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Model Validation and Verification Options

in a Contemporary UML and OCL Analysis Tool

Martin Gogolla1, Frank Hilken1

Abstract: Modern systems and their architectures are getting more complex than ever. Develop-
ment strategies, like model-driven engineering (MDE), help to abstract architectures and provide a
promising way to deal with the complexity. Thus, the importance for the underlying models to be
correct arises. Today’s validation and verification tools should support the developer in generating test
cases and provide good concepts for fault detection. In this contribution, we introduce and structure
essential use cases for model exploration, validation and verification that help developers find faults
in model descriptions. Along with the use cases, we demonstrate the model validator of the USE tool,
a modern instance finder for UML and OCL models based on an implementation of relational logic
and present the results and findings from the tool.

1 Introduction

Model-driven engineering (MDE) takes a view on system development focusing rather on

models than on code. A model catches a system by abstracting its complexity through reduc-

tion of information, however preserving properties relative to a given set of concerns. Today,

modeling languages, such as the UML (Unified Modeling Language) which comprises

the OCL (Object Constraint Language), have found their way into mainstream software

development. Models are the central artifacts in MDE because other software elements

like code, documentation or tests can be derived from them using model transformations.

Common model quality improvement techniques are model validation (“Are we building

the right product?”) and verification (“Are we building the product right?”) [Bo89]. Among

the different aspects of a system to be caught, structural aspects represented by class and

object diagrams are of central concern.

The tool USE (UML-based Specification Environment) [GBR07] supports the develop-

ment of UML models enhanced by OCL constraints. USE offers class, object, sequence,

statechart, and communication diagrams. It facilitates class and state invariants as well as

pre- and postconditions for operations and transitions formulated in OCL. It allows the

modeler to validate models and to verify properties by building test scenarios. One USE

component that is in charge for this task is the so-called model validator that transforms

UML and OCL models as well as validation and verification tasks into the relational logic of

Kodkod [TJ07], performs checks on the Kodkod level, and transforms the obtained results

back in terms of the UML and OCL model. The modeler works on the UML and OCL level

only without a need for expressing details on the relational logic level, i.e., on the Kodkod

level.
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The starting point for our current approach is a structural UML model (class diagram)

enriched by OCL invariants. With a small, but versatile running example, we discuss various

use cases for model validation and verification: model consistency, property reachability,

constraint implication, constraint independence, solution interval exploration, and partial

solution completion. For example, model consistency means that classes and associations

considered together with the OCL constraints can be instantiated in form of an object

diagram, or solution interval exploration means that not only a single instantiation in form

of objects and links is examined but all instantiations are taken into account and may be

inspected for validation and verification.

The running example here is rather small, but we have already checked that some use

cases work for larger models as well [Go15]. Additionally, all presented use cases do not

only benefit the USE tool, but also other verification engines [CCR14, Wi08, Br10, QT06]

can be used to perform these tasks. Usually, some modifications to the model constraints

or additions of such constraints is enough to adopt the tasks. In comparison to the other

approaches, however, our current method has the highest coverage of OCL features and

offers the most high-level interactions for the use cases.

The rest of the paper is structured as follows. Section 2 gives background information

and recaps application areas of UML and OCL models, introduces our running example,

shows the basic functionality of USE, and sketches relational logic and Kodkod. The central

Sect. 3 discusses the main validation and verification use cases that can be realized, among

them how to check model consistency and consequences from stated constraints. Section 4

puts our approach into the context of known work. The paper ends with a conclusion and

future work in Sect. 5.

2 Preliminaries

2.1 Application Areas for UML and OCL

UML together with OCL have been succesfully used for system modeling in numerous

industrial and academic projects. Here, we refer to only three example projects trying to

indicate the wide spectrum of application options. In our own early work [ZG03], we have

specified safety properties of a train system in the context of the well-known BART case

study (Bay Area Rapid Transit, San Fransisco). In [Al11], central aspects of an industrial

video conferencing system developed by Cisco have been studied. In [OM13], UML and

OCL are employed for the specification of the UML itself by introducing the so-called

UML metamodel in which fundamental well-formedness rules of UML are expressed as

OCL constraints.

