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Abstract: The random waypoint model is a frequently used mobility model
for simulation—based studies of wireless ad hoc networks. This paper inves-
tigates the spatial node distribution that results from using this model. We
show and interpret simulation results on a square and circular system area,
derive an analytical expression of the expected node distribution in one di-
mension, and give an approximation for the two—dimensional case. Finally,
the concept of attraction areas and a modified random waypoint model, the
random borderpoint model, is analyzed by simulation.

1 Introduction and Motivation

Ad hoc networks are self-organizing wireless communication systems that are
formed by co—operating electronic devices (e.g., mobile computers, mobile phones,
personal digital assistants, sensors). Such networks operate in a decentralized man-
ner and do not rely on fixed network infrastructure. In general, all communication
is wireless, and all stations may be mobile.

The modeling of the movement behavior of the stations is an important building
block in simulation—based studies of mobile ad hoc networks. Mobility models are
needed in the evaluation of protocols for medium access, power management, leader
election, routing, and so on. The choice of the mobility model and its parameters
has a significant influence on the obtained simulation results.

Researchers in this area can choose from a variety of models, which have been devel-
oped in the wireless communications and mobile computing community during the
last decades (see e.g. [Gué87][MLTS97]|[ZD97][HGPC99|[Bet01]). Also well-known
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motion models from physics and chemistry, such as random walks or Brownian mo-
tion, and models from other engineering disciplines, such as transportation theory
[Hei89][BHO0], are used in simulations of mobile ad hoc networks. Surveys and
classifications on this topic can be found in [Bet01], [ZD97], and [LCW97].

A very popular and frequently used mobility model in ad hoc networking research
is the random waypoint model (see e.g. [BMJT98][RP99][DPRO0][HV99]). Tt is a
simple and straightforward stochastic model that describes the movement behavior
of a mobile network node in a two—dimensional system area as follows: A node
randomly chooses a destination point in the area and moves with constant speed
to this point. After waiting a certain pause time, it chooses a new destination,
moves to this destination, and so on.

In a previous paper [Bet01], we noted that it is important to realize that the choice
of the mobility model determines the resulting spatial node distribution during
simulation. Although the initial positioning of the nodes is typically taken from
a uniform distribution, the mobility model may change this distribution during
simulation. This behavior usually occurs if the simulation area has borders. If
we are not aware of how the used mobility model changes the node distribution,
simulation results may be misinterpreted. This paper continues our research on
this topic.

Our contributions are as follows: In Section 2, we analyze the random waypoint
model in a typical simulation environment. The resulting spatial node distribution
is shown for a square and a circular simulation plane. We explain why this par-
ticular, non—uniform distribution results and discuss the parameters influencing its
shape. In Section 3, we outline the disadvantages and pitfalls of inhomogeneous
node distributions in typical simulations of ad hoc and cellular networks. Section 4
derives an analytical equation for the node distribution of the random waypoint
model in one dimension and verifies this formula by simulation. These results are
then employed in Section 5 to give an analytical approximation of the distribution
in two dimensions. The concept of “attraction areas” is considered in Section 6;
and a modified random waypoint model, in which the destination points are only
located at the borders of the area, is investigated in Section 7. Section 8 concludes
this paper and outlines topics for further research.

2 Simulation—Based Study of the Node Distribution

In order to evaluate the spatial distribution of mobile stations that move according
to the random waypoint model, we perform the following simulation: A node is
randomly positioned on a 1000 x 1000 m? system area. A uniform random generator
[MNO8] chooses the z and y coordinates of a destination point; the node moves
with constant speed v to this destination, randomly chooses a new destination
(uniformly distributed), and so on. The time that the node takes to move from a
starting position to its next destination is denoted as one movement epoch. Without
loss of generality, we set the pause time in the destination point to zero.
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Figure 1: Spatial node distribution resulting from the random waypoint mobility
model: Simulation results

