, WS06]. However, the described approach does not cover the deployment view
on the software to be developed. Hence, in its current form it is best suited for “single-
host” software. However, the method could be enhanced to cover the deployment view,
too.

Since the method is quite systematic, tool support for its application is envisaged. Cur-
rently, we mostly use standard UML tools. As a first step towards specialized tool support,
we have implemented a first prototype that allows to define and semantically check prob-
lem frames [HHSOS].

Tool support and a further completion of the method (e.g., by integrating deployment
views) are subject of future work.

References

[BFJT04] Leonor Barroca, José Luiz Fiadeiro, Michael Jackson, Robin C. Laney, and Bashar Nu-
seibeh. Problem Frames: A Case for Coordination. In Rocco De Nicola, Gian Luigi

391

[CABT94]

[CHO3]

[CHO4]

[CHHOS5]

[CHHO6]

[CROO]

[HHS06]

[HHSO08]

[HILT02]

[JacO1]

[JZ295]

[RHINO4]

[WS06]

Ferrari, and Greg Meredith, editors, Coordination Models and Languages, 6th Interna-
tional Conference, COORDINATION 2004, Pisa, Italy, February 24-27, 2004, Proceed-
ings, pages 5-19, 2004.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes.
Object-Oriented Development: The Fusion Method. Prentice Hall, 1994. (out of print).

Christine Choppy and Maritta Heisel. Use of Patterns in Formal Development: System-
atic Transition From Problems to Architectural Designs. In M. Wirsing, R. Hennicker,
and D. Pattinson, editors, Recent Trends in Algebraic Development Techniques, 16th
WADT, Selected Papers, LNCS 2755, pages 205-220. Springer Verlag, 2003.

Christine Choppy and Maritta Heisel. Une approache a base de “patrons” pour la
spécification et le développement de systemes d’information. In Proceedings Approches
Formelles dans I’ Assistance au Développement de Logiciels - AFADL 2004, pages 61—
76, 2004.

C. Choppy, D. Hatebur, and M. Heisel. Architectural Patterns for Problem Frames. /IEE
Proceedings — Software, Special Issue on Relating Software Requirements and Archi-
tectures, 152(4):198-208, 2005.

C. Choppy, D. Hatebur, and M. Heisel. Component composition through architectural
patterns for problem frames. In Proc. XIII Asia Pacific Software Engineering Confer-
ence, pages 27-34. IEEE Computer Society, 2006.

Christine Choppy and Gianna Reggio. Using CASL to Specify the Requirements
and the Design: A Problem Specific Approach. In D. Bert, C. Choppy, and
P. D. Mosses, editors, Recent Trends in Algebraic Development Techniques, 14th
WADT, Selected Papers, LNCS 1827, pages 104—-123. Springer Verlag, 2000. see:
ftp://ftp.disi.unige.it/person/ReggioG/ ChoppyReggio99a.ps.

Denis Hatebur, Maritta Heisel, and Holger Schmidt. Security Engineering using Prob-
lem Frames. In Giinter Miiller, editor, Proc. International Conference on Emerg-
ing Trends in Information and Communication Security, LNCS 3995, pages 238-253.
Springer-Verlag, 2006.

Denis Hatebur, Maritta Heisel, and Holger Schmidt. A Formal Metamodel for Problem
Frames. In Proceedings of the International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS), volume 5301, pages 68—82. Springer Berlin /
Heidelberg, 2008.

Jon G. Hall, Michael Jackson, Robin C. Laney, Bashar Nuseibeh, and Lucia Rapan-
otti. Relating Software Requirements and Architectures using Problem Frames. In Pro-
ceedings of IEEE International Requirements Engineering Conference (RE’02), Essen,
Germany, 9-13 September 2002.

M. Jackson. Problem Frames. Analyzing and structuring software development prob-
lems. Addison-Wesley, 2001.

M. Jackson and P. Zave. Deriving Specifications from Requirements: an Example. In
Proc. 17th Int. Conf. on Software Engineering, Seattle, USA, pages 15-24. ACM Press,
1995.

Lucia Rapanotti, Jon G. Hall, Michael Jackson, and Bashar Nuseibeh. Architecture
Driven Problem Decomposition. In Proceedings of 12th IEEE International Require-
ments Engineering Conference (RE’04), Kyoto, Japan, 6-10 September 2004.

Ina Wentzlaff and Markus Specker. Pattern-based Development of User-Friendly Web
Applications. In Workshop Proceedings of the 6th International Conference on Web
Engineering (ICWE’06), New York, USA, 2006. ACM Press.

392