2.2 Example UML and OCL Model in USE

The screenshot in Fig. 1 shows how the running example employed here is represented in

USE. The class diagram in the top right contains one class Person having a first name, a
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Fig. 1: Parenthood Example class and object diagram.

last name and the year of birth as attributes. The association Parenthood resembles the

parent-child relationship with at most two parents and arbitrary many children per person.

The model may be employed to present family trees as UML object diagrams. To enforce

rational family trees three simple invariants are employed, thereby restricting the set of

allowed system states, that is defined by the class diagram. These OCL constraints ensure

unique names for all persons, prevent cycles in the parenthood relationships and require

parents to be at least 15 years older than their children.

context p1 , p2 : Person inv nameUnique:
p1<>p2 implies (p1.fName <>p2.fName or p1.lName <>p2.lName)

context p : Person inv acyclicParenthood:
p.parent ->closure(parent)->excludes(p)

context p : Person inv parentOlderChild:
p.child ->forAll(c | p.yearB +15<=c.yearB)

The object diagram in the center of Fig. 1, showing several Person objects and Parenthood

links, illustrates a system state of the model showing the family tree as present in the movie

Godfather. In the lower left, OCL is employed for an ad-hoc query that returns all offsprings

of jimmy. Arbitrary OCL expressions can be used here to analyze the system state. The

present system state satisfies all three invariants and model inherent constraints, such as

multiplicity constraints.

2.3 Relational Logic and Kodkod

The verification engine used in this paper, the USE model validator, is based on the relational

logic of Kodkod [TJ07]. Kodkod defines a problem to consist of a universe, i.e., a set of
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Fig. 2: Validation and verification use cases.

uninterpretable atoms, a set of relation declarations and a relational formula. The universe is

defined by the underlying class diagram together with the configuration. The configuration

specifies the number of objects available in a solution including primitive data types like

Integer and String. For these types, a minimum and maximum number of instances

is defined and specific values for class attributes can be specified. Finally, the relational

formula is constructed from (1) UML structural constraints, (2) OCL class invariants and

again (3) the configuration. The translation process is based on [KG12].

Given a class diagram and a configuration, the USE model validator generates all three

aspects required for Kodkod to solve the problem instance with an off-the-shelf SAT solver.

If a valid instantiation is found, the USE model validator generates the corresponding object

diagram from the solution instance given by Kodkod. Otherwise, no instance exists for the

given model together with the configuration and optionally1, a counterproof is presented,

hinting at possible problems in the model.

3 Validation and Verification Use Cases

The recent validation and verification options in USE will be demonstrated as shown in

Fig. 2 by six use cases for central analysis tasks: model consistency, property reachability,

constraint implication, constraint independence, solution interval exploration, and partial

solution completion.

Figure 3 shows the uses cases from Fig. 2 and the primary input and output artifacts. The

distinction between expected and unexpected output parts is as follows: for a use case

one typically has in mind a particular expectation for the output of the main flow that

is displayed in the upper half of the circle, whereas the output for an alternative flow is

pictured in the lower half of the circle. For example, for the constraint implication use

1 Whether a proof is generated depends on the employed SAT solver.
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Fig. 3: Use case input and use case output for main and alternative flow.

case the expected output is that no object model is found, whereas a found object model

represents a counter example for the suspected constraint consequence.

3.1 Model Consistency

Model consistency is a crucial property. In the context of a class diagram, it guarantees

that the UML association multiplicities together with the explicit OCL invariants are not

contradictory and that the class diagram can be instantiated with a system state, i.e., an

object diagram. Within the context of a UML class diagram, sometimes this property is

referred to as class liveness. Finding classes that are not live means that they cannot be

instantiated and thus might be unusable in the model.