As the node moves around during simulation, we always trace its current position.
To do so, we divide the entire area into square cells of size 20 x 20 m2. Each
cell is represented in a two—dimensional 50 x 50 histogram h(&,;¢), with &, ¢ €
{0,1,...49} and simulation time ¢. For each movement epoch, the duration of
how long the node stays in a particular cell (the “dwell time”) is added to the
respective field in the histogram. Since the node moves with constant speed, the
dwell time is directly proportional to the distance that the node covers in this cell.
The simulation ends after 20 - 106 movement epochs, which yields an acceptable
confidence interval of the results. Finally, the histogram is normalized with the
total movement time and the size of the cells, such that its volume is 1. Figure la
shows the resulting normalized distribution h(z,y) and contour lines for certain
occurrence values. After elimination of transient effects at the beginning of the
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simulation, the distribution remains stable for long simulation times. We make the
following observations and discuss them:

The distribution has a peak in the middle of the area, i.e., a node is most likely
to be found in the central cells of the simulation area (z, y € [480 m, 520 m]).
The probability that a node is located at the border of the area goes to zero.
Furthermore, the distribution is symmetric in all four axis directions from the
center.

The reason for this inhomogeneous distribution is obvious: In order to set the
direction of a node, the random waypoint model chooses a uniformly distributed
destination point (x4, yq), rather than a uniformly distributed angle ¢ € [0, 27[.
Therefore, nodes located at the border of the simulation area are very likely to
move back toward the middle of the area. For example, a node located at (z, y) =
(100 m, 100 m) chooses with much higher probability a new destination point in
the direction ¢ €]0, 5[ than a point toward a border or the edge, i.e., p €]7, 27[.
Most likely, it chooses a destination point that requires the node to pass the middle
of the simulation area; in this example, ¢ = 7.

Let us regard the inner contour line of Fig. 1a. Its shape can be approximated by
a circle of radius 130 m around the middle. From the value of the contour line
(2-1075) we can state that a node is located more than 2 -107¢ - 13027 = 11%
of its simulation time within this disc, while the disc covers only about 5% of the
entire simulation area.

A simulation with a higher node speed v yields the same normalized histogram
h(x,y); the shape of the distribution only depends on the size and shape of the
simulation area and the distribution of the destination points.

We repeat our experiment in a circular simulation area of radius r, = 500 m
around the point (z, y) = (500 m, 500 m). The resulting distribution is shown in
Figure 1b. A similar qualitative behavior as in the square case can be observed. In
addition, the distribution is now circular symmetrical, i.e., the occurrence of a node
only depends on the distance r from the center and not on its position angle ¢, i.e.,
h(r,¢) = h(r), with the polar coordinates r = y/(z — 500 m)2 + (y — 500 m)2 and
¢ = arctan(¥£=2001) " (Note that the current polar coordinate ¢ of a node and its

z—500 1M
current movement direction ¢ are different parameters.)

Regarding the second contour line from the maximum (at a distance of ro = 250m),
we can say that a node is located at least 39% of its simulation time within this
disc (21075 - 737 = 0.39), although the disc covers only 25% of the total area.

3 Consequences of Inhomogeneous Node Distributions

Let us now discuss why these observations are of particular importance. Before we
consider mobile ad hoc networks, let us imagine that we evaluate the call blocking
and call dropping rates in an F/TDMA cellular network (see, e.g., [Lin97]). Such
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a simulation can be performed, for example, to plan the radio resources of a GSM
network. We assume that the entire simulation area is divided into cells of equal
size, and each cell has been assigned an equal and fixed (or quasi—static) number of
channels. If a new call of a user does not obtain a channel, the call will be blocked.
If an ongoing call of a mobile user that changes its cell cannot be handed over
to the new cell (because there is no channel available), the call must be dropped.
If we use the random waypoint model in this simulation—based study, we will (in
the mean) always achieve a higher call blocking and dropping rate in the center
cells, because here the user density is the highest. A similar situation occurs in an
evaluation of dynamic channel assignment algorithms: We will need (in the mean)
a higher number of channels in the middle of the area. If we are not aware that
this phenomenon is a consequence of the mobility model, we may misinterpret the
results and draw wrong conclusions.

