The Multiparadigm Programming Language CCFL

Petra Hofstedt

hofstedt @informatik.tu-cottbus.de
Brandenburg University of Technology Cottbus

Abstract: Constraints support an efficient modeling and solution of problems in two
ways: The most common application is their use for the description of problems with
incomplete knowledge. On the other hand constraints may also serve as particular
language constructs for the control of the program evaluation process. This paper
presents the Concurrent Constraint Functional Language CCFL which comprises both
aspects.

Real-world problems comprise aspects from several realms. They are, thus, often best
implemented by a combination of concepts from different paradigms. This combination is
comfortably realised by multiparadigm programming languages, an area of research and
application which has attracted increased interest in the recent years.

The Concurrent Constraint Functional Language CCFL is a multiparadigm programming
language which combines concepts and constructs from the functional and the constraint-
based paradigms. The language enables the description of deterministic computations
using a functional programming style and of non-deterministic behaviour based on con-
straints. Moreover, constraints are used to describe systems of concurrent cooperating
processes and even typical parallelization patterns. We discuss language concepts and
applications by means of examples.

1 Functional Programming

In cCFL, functions are used to express deterministic computations. CCFL’s functional sub-
language inherits notions and concepts from the functional languages HASKELL and OPAL
[Opa04, PHOG6]. It is a lazy language with polymorphic type system. A function consists of
a type declaration and a definition allowing the typical constructs such as case-expressions,
let-expressions, function application, and some predefined infix operator applications, con-
stants, variables, and constructor terms.

Free Variables In CCFL, expressions are allowed to contain free variables; this also
applies to function applications. Function applications with free variables are evaluated
using the residuation principle [Smo93], that is, function calls are suspended until the
variables are bound to expressions such that a deterministic reduction is possible. For
example, a function call (4 + x) with free variable x will suspend. In contrast, a com-

699



putation length [1,x,3,2,y] of the length of a list containing free variables x and y is
possible because a concrete binding of these variables is not necessary to proceed with the
evaluation.

2 Constraint abstractions

Besides for the constraint-based problem description, user-defined constraints (or con-
straint abstractions) serve two further important purposes: dealing with non-determinism
and expressing concurrent computations. We sketch on both in this section.

A constraint abstraction consists of a head and a body which may contain the same ele-
ments as a function definition. Additionally, the body can be defined by several alternatives
the choice of which is decided by guards, i.e. ask-constraints. Each body alternative is a
conjunction of fell-constraints. A constraint (abstraction) always has result type C.

ask- and tell-constraints Within a CCFL rule constraints may have two functionalities:
tell-constraints generate concurrently working processes which propagate knowledge in
form of variable bindings (or constraints in general). These processes communicate over
common variables. In contrast, ask-constraints do not generate knowledge but check for
concrete variable bindings or constraints. ask-constraints control the choice of (potentially
competing) rules and, thus, allow to express the synchronization of concurrently working
processes on the one hand and non-deterministic computations on the other hand.

Example 2.1 Consider the user-defined constraint game in Prog. 2.1 which describes a
game between two players. For example, a constraint application game x y 10 initiates a
game where both players throw the dice 10 times each and they reach the overall values x
and y, resp.

The expression dice x1 & dice y1 & ... & game x2 y2 (m—1) in lines 5-7 consists of
conjunctively connected tell-constraints and they express the rules of the game.

Guards with ask-constraints can be found e.g. in the membe r-constraint (lines 14 and 15)
and they realize the non-determinism in this program as discussed below.

Concurrent Processes CCFL allows the description of systems of communicating and
cooperating processes. The main idea is to express concurrent processes by means of
conjunctions of fell-constraints.

The constraints in the body of the rules are tell-constraints. They create processes which
may compute bindings for the incorporated variables. Several fe/l-constraints combined by
the &-combinator (as in Prog. 2.1, lines 5-7) generate an according number of processes
and these communicate over common variables. fell-constraints are either applications
of user-defined constraints (e.g. dice x1) or they are equality constraints x =:= fexpr
between a variable x and a functional expression fexpr (e.g. x =:= x1 + x2).