Model consistency can be proved by handing over to the model validator a configuration

that describes the possible populations of classes, associations and attributes in terms of

so-called bounds. In technical terms, model consistency is realized through the command mv

-validate <PropertyFile>2. The model validator tries to construct within the specified

bounds a valid system state (object diagram). If successful, the system state can be inspected,

and if not, the model validator reports that the class diagram cannot be instantiated within

the specified bounds. Such an analysis process realizes a verification task for a finite domain.

The bitwidth used by the underlying solver for integer arithmetic can be configured in the

model validator through the command mv -config bitwidth:=<NumBits>.

In the following configuration file used for the consistency use case, exactly 10 persons

and 11 parenthood links together with attribute values from the stated enumerations are

employed3. The object and link numbers and datatype values are exactly as in Fig. 1. The

particular datatype values are not bound to particular objects, but the assignment is done by

the model validator.

Person_min = 10; Person_max = 10;

2 Commands, which are newly introduced, are displayed in a black-on-gray style.
3 The syntax in the configuration files is partly slightly different. We have decided to use this self-explanatory

notation.
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Fig. 4: Generated instantiation for model consistency.

Person_fName = Set{’Lucy ’,’Jimmy ’,’Vito ’,’Carmela ’,’Sonny ’,
’Michael ’,’Kay ’,’Vincent ’,’Anthony ’,’Mary ’};

Person_lName = Set{’Corleone ’,’Adams ’,’Mancini ’};
Person_yearB = Set {1891 ,1897 ,1900 ,1916 ,1920 ,1924 ,1923 ,1948 ,1951 ,1953};
Parenthood_min = 11; Parenthood_max = 11;

The following protocol shows how USE is fed with the model. The bitwidth configuration

in the model validator (mv -config command) is necessary due to the desirable realistic

year numbers, however it slows down the underlying SAT solver. The validation process is

kicked off with the mv -validate command, and the constructed object diagram is shown

in Fig. 4, which is different from Fig. 1, because the model validator has chosen from the

many possible solutions satisfying the specified bounds and datatype values one particular

solution.

use > open parenthood.use
use > mv -config bitwidth :=12

ModelValidatorConfiguration: Set bitwidth to 12
use > mv -validate corleone.properties

ModelTransformator: Translation time: 234 ms
ModelValidator: SATISFIABLE

Translation time: 359 ms Solving time: 5351 ms

The three time specifications refer to the time needed (a) to translate the class diagram

including the invariants into the relational logic of Kodkod, (b) to translate the relational

formula and configuration into SAT (this step is performed by Kodkod), and (c) to solve the

translated relational formula by the underlying SAT solver. Setting the bitwidth is required
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Fig. 5: Generated instantiation for property reachability.

due to the large integers for the years of birth and is necessary in the following scripts, as

well. However, we will not repeat all commands below.

3.2 Property Reachability

Property reachability is another verification task that proves that a specific property can

be established by object diagrams that are also valid with regard to the original model

without having to modify it. Thus the object diagrams of the newly formulated property

are a subset of the original object diagrams. The properties are arbitraray OCL expressions

that must hold in the generated system state. Additionally, negative properties can be

formulated to verify the absence of, e.g., dangerous or illegal system states, or simply

unwanted constellations in the system.

In technical terms, property reachability is realized by adding another invariant to the

model and by asking the model validator to instantiate the enriched model on the basis of

a configuration. constraints -load <constraintFile> adds the constraint from the

file to the current model. After starting the model validator with the original model enriched

by the additional invariant employing the given configuration, the expected result should be

a system state that satisfies the original model and the additional specific property.