Also in simulations of mobile ad hoc networks, an inhomogeneous node distribution
is often not convenient and may create a pitfall. For example, if more nodes
are located in the middle, these nodes have on average a higher “connectivity
degree” than nodes at the border, even if a toroidal distance metric [BK01] is used
that avoids other border effects. This has a major consequence, for example, in
evaluations of distributed power control algorithms. Most important, however, is
that several theoretical and analytical investigations of ad hoc networks assume a
random uniform distribution of the nodes (see, e.g., work on the capacity of ad hoc
networks [GK00a][GKO00b]). Results obtained in simulations that use the random
waypoint model cannot be compared (or proven) with these investigations.

Our observations do mot mean that the random waypoint model is inappropriate
for simulations; maybe it even models movement effects and user distributions of
real life better than other models do. However, it does mean that researchers must
be aware of the node distribution of this model, in order to draw correct conclusions
from simulation results.

4 Analytical Derivation of the Distribution in 1 Dimension

Having seen the spatial node distribution from a simulation, our aim is now to cal-
culate this distribution for a given system area. We first consider a one-dimensional
random waypoint movement as illustrated in Figure 2a.

4.1 Problem Statement

At time ¢t = 0, a node is positioned at a location s on a finite line [—xy,, ).
It randomly chooses a destination point x4 on this line and moves with constant
speed v to this point. From this point, it chooses a new destination point x4, and
so on. As in the two-dimensional case, the time from a starting position zs to
the next destination x4 is denoted as one movement epoch. The length of a given
epoch i is Az(i) = |z4(i) — x4(7)|. The speed v of the node remains constant during
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Figure 2: One—dimensional random movement processes

the entire movement procedure (not just within one movement epoch), and there
is no pause time in the destination points. Therefore, the duration of an epoch
iis At(i) = AxT(i). Typically, the destination points are taken from a uniform
distribution, i.e.,

1

Fratea) ={ 37

for — < <

PR »
Since a destination point of the current movement epoch is the starting point x,
for the next epoch, the starting points are also uniformly distributed between —x,,

and x,,, i.e.,
1

fXS (.’L‘g) = { 81,,"

fOI‘ — Tm S Ts S Tm

(2)

else

This movement model can be described as a stochastic process. Let the continuous
random variable X (¢t) denote the location of a node, which moves according to
the random waypoint model, at a given time ¢. The value range of X is given by
X € [—zm, Tm)-

In the following, our goal is to derive the probability density function (PDF) fx(x),
assuming that the movement process continues for a very long time t — co. With
a given fx (z), we can then calculate the probability that a node is located between
zq and xp, where x, < xp, by

y
Pz, <X <ap) = / fx(x)de. (3)
Za
The probability that a node is located within a very small interval +dx around a
point xg, i.e. within [xg — dz, o + dz], is
o+

P(xo—dacSXSxo—l—éx):/ fx(z)dz =~ 26z fx(zo). (4)

To—0x
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4.2 Comparison with Random Walk and Brownian Motion

Let us first compare the random waypoint process with the well-known family
of random walk processes. A simple random walk [Ros96][BWI0] is a discrete
stochastic process, defined as follows (see Fig. 2b): In each movement epoch, a
node must decide to jump a distance Az to the right or left side. The random
variable X, i.e., the location of a node, can therefore only take discrete values
X = tkAz, k € Z. A node chooses to move to the right side with probability
p and to the left side with probability 1 — p. The current direction decision is
independent of the previous one.