700



Program 2.1 A simple game of dice

1 fun game :: Int — Int — Int — C

2 def game x y n =

3 case n of 0 - x == 0& y == 0 ;

4 m — with x1, yl1, x2, y2 :: Int

5 in dice x1 & dice yl &

6 x == x1 + x2 & y ==yl + y2 &
7 game x2 y2 (m—1)

8

9 fun dice :: Int — C
10 def dice x = member [1,2,3,4,5,6] x
11

12 fun member :: List a — a — C

13 def member 1 x =

14 1 == y:ys —» x == y |

15 ]l == y:ys — case ys of [] — x ==y ;

16 z:zs — member ys X

Equality constraints are interpreted as strict. That is, the constraint s =:= t is satisfied,
if both expressions can be reduced to the same ground data term [HABT06]. While a
satisfiable equality constraint x =:= fexpr produces a binding of the variable x to the

functional expression fexpr and terminates with result value Success, an unsatisfiable
equality is reduced to the value Fail representing an unsuccessful computation.

Non-deterministic Computations The atoms of the guard of a user-defined constraint
are ask-constraints. If a guard of a rule with matching left-hand side is entailed by the
current accumulated bindings and constraints, the concerning rule alternative may be cho-
sen for further derivation. In case that the guard fails or cannot be decided yet, this rule
alternative is suspended. If all rule alternatives suspend, the computation waits (possibly
infinitely) for a sufficient instantiation of the concerning variables.

Example 2.2 Consider the member-constraint in Prog. 2.1. The ask-constraints
(lines 14, 15) of the guards of both alternatives are the same, i.e. 1 =:= y : ys, while
the bodies differ. Thus, the evaluation of a constraint member [y1,y3,...,yn] X nON-
deterministically generates a constraint which binds the variable x to one list element

Yi-

For ask-constraints, we distinguish between bound-constraints bound x checking,
whether a variable x is bound to a non-variable term (not used in our examples), and
match-constraints x =:= d xj...x, which test for a matching of the root symbol of a term
bound to the variable x with a certain constructor d. The variables x;. . .x,, are fresh.

Example 2.3 For Prog. 2.1 the constraint abstraction member is the only source of non-

701



Program 3.1 Functional map and constraint-based farm

1 fun map :: (a — b) — List a — List b

2 def map f 1 =

3 case 1 of [] - 11;

4 x . xs — (f x) : (map f xs)

5

6 fun farm :: (a — b) — List a — List b — C

7 def farm f 1 r =

8 case 1 of |[] — r == [];

9 x ! xs — with rs :: List b

10 in r == (f x) : rs & farm f xs rs

determinism. It non-deterministically chooses a value from a list such that a constraint ap-
plication dice x calling the membe r-constraint simulates the dice. The tell-constraints
dice x1 and dice y1 (line 5) produce values which are consumed by the equality con-
straints x =:= x1 + x2 and y =:= y1 + y2, resp. Note that their computation is sus-
pended until the arguments are (sufficiently) instantiated to apply the built-in arithmetic
function +.

3 Parallel Programming

The differentiation between functions as computational core and constraints as coordina-
tional core of CCFL allows an explicit control of concurrency and even to express typical
parallelization schemes. The following examples are taken from [HL09].

Example 3.1 Consider Prog. 3.1 defining a function map and a constraint abstraction
farm. Both have the same general structure, i.e. a function £ is applied to every ele-
ment of a given list 1 and the results are composed into a new list. However, there is
one fundamental difference: Since map is a function, it is evaluated sequentially. In con-
trast, farmis a user-defined constraint. Its evaluation yields two concurrently working
processes generated from the constraint conjunction in line 10.

While this uncontrolled form of parallelization as demonstrated in Example 3.1 may yield
a huge number of, possibly computationally light-weight, concurrent processes, a selective
control of the degree of parallelization of computations is possible in CCFL, too.

Example 3.2 Prog. 3.2 shows a data parallel farm skeleton p farmwith granularity con-
trol. Here, the number of processing elements noPE determines the number of generated
processes. The abstraction pfarm calls nfarm which splits the list to be processed into
noPE sub-lists and generates an according number of processes for list processing. These
are distributed across the parallel computing nodes by the run-time system of CCFL.

702



Program 3.2 Farm parallelization patterns

1 fun nfarm :: Int — (a — b) — List a — List b — C
2 def nfarm n f 1 r =

3 with rs :: List (List b)

4 in let parts = partition n 1;

5 pf = map f

6 in farm pf parts rs & r =:= concat rs

7

8 fun pfarm :: (a — b) — List a — List b — C

9 def pfarm f 1 r = nfarm noPE f 1 r

CCFL does not feature specialized data structures to support data parallelism in contrast
to other approaches [CLI*T07, Nit05]. Instead, the user provides a regular splitting of
the data structure controlling the granularity of parallelism in this way', while the run-
time system is responsible for an equitable distribution of the data (and tasks) onto the
processing nodes. Thus, the step from data to task parallel skeletons is smooth in CCFL.