The following invariant shows that the Parenthood model allows object diagrams that

constitute perfectly balanced, binary trees. OCL allows to catch the essentials in condensed

form.

context p:Person inv balancedBinaryTree:
---------------------------------------- balance , binary
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(p.child ->size=0 or p.child ->size =2) and
--------------------------------------------------- root
Person.allInstances ->one(r | r.parent ->size=0 and

Person.allInstances ->excluding(r)->forAll(p2 |
p2.parent ->size =1)) and

------------------------------------------------ balance
p.child ->forAll(c1 ,c2 | c1.child ->closure(child)->size =

c2.child ->closure(child)->size)

In the following configuration, exactly 15 person objects are specified, whereas the number

of Parenthood links is left open. The model validator finds out that exactly 14 Parenthood

links are needed.

Person_min = 15; Person_max = 15;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’, ’Dan ’, ’Eve ’};
Person_lName =

Set{’Alewife ’, ’Baker ’, ’Cook ’, ’Digger ’, ’Eggler ’};
Person_yearB = Set{1905, 1920, 1935, 1950, 1965, 1980, 1995};
Parenthood_min = 0; Parenthood_max = *;

Specifying exact bounds for Parenthood (min 14, max 14) would dramatically speed up

the solving process. The following protocol adds the above invariant to the model. The

resulting object diagram is shown in Fig. 5. The generated system state confirms the claim,

that the property does in fact hold in the running example.

use > constraints -load balancedBinaryTree.invs
Added invariants: Person :: balancedBinaryTree

use > mv -validate balancedBinaryTree.properties
ModelTransformator: Translation time: 296 ms
ModelValidator: SATISFIABLE

Translation time: 1576 ms Solving time: 16396 ms

3.3 Constraint Implication

Typically, the modeler specifies a bunch of central properties directly in terms of constraints.

However, the modeler often has in mind that the constraint set guarantees that a more global

property also holds, i.e., that the global property is an implication of the specified model. In

order to formally check the intuitively present global property against the model, the global

property is formulated as an invariant, and it is tested whether the suspected implication

formally holds.

In technical terms, checking constraint implication is realized by adding the global property

to the model. Then that property is logically negated with the command constraints

-flags <Invariant> +n, and the model validator is asked on the basis of a configuration

to instantiate the model. If the global property is an implication from the original model,

then the model cannot be instantiated in this situation as the global, implied property

has been added in logically negated form. Then the expected result is that the model is

unsatisfiable. Otherwise, the model validator will construct a counter example that explains

that the suspected invariant is not a model implication.

In the example, the invariant implication which we expect to hold is that a grandparent is at

least 30 years older than the grandchild, formulated here as an additional OCL invariant.

context gp : Person inv grandparentOlderGrandchild:
gp.child.child ->forAll( gc | gp.yearB +30 <= gc.yearB )
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Fig. 6: Status of original and loaded invariants.

The following configuration binds the number of persons to at most 6. The Parenthood

links are not restricted. Possible attribute values are as above.

Person_min = 0; Person_max = 6;
Person_fName = Set{’Ada ’, ..., ’Eve ’};
Person_lName = Set{’Alewife ’, ..., ’Eggler ’};
Person_yearB = Set{1905, ..., 1995};
Parenthood_min = 0; Parenthood_max = *;

The protocol to follow adds the previously defined invariant grandparentOlder-

Grandchild to the model and logically negates it. The status of the invariants can be

checked either on the command shell or in the USE GUI as shown in Fig. 6. The model

validator reports that under the stated configuration the model including the additional

negated invariant is unsatisfiable. One could increase the number of possible objects in

class Person (Person_max=7, 8, 9, ...), however this will not change the resulting

report. Being convinced that we have performed enough checks, we assume now that the

suspected invariant is indeed an implication from the stated model.

use > constraints -load grandparentOlderGrandchild.invs
Added invariants: Person :: grandparentOlderGrandchild

use > constraints -flags Person :: grandparentOlderGrandchild +n
use > constraints -flags