As opposed to the random waypoint movement, such a random walk assumes an
infinite value range for X, i.e., the node moves unrestrictedly on an infinite line.
But there also exists the theory of bounded random walks, in which a node moves
on a finite line with fixed borders. When it reaches the border, it can be reflected
[Pap84][Law95] or absorbed (i.e., it stays there forever) [Law95]. Also a reposition-
ing at the center [Bur0O1] or a “wrap around” border behavior, which is equivalent
to a movement process on a circle, is sometimes useful. For each of these border
behaviors, a discrete probability density function fx(z) of the node location X at
time ¢ and several other stochastic properties can be calculated (see, e.g., [TSGO01]).

The most obvious difference between the random walk and random waypoint pro-
cess is as follows: A random walk is a location and time—discrete process, and each
movement epoch has the same length Az and the same duration At. The random
waypoint movement, however, is a location and time—continuous process, in which
the epoch lengths and durations vary from epoch to epoch (i.e., Ax(i), At(7)).
Besides this, there are several other properties of the random waypoint model that
raise difficulties for its analyzation.

For example, if we try to model the random waypoint movement as a discrete
stochastic process (by dividing the continuous value range of X into equidistant
intervals), a node would “jump” from x4 to z4. This would ignore all locations x
between xs and x4 that are traversed by a node that follows a random waypoint
movement (see Fig. 2). Furthermore, in a discrete random waypoint model, the
probabilities of going right or left, p and 1—p, would have to depend on the current
position X (¢) of the node, i.e., the current direction decision is correlated to the
decision of the previous movement epoch. For example, a node located close to the
right border of the line will most probably choose a destination point at its left
hand side (uniform distribution of destinations x4). Also the expected change in
position Az(i) of a certain epoch ¢ depends on the starting point x4 (7).

So—called continuous—time random walks [PB00][MS84] just model a pause time
after each movement epoch (the pause time has a continuous probability distribu-
tion) — which does not provide a solution to our problem.

The limiting form of a random walk with At — 0, which yields a continuous—state
process, is called Wiener process or Brownian motion [Law95|[Pap84]. As in our
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random waypoint process, X (t) is here a continuous function of ¢, i.e., there are no
“jumps” in the path X (t) over t. Many statistic properties for both unlimited and
bounded Brownian motion can be derived (see, e.g., [Pap84][Law95][Ros96]).

Nevertheless, we are currently not in the position to generalize and map the well-
known stochastic characteristics of Brownian motion and/or random walks to our
random waypoint process or to find a mathematical process that is equal to the
random direction process. Let us therefore take our own approach to derive the
PDF fx(x).

4.3 Derivation of the Probability Density Function fx(z)

We note that in a continuous movement process, probability can be interpreted in
terms of time: The time that a node can be found in the interval [z,, 23] during
the process, divided by the total running time of the process ¢, follows Equation
(3) as the process runs very long. Another basic observation is that in a movement
process with constant speed, the time and distance that a node covers during its
movement are directly proportional to each other (see Fig. 2a). In other words,
longer movement epochs contribute with a “higher weight” to the PDF of X.

We therefore consider the following approach: At each time instant ¢, the current
position X (¢) of a random waypoint node is traced and added to a one-dimensional,
continuous histogram A(z; t). The histogram states how often a point = has been
visited by the node. We normalize this histogram, such that the integral over all
values is 1, i.e. @ 1

— h(x; t

Ma; t) = 2 h(z; t)dx’

oo

()

and record it for a very long simulation time. Since the normalized distribution

h(z;t) converges if the simulation time is long enough, we can skip the time index
t and define h(x) := h(x,t — oo). This yields the wanted PDF

fx(@) = Jim Flas o) ©)

One movement epoch of a node, say between time ¢; and to, from a starting point
X (t1) = x5 to a destination point X (t3) = x4, increases the histogram h(z, t1) by
a value of +1 for z between x, and z4. Using the Heaviside unit step function

|1 forz >z
u(x—xo)—{ 0 forx <uzg’ (7)

we can write

h(z, t2) = h(x, t1) +|u(z — X(t1)) —u(z — X (¢2))]. (8)