More examples, in particular on parallel processing, and a brief sketch of semantics and
implementation details (including further references) of our language can be found in the
extended version of this paper (attached to the proceedings and in electronic form).

4 Conclusion

Constraints support an efficient modelling and solution of problems in two forms: First,
they are used to model and solve problems with incomplete knowledge. But secondly,
they also allow to guide the program evaluation process. The multiparadigm programming
language CCFL presented in this paper comprises both aspects. It is a successful approach
on the integration of the functional and constraint-based paradigms allowing a comfortable
modelling of systems of concurrent processes and typical parallelization patterns on the
one hand, and of deterministic and non-deterministic behavior on the other hand.

Related Work GOFFIN [CGKL98] is a constraint functional language with a similar
structure like CCFL. However, there are fundamental differences, e.g. in the nature of
constraint abstractions, the ask-constraint’s functionalities, and in expressing parallelism.
Moreover, in [Hof09] we discuss the extension of CCFL by e.g. arithmetic constraints.

Concentrating on functional programming approaches, there are, e.g. the functional lan-
guages EDEN [LOMPO5] and ERLANG [AVWWO07] which, similar to CCFL, allow concur-
rent computation of processes. However, both use explicit notions for the generation of

I'Thus, in our approach the number of processing elements noPE plays a role not only in the machine space
but also on the level of the problem description.

703



processes and their communication. CONCURRENT HASKELL [PGF96] supports threads
via the IO monad. DATA PARALLEL HASKELL [CLJT07] targets multicore architectures
and allows nested data-parallel programming based on a built-in type of parallel arrays.

Acknowledgment This work has been partially supported by a postdoctoral fellowship
of the author, No. PE 07542, from the Japan Society for the Promotion of Science (JSPS).

References

[AVWWO7] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams. Concurrent Programming

[CGKL98]

[CLIT07]

[HAB06]

[HLO9]

[Hof09]

[LOMPO5]

[Nit05]

[Opa04]

[PGF96]

[PHO6]

[Smo093]

in Erlang. Prentice Hall, 2nd edition, 2007.

M.M.T. Chakravarty, Y. Guo, M. Kohler, and H.C.R. Lock. GOFFIN: Higher-Order
Functions Meet Concurrent Constraints. Science of Computer Programming, 30(1-
2):157-199, 1998.

M.M.T. Chakravarty, R. Leshchinskiy, S.L. Peyton Jones, G. Keller, and S. Marlow.
Data Parallel Haskell: A status report. In Workshop on Declarative Aspects of Multi-
core Programming — DAMP, pages 10-18. ACM, 2007.

M. Hanus, S. Antoy, B. Brafiel, H. Kuchen, F.J. Lopez-Fraguas, W. Lux, J.J. Moreno
Navarro, and F. Steiner. Curry: An Integrated Functional Logic Language. Technical
report, 2006. Version 0.8.2 of March 28, 2006.

P. Hofstedt and F. Lorenzen. Constraint Functional Multicore Programming. In S. Fis-
cher, E. Maehle, and R. Reischuk, editors, Informatik 2009. GI Jahrestagung, volume
154 of Lecture Notes in Informatics (LNI), pages 367, 2901-2915. GI, 2009.

P. Hofstedt. Multiparadigm Constraint Programming Languages, 2009. Habilitation
thesis. Technische Universitit Berlin.

R. Loogen, Y. Ortega-Mallén, and R. Pefa. Parallel Functional Programming in Eden.
Journal of Functional Programming, 15(3):431-475, 2005.

T. Nitsche. Data Distribution and Communication Management for Parallel Systems.
PhD thesis, Technische Universitit Berlin, 2005.

The OPAL Project. http://uebb.cs.tu-berlin.de/~opal/, 2004. last
visited 2010-04-24.

S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Principles of Pro-
gramming Languages — POPL, pages 295-308, 1996.

P. Pepper and P. Hofstedt. Funktionale Programmierung: Sprachdesign und Program-
miertechnik. Springer, 2006.

G. Smolka. Residuation and Guarded Rules for Constraint Logic Programming. In
Frédéric Benhamou and Alain Colmerauer, editors, Constraint Logic Programming.
Selected Research, pages 405—419. The MIT Press, 1993.

704