-- active class invariants:
Person :: acyclicParenthood
Person :: grandparentOlderGrandchild (negated)
Person :: nameUnique
Person :: parentOlderChild

use > mv -validate grandparentOlderGrandchild.properties
ModelTransformator: Translation time: 296 ms
ModelValidator: UNSATISFIABLE

Translation time: 171 ms Solving time: 2590 ms

3.4 Constraint Independence

Constraint independence is a property of the complete set of constraints. Its goal is to check

whether the constraints are independent from each other, i.e., no single constraint is an

implication from the other constraints. This property may also be regarded as a kind of

minimality property for the constraint set: in this case no single invariant can be removed

without changing the set of object diagrams for the class diagram. Independence may or

may not hold for the stated constraints. In any case it is interesting to know whether this

property holds, for example, in the context of model slicing it will be crucial to reduce the

model complexity by identifying a minimal set of needed invariants.
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With regard to technical realization, the model validator is started with the option mv

-invIndep <PropertyFile> all. The result will be a statement for each individ-

ual invariant whether it is independent from the other invariants or not. Internally the

model validator is started as many times as there are invariants in the model, and in

each model validator run exactly one invariant is passed in logically negated form. As a

variation of the already discussed invIndep option, mv -invIndep <PropertyFile>

<singleInvariant> (without the keyword all) is available in order to construct the

example for independence of the single invariant. If an invariant cannot be shown to be in-

dependent, further analysis can be performed by deactivating invariants with constraints

-flags <singleInvariant> +d4.

Concerning the example, the property file for the independence use case is the same

as for the constraint implication use case. Below you see the protocol for calling the

model validator with the independence option. You see that the invariants are indeed not

independent. As detailed in the protocol and shown in Fig. 7, a further analysis with two

checks, which deactivate one invariant, reveal that the invariant parentOlderChild is

implying acyclicParenthood.

use > mv -invIndep invIndep.properties all
InvIndepCheck:

Person :: acyclicParenthood: Not Independent
Person :: nameUnique: Independent
Person :: parentOlderChild: Independent

----------------------------------------------
-- nameUnique => acyclicParenthood ?
-- parentOlderChild => acyclicParenthood ?
----------------------------------------------
use > reset
use > constraints -flags Person :: acyclicParenthood -d +n

Person :: nameUnique -d -n
Person :: parentOlderChild +d -n

use > mv -validate invIndep.properties
ModelValidator: SATISFIABLE

----------------------------------------------
use > reset
use > constraints -flags Person :: acyclicParenthood -d +n

Person :: nameUnique +d -n
Person :: parentOlderChild -d -n

use > mv -validate invIndep.properties
ModelValidator: UNSATISFIABLE

3.5 Solution Interval Exploration

There may be circumstances during validation in which the modeler is not only interested

in a single solution in terms of a system state, but the modeler wants to obtain an overview

on all solutions. Naturally this will be feasible only if the solution interval is relatively

small. By choosing reasonable small bounds for classes and association and by restricting

attribute values, interesting results can be achieved: “Even a small scope defines a huge

space, and thus often suffices to find subtle bugs.” [Ja06, p. 16].

The technical option for the exploration of a solution interval is accessible in the model

validator with the command mv -scrollingAll <PropertyFile> in combination with

4 On the USE command shell, deactivating and negating invariants can be combined.
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Fig. 7: Invariant status for independence and generated counterexample.

the additional succeeding commands mv -scrollingAll [prev|next|show(<N>)].

The first command computes all solutions with regard to the property file. The following

commands allow to scroll through the solution interval or to access a solution with the

respective solution number (referring to the order in which the solutions have been found).

In the example, the configuration file restricts the number of possible Person objects and

names to three and the number of age values and parenthood links to two.