Note that in a random walk, only the endpoints zs and x4 would contribute to
the histogram. Since we do not know the starting and ending points (z(4), xq(7))
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Figure 3: Derivation of node distribution of a one-dim. random waypoint movement

of the movement epochs in the movement process, we must evaluate them as an
average on all possible points, being weighted with their distributions fx_(xs) and
fx,(zq). (In the following, we skip the indices X, X, and X,.) For uniformly
distributed starting and destinations points we put up

f(x) C’il // lu(z — x5) —u(x — zq)| - f(za) f(zs) das dzg (9)

Tm
1

—_— u(x —xs) —ulx —xq)| drs drg .

g [ e =) = ule = w0 do, o,

—ZTm

We first integrate over all possible destination points x4 for a given, fixed starting

point x4, and denote this function as h(z | x;):

h(z | zs) = /xm |u(z — z5) — u(x — xq)| dzg

e
T+ Tm for —z, <x < x4
—x+ T, forzs <z <am, (10)
0 else

(@ 4+ 2m) (W@ + 2m) —ulx —x;) )

+ (—z+am) (ulxz—zs) —ulz —zm) ).

This function is illustrated in Figure 3a. The value at z = x4 is not defined. Note
that if we normalized h(z | x5), we would obtain the PDF of a process in which
a node is positioned at a known starting point x, chooses a destination point zg4
from a uniform distribution, and moves to this point with constant speed. It is
then positioned again at x,, randomly chooses a destination point, and so on.
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But let us continue with the calculation of f(x). With (9) and (10) we have

fz) = 43%#01/ W | 2s) das (11)

—Tm

for —z,, < x < x,,, and 0 otherwise. The integral is ff; h(z|zs) des =

—2(2? —a2%) for —zm < @ < Ty Since f_oooo fx(x) de = 1 must hold, and
=2 [*" (2? — 22,) dz = § 2}, we obtain the normalization term Cy = 322

3T5,, and
can conclude with the following theorem.

Theorem 1: A node moves on a line [—z,,, z,,]| according to a one-dimensional
random waypoint model with constant speed and uniformly distributed destination
points. The probability density function fx(x) of its location X is given by

fx(x) = Sy

3
4z m

Jfor —xy, <ax <2 | (12)

4z,

This function is illustrated in Figure 3b. The probability that a node can be found
at the borders goes to zero, i.e.,

P(zy For <X <+4ax,)= lim oz fx(x)=0. (13)

rz—tx,

The expected value of X is

E{X}:/ x f(z)der =0, (14)
and the probability that a node is not more than Az away from x = 0 is
1 /(Az\® 3 (Az
P-Az <X <Azx)=—=|— - —. 15
casxsa G AE).

For example, a node resides 68.75% of its movement time within [—%=, +%2] ie.,
within the inner half of the line.

Let us verify these results by a simulation. Figure 4 shows the normalized histo-
gram h(z) from a simulation with 10® movement epochs and the PDF f(z). The
analytical curve goes exactly through the simulation points.

Sometimes it is more convenient to regard a random waypoint movement on a line
[0, 2], rather than on [—Zy,, Z,]. We can easily state the following corollary.

Corollary 1: The density function of a node’s location that performs a random
waypoint movement on a line [0, ], with constant speed and uniformly distributed
destination points, is

6 6
fX(x):—;Snxz—&—Ex,forOSxSxm . (16)
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Figure 4: Spatial node distribution resulting from a 1D random waypoint mobility
model: Normalized histogram h(z) from simulation and PDF f(z)

5 Approximation of the Distribution in 2 Dimensions

We now consider the two—dimensional case again and give approximations for the
PDFs in a square and circular system area, i.e., f(z, y) and f(r, ¢) = f(r).

