
Deriving a Strongly Normalizing STG Machine

Dirk Kleeblatt

Technische Universität Berlin
Fakultät IV, Sekr. TEL 12-2

Ernst-Reuter-Platz 7
D-10587 Berlin

klee@cs.tu-berlin.de

Abstract: We present a modified version of the spineless tagless graph machine (or
STG machine for short), that can deal with free variables and makes it possible to use
compiled code for the normalization of functional expressions. We derive the machine
from a high level semantics, thus enabling a simple correctness proof. Our modified
STG machine has been successfully implemented in the Ulysses system.

1 Introduction

Traditionally, compiled systems compute so called weak head normal forms or WHNF for
short, i. e. they perform no computations beneath λ-abstractions or case analyses. For
some applications, this is not enough: for example in dependent type checking, strong
normal forms are required that must not contain any redexes to test for β-convertibility.
This requires to deal with free variables since e. g. formal parameters of abstractions occur
free in the body of the abstraction, and compiled code usually cannot deal with this free
variables. Therefore, dependent type checkers usually include interpreters to reduce type
expressions containing arbitrary user defined functions. But this has several disadvantages:

• Interpreted code has reduced performance compared to compiled code.

• When writing a compiler, an additional interpreter is needed just for type checking,
and when the language is extended later on, two different parts of code have to be
adapted: the compiler as well as the interpreter.

• This gets worse in the presence of even small differences in the semantics of the
interpreter and the compiler: computations giving a different result at runtime than
during type checking will most probably violate type safety.

We present a strong normalization system for FUN, a simple lazy functional language, that
overcomes this disadvantages by using compiled code for normalization and is well suited
for dependent type checking. The generated code is efficient enough and can directly be
used as the final compiler output if type checking is successful. We start with a big step

operational semantics, that can easily be implemented by an interpreter, and transform it in
several steps to an abstract machine executing pseudo-assembler code. The present work
is a formalization of the implementation of Ulysses, a dependently typed lazy functional
language informally introduced in [Kle08], that goes even one step further: instead of
pseudo-assembler code, Ulysses generates x86 machine code. Hence it is a convincing
example of the applicability of the systems presented here.

The original definition of FUN, its evaluation to WHNF, and the derivation of a compiled
system is due to [dlEP03]. We assume some familiarity with this work, since our S4,
SSTG1, SSTG2 and ISSTG resemble their S3, STG1, STG2 and ISTG. We extend the
weak evaluator with accumulators representing irreducible expressions that contain free
variables at redex positions, and a read back phase. Accumulators and read back were
introduced by [GL02] in a strong normalization system for a strict language.

In the following, we present the language FUN (section 2), give a big step semantics (sec-
tion 3), derive linearized versions (sections 4 and 5) and show how machine code can be
generated (section 6), before giving a comparison with related work (section 7).

2 The Language FUN and its Normal Forms

The syntax of FUN and its normal forms is given in figure 1. It is intended as a intermediate
language due to its restrictions. Here and in the following boldface font signifies sequences
of objects, i. e. while x is a variable, x is a sequence of variables. We use the sequence
operations ·:, :· and ++ for prepending and appending a single element and concatenation,
respectively. In parameter lists of applications and abstractions we express concatenation
by juxtaposition. The empty sequence is denoted by ♦. We make use of unspecified
syntactical categories x of variables, p of pointers and C of constructors.

In the simplest case a FUN expression e is a reference, i. e. either a variable x or an pointer
to the heap p. A description of Heaps is given below. Function application is restricted to
references in argument position, but more than one may be given as argument. Variables
can be bound to so-called λ-forms lf with let, where the right hand side might be another
expression, a constructor application that has to be saturated, or a lambda abstraction that
may abstract over several variables at once. Local bindings are the only places where
constructors and abstractions may occur. Definition by cases can be done for arbitrary
expressions. A sequence of alternatives alt relates constructors to expressions, binding
the constructor arguments to variables (if any).

A normal form v is either an application of an irreducible head h to a sequence of normal
forms (that may be empty), a constructor with normal forms in argument position or a λ-
abstraction with a normal form in its body. An irreducible head h is either a plain variable
or a case discrimination where the scrutinee is not a constructor but an application of
another irreducible head to zero or more normal forms.

In normal forms, function and constructor arguments are not restricted to be variables.
Furthermore, λ-abstractions and constructors are not restricted to right hand sides of local
bindings. Another restriction is added to normal forms that is not applied to FUN expres-

e ::= ref
| e ref
| let x = lf in e
| case e of alt

ref ::= x | p

lf ::= e
| C x
| λx . e (|x| > 0)

alt ::= C x -> e

v ::= hv
| C v
| λx . v

h ::= x
| case hv of valt

valt ::= C x -> v

Figure 1: Syntax of FUN and its normal forms

sions. Abstractions may abstract over several variables at once in expressions, but not
in the normal forms. While the abstract machines defined in the following chapters can
enhance efficiency by considering multiple abstracted variables in one step, such consider-
ations are not important for normal forms. Additionally, we can simplify our presentation
a little bit by restricting abstractions in normal forms to single variables.