Person_min = 3; Person_max = 3;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’};
Person_lName = Set{’Alewife ’};
Person_yearB = Set{1950, 1965};
Parenthood_min = 2; Parenthood_max = 2;

The protocol shows that the model validator finds six solutions which are displayed in

Fig. 8. These object diagrams represent the complete search space, i.e., all allowed object

diagrams of the running example, for the (admittedly and purposely) small configuration.

use > mv -scrollingAll scrollingAll.properties
ModelTransformator: Translation time: 234 ms
ModelValidator: SATISFIABLE

Translation time: 1872 ms Solving time: 187 ms
...
ModelValidator: UNSATISFIABLE

Translation time: 1622 ms Solving time: 328 ms
ModelValidator: Found 6 solutions

use > mv -scrollingAll show (1) -- show (2) ...
ModelValidator: Show solution 1

We repeat our warning remark with respect to large solution intervals described in the

property file when employing the scrollingAll option: there may be many solutions; in

the example, if the configuration offers one more year (e.g., in total the years 1950, 1965,

1980), then the number of solutions grows from 6 to 36.

If it is too complex to explicitly construct the complete solution interval, one can approx-

imate the interval by computing the next solution in a stepwise manner. The command

mv -scrolling <PropertyFile> finds a first solution, and following solutions can be

obtained by mv -scrolling next.
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Fig. 8: Solution interval with 6 object diagrams.

Fig. 9: Completions of partially specified solutions.
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3.6 Partial Solution Completion

The last option for a validation and verification task is the completion of a partially specified

solution. When one has already constructed objects, attribute values and links (which taken

together do not necessarily have to yield a valid system state), one may ask the model

validator to complete such a partial system state to a valid solution. If a valid completion

with regard to the configuration can be found, a valid system state containing the partially

specified system state is constructed. If no valid completion can be found, this is reported

to the modeler. An example is shown in Fig. 9.

In terms of the technical realization, the model validator must be explicitly directed

to consider the already existing objects and links through specifying mv -config

objExtraction:=on before the partial system state is asked to be completed. This option

may be turned off later, if not needed any more.

The property file fixes the number of Person objects to three and the number of Parent-

hood links to two.

Person_min = 3; Person_max = 3;
Person_fName = Set{’Ada ’, ’Bob ’, ’Cyd ’, ’Dan ’, ’Eve ’};
Person_lName =

Set{’Alewife ’, ’Baker ’, ’Cook ’, ’Digger ’, ’Eggler ’};
Person_yearB = Set{1905, 1920, 1935, 1950, 1965, 1980, 1995};
Parenthood_min = 2; Parenthood_max = 2;

The protocol file shows the construction of the three objects and fixes their attributes. The

links however are not explicitly fixed, but are left as the central construction task for the

model validator. The extraction of already existing objects together with their attributes is

combined here with the scrolling option.

use > mv -config objExtraction :=on
ModelValidatorConfiguration: Enable object extraction

use > !new Person(’ada ’)
use > !set ada.fName := ’Ada ’
use > !set ada.lName := ’Alewife ’
use > !set ada.yearB := 1965
use > !new Person(’bob ’)
use > ... -- bob , cyd analogously
use > mv -scrollingAll completion.properties

ModelTransformator: Translation time: 202 ms
ObjectDiagramModelEnricher: Extraction successful
ModelValidator: SATISFIABLE

Translation time: 62 ms Solving time: 16 ms
...
ModelValidator: UNSATISFIABLE

Translation time: 16 ms Solving time: 0 ms
ModelValidator: Found 3 solutions

use > mv -scrollingAll show (1) -- show (2) ...

Figure 9 reveals that three structurally different solutions are found by the model validator.

In all three solutions the objects and their attribute values coincide.

Our techniques can also be employed for fault detection. If, for example, a new

requirement would be that a person has to have two parents or no parents at all,

then adding the constraint Person.allInstances->exists(parent->size<>2 and

parent->size<>0) and employing the property reachability use case, would lead to
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a counterexample disproving the faulty assumption that the new requirement is already

granted by the current model.