5.1 Square Area

Let us assume that the two—dimensional movement in a square area consists of
two independent one—dimensional movement processes along the x and y axes as
described in the previous section. The plot of the function

Oy —

1643 y3 (® —a2,) (v —ym) » (17)

shown in Fig. 5a (offset x = y = 500 m) looks similar to the actual distribution
h(z,y) of Fig. 1a. We observe that the shapes of the two curves almost match in an
area around the center, whereas there is a difference in the border regions. There
is a difference between the two curves, because the projection of a two—dimensional
movement does not have a constant speed. Thus, the projection of h(z, y) onto
one axis is not exactly f(z) as calculated in the one-dimensional case. However,

we can state that f(z,y) = f(x) f(y).

The “expected point” of f(z) f(y) is E {(x, y)} = (0, 0). The same point represents
the maximum with a value ——2—. For our example z,, = Ym = 500 m, we have

16 T Ym
a value of 2.25 - 1076.
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Figure 5: Analytical approximation of the spatial node distribution of the waypoint

mobility model

5.2 Circular Area

Now we consider a circular area of radius r,,. We substitute  — r in (12),
rotate it around the maximum, and normalize the resulting function, such that

form 0271' f(r, ¢)rdrdp = 1. This yields

2 9

f(T,¢)=f(7“) :_T

4
m T

for 0 < r < ry,. Its maximum value is f(r = 0) =

exact spatial node distribution f(r, ¢) on a disc.
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%, which is 2.55 - 1079 for
rm = 500 m. A plot of this function, with r,, = 500 m and an offset (z, y) =
(500 m, 500 m) is shown in Figure 5b. If we compare this curve with the simulation

results of Figure 1b, we can conclude that (18) is a good approximation for the



The probability that a given mobile node is located within a circle of radius r = rg
from the center can be approximated by

0 27 ’I“2 27"2 —7"2
P(r <o) =/ / f(r, @) rdrdp = % (19)
0 0 m
for 0 < ro < rp,. Clearly, P(r < r,,) = 1. For a simulation area of radius
rm = 500 m and ro = 250 m (the same example as in Section 2), we obtain

P(r <250m) = 44%. In other words, a node is about 44% of its total movement
time in this disc.

6 Hot Spots and Attraction Areas

After these theoretical investigations, let us come back to a simulation—based
analysis. Sometimes it is desired to model a hot spot in a simulation, i.e., a certain
area in which many nodes are located. Since the resulting node distribution of the
random waypoint model (Fig. 1) is independent of the starting values of the nodes
(for long simulation times), we cannot create such a hot spot by placing many
nodes in a certain area at the beginning of the simulation, as is possible with other
mobility models. Actually, the random waypoint model automatically creates a
hot spot in the middle of the simulation area.

However, we can easily create an attraction area anywhere in the simulation area
by using an inhomogeneous distribution of the destination points. When randomly
selecting a destination point, a node chooses a point in this area with a higher
probability than a point outside this area. In a rectangular system area, with
-2y < 2 < 2 and —yp, < y < Y, and an attraction area defined by xg min <
T < ZTamaz AN Ygmin < Y < Ya,maz, the distribution of the destination points
(x4, ya) could be

f(za, ya) = m [ (U(ﬂﬁd + T) — u(Tq — Tm) ) (U(yd + Ym)
- U(yd - ym) ) + (,U - 1) ( u(xd - xa,maac) - u(xd - xa,min) )
(U(yd - ya,max) - u(yd - ya,min) ) ] (20)

where p is the intensity of the attraction area. With the sizes of the areas A =
2%m + 2ym and Ag = (Ta,maz — Ta,min) Ya,maz — Ya,min), the normalization term
is A+ (n—1)A,. Fig. 6 gives three examples for attraction areas of different size
and intensity.