4 Related Work

The transformation of UML and OCL into formal specifications for validation and veri-

fication is a widely considered topic. The approach in [BKS02] presents a translation of

UML and OCL into first-order predicate logic to reason about models utilizing theorem

provers. Another, similar tool is UML-RSDS [LKR10], which allows for the validation of

UML class diagrams.

Verification tools use such transformations to reason about models and verify test objectives.

UMLtoCSP [CCR14] is able to automatically check correctness properties for UML class

diagrams enhanced with OCL constraints based on Constraint Logic Programming. The

approach operates on a bounded search space similar to the model validator. In [An10],

UML2Alloy is presented. A transformation of UML and OCL into Alloy [Ja06] is used to

be able to automatically test models for consistency with the help of the Alloy Analizer.

Another approach based on Alloy is presented in [MJOR11]. In particular, limitations of

the previous transformation are eliminated by introducing new Alloy constructs to allow

for a transformation of more UML features, e.g., multiple inheritance. In [Wi08], OCL

expressions are transformed into graph constraints and instance validation is performed by

checking models against the graph constraints. Additionally, in [Ca10], a transformation of

OCL pre- and postconditions is presented for graph transformations.

The work in [Br10] describes an approach for test generation based on a transformation of

UML and OCL into higher-order logic (HOL). With the HOL-TestGen tool, test cases(model

instances) are generated and validated. In [QT06], a transformation of UML and OCL

into first-order logic is described and test methods for models are shown, e.g., class

liveliness (consistency) and integrity of invariants (constraint independence). A different

approach is presented in [CGR15]. The authors suggest to use Alloy for the early modeling

phase of development due to its better suitability for validation and verification.

Finally, the USE model validator is to a certain degree the successor of the ASSL (A Snapshot

Specification Language) [GBR05]. ASSL allows the specification of generation procedures

for objects and links of each class and association. ASSL searches for a valid system state

by iterating through all combinations defined by the procedures. In comparison, the USE

model validator translates all model constraints into a SAT formula, which allows for a more

efficient generation of a system state, due to detecting bad combinations earlier. Some of the

use cases proposed here have been discussed employing ASSL in earlier work [GKH09].

However, the explicit options for formulating the use cases are new, and we employ a new

underlying validation engine (Kodkod). In [GBR05] the use case functionalities had to be

explicitly formulated in the (programming-like language) ASSL. Now the use cases are

basically formulated in terms of (descriptive) configurations.

The approaches mentioned above either already support a subset of the concepts as in the

USE model validator or can be used to manually achieve results like constraint indepen-



Model Validation and Verification Options in a Contemporary UML and OCL Analysis Tool 219

dence or scrolling. However, the degree of automation in the current approach is much

higher. Without such a high level of automation, validation and verification is a cumbersome

task: constraints have to be formulated manually, e.g., in the case of the scrolling use case,

one constraint has to be added for every system state found to make sure a different state is

generated next. Furthermore, the degree of UML and OCL concept coverage is typically

lower in the mentioned approaches.

5 Conclusion and Future Work

In this paper, we have presented techniques to utilize a modern instance finder for a

wide range of model validation and verification as well as fault detection methods in

UML and OCL models. Examples are shown with the USE model validator using the

six use cases: model consistency, property reachability, constraint implication, constraint

independence, solution interval exploration, and partial solution completion. The techniques

are useful from early development phases to explore models up to testing phases where

model properties are verified. For example, the solution interval exploration has proven

useful to present example instantiations of a model.

Future work should also concentrate on optimizing the verification tasks by providing

help with determining bounds specifically for the presented techniques. Optimizations

of the USE model validator itself includes support for more UML features and a more

sophisticated handling of strings and large integers. Additionally, not all use cases have

a high-level interface for the modeler to use. To make the use cases readily available

for everyone, including non-experts, such high-level functions, like mv -invIndep for

invariant independance, is desirable for all use cases. Finally, larger case studies have to

further evaluate the individual methods presented.
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