7 A Modified Random Waypoint Model

Our last investigation considers a modified random waypoint model, in which the
chosen destination points can only be located at the borders of the system area.
For example, the destination points in a circular area are taken from

1 _ _
f(?"d, ¢d) — { 27T for Td T'm, 0 ~ (j)d < 21 (21)

0 else

53



4e-06

3.5e-06 |-
3e-06
25006 /'.0\\‘&‘.’;....::::::.::’:;:::::‘::::::%&;\;\\{\\\»
e- r T RRRRRR___
I S R
1.5e-06 |- | R R
B Z O o A S R .
N e S S A T TR
1006 | L A A R iR
g e s e N N e
A A T R [ Z_RR_D
5e-07 - B A A d L A R
A T I T R AL A A R SRS
T A L T T RS >
0 L A A R R R, B
2277 17 voavy A 1 IR
O Bl e W e S
L T A R RS
’ "n,,',',:'l:..;,g 900
PES 800
2e-06 --------
700 g5 1.5e-06
1e-06 ———-
900 15500 y/m 5007

S S O

)| et

e eSS

R SRS
L2

W A
- L W gy 77 L17
5007 I _Zirlant iR
AL A A T T

O [ R R T A R
LR A FR TR

easgyay %

g 17779577

LI HAERER
LIRSS

R
ik

%
%

X
90y
%%,
%

7177 7 R
a0t eSS

S
ST
s

R
R
N

=
R
S

%
l,f;
%

%

%
%%
%

N
N
D>

%
K
S5

&

4.5e-06
4e-06
3.56-06
3e-06
2.5e-06 |- O
=
2¢-06 | / '§§~~¢~0.~.~. S
SRR _T_Trrrrxs=ssSss
15606 | s s
1e-06 AL 1] 1171777 1 AR R
e LT 1 AR R
2217 T T T 17 T S RS>
56-07 | it A A T 115 SRR
:ﬂ.',':'..,',".".'ll"""""".."’...0.' R
(R e o e B o W B oy S S D
LR AL A A R
Ll A T A
L S 1000
R 02 e 7 900
e LRSS 800
700
0 600
777777 4e-06 --------
3e-06
900 0 /m 2e-06 -~
1000 y To08 -

c. Attraction area [200, 400][200, 300]

Figure 6: Node distribution of a random waypoint model with attraction
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with intensity p = 10
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Figure 7: Spatial node distribution resulting from the random borderpoint mobility
model: Simulation results

i — 7 .2 _ .
with rg = vzi+y; and ¢g = arctan(i’—‘;). We denote this model as random
borderpoint model.

As illustrated in Fig. 7a, such a model yields a rather unrealistic node distribution
when being applied in a rectangular area. In this case, a node located at the
border chooses a destination point on the same border with high probability and
then moves along this border line.

The random borderpoint model on a circular area achieves an interesting result. As
shown in Fig. 7b, the nodes are almost uniformly distributed now (compared with
Fig. 1b). Such a simple modification could be used to overcome the disadvantages
of the inhomogeneous node distribution described above.
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8 Conclusions

In this paper, we discussed the inhomogeneous spatial node distribution result-
ing from the well-known random waypoint mobility model. We first illustrated
the distribution by simulation in a two—dimensional square and a disc (Fig. 1).
Next, we derived an analytical expression for a one—dimensional random waypoint
movement (Section 4, Equ. (12)) and gave approximations for the two dimensional
case (Section 5). Finally, we considered the node distribution with attraction ar-
eas of different intensity (Section 6) and investigated a modified random waypoint
model, denoted here as random borderpoint model (Section 7). Applying the latter
on a disc yields a smoothed node distribution, which is much closer to a uniform
distribution.

In further research, one could derive the exact PDF's for the two—dimensional case
and investigate the effects of inhomogeneous node distributions on various kinds of
performance simulations of ad hoc and cellular networks.

An alternative to the random waypoint model is a simple random direction model
in which a new direction ¢ € [0...27[ is chosen after a random movement epoch
time, rather than a destination point. It has approximately the same complexity
and programming effort. In this model, nodes have always a uniformly distributed
angle within [0...27[. They can also cross the borders of the simulation area and
should then be bounced back or “wrapped around” to the other side of the area,
which results in a uniform node distribution. Such a model should be preferred, if
a homogeneous distribution is desired, for example to compare simulation results
with analytical investigation (which are often derived for uniform node placements).
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