3 A Big Step Semantics for FUN: S4

We first give a big step operational semantics, called S4 to express its relationship to S3
from [dlEP03]. Since we want to employ lazy evaluation, we have to implement sharing
to avoid duplicated evaluations of subterms. Thus, we need a heap, i. e. a mapping form
pointers to heap values hv, according to the grammar in figure 2.

We allocate each expression that is bound by let on the heap, hence the first kind of heap
values are λ-forms. When an unevaluated expression allocated on the heap (a so-called
thunk) is evaluated, it is overwritten by an indirection# q to its WHNF at address q.

In addition, we need a representation of free variables and other subexpression that are ir-
reducible because they contain free variables at redex positions. Free variables are inserted
to evaluate expressions under λ-abstractions and case discriminations. When such a free
variable is used in function position or as a scrutinee of a case discrimination, it collects
the context of this occurrence for later analysis. Thus, these special kind of heap value is
called accumulator, denoted by the meta variable k .

The structure of accumulators is also given in figure 2. An accumulator k is either a free
variable, or a suspended application of another accumulator to a single argument pointer,
or a suspended case discrimination with another accumulator as scrutinee. To maintain
sharing, we only reference embedded accumulators by pointers. We ensure the invariant

hv ::= lf
| # p
| k

k ::= 〈x〉
| 〈p q〉
| 〈case p of alt〉

Figure 2: Heap Values and Accumulators for S4

Norm
Γ : e ↓ ∆ : p ∆ : p ↑ Θ : v

Γ : e l Θ : v

Figure 3: Normalization by Weak Evaluation and Read Back

that the heap values referenced in function and scrutinee position are accumulators in all
inference rules of our semantics. To make the difference between accumulators and usual
expressions visible, we enclose accumulators in angle brackets.

We use the following notations for expressing heap allocations: Γ[p 7→ hv] means that
the heap value hv is bound to address p in Γ, so no new allocation takes place here.
Γ ∪ [p 7→ hv] means that a new binding is added to Γ, thus p is not bound to any heap
value in Γ itself, but is bound to hv in the resulting new heap. Here, a new allocation is
performed. Additionally, we use a special binding Γ Z⇒ hv for heap values that need no
updates after normalization to WHNF.

3.1 Normalizing FUN expressions

The normalization of FUN expressions is done with two interacting systems. An evaluator
reduces an expression to WHNF, using a modified version of the STG machine, originally
defined in [PJ92]. The resulting WHNF is read back, normalizing all remaining redexes.

Thus, the overall system is defined using three relations. Weak evaluation is defined by
the four place relation · : · ↓ · : ·, where Γ : e ↓ ∆ : p means that expression e evaluates
under heap Γ to the new heap ∆ that contains the WHNF of e at address p. Read back is
defined by the four place relation · : · ↑ · : ·, where Γ : p ↑ ∆ : v means that reading back
the WHNF located in Γ at address p yields the new heap ∆ and the strong normal form
v. Strong normalization is defined via weak evaluation and read back as the four place
relation · : · l · : ·, where Γ : e l ∆ : v means that the normal form of e under the heap Γ
is v, and the normalization yields the new heap ∆.

The normalization relation is inductively defined by the single inference rule given in
figure 3 as the composition of weak evaluation and read back, which are defined below.

Weak Evaluation The evaluation relation is defined inductively by the inference rules
in figure 4. Rules Lam through Case1 are the same as in the semantics S3 defined by
[dlEP03], where a description can be found. We introduced rules Accu, App3 and Case2
to deal with accumulators. They are especially designed for cooperation with read back.

The three new rules define the behavior of accumulators in different contexts. Rule Accu
defines an accumulator as a new kind of WHNF, no further evaluation is required.

More interesting is rule App3. When an expression e in function context is evaluated to an
accumulator k, the accumulator grabs the first argument, and the accumulated application
is allocated at a fresh address r and applied to the remaining arguments.

The corresponding situation for case discriminations is found in rule Case2. When the
scrutinee is evaluated to an accumulator, no branch of the alternatives can be selected,
hence the discrimination is suspended in a newly allocated accumulator, saving all branches
for further analysis by the read back phase.

Read Back The read back relation is inductively defined by the rules in figure 5. It
makes use of a four place helper relation · : · ↑〈〉 · : · for read back of accumulators.

Rule Lam↑ defines read back for λ-abstractions. To evaluate the body under the abstrac-
tion, we generate a pseudo-argument: a fresh variable placed as an accumulator onto the
heap. The application of the abstraction to this accumulator is normalized to a value v that
now contains y as a free variable. To close the resulting expression, we place v below an
abstraction over y in the conclusion.

The read back for constructor values is defined by rule Cons↑. We simply normalize
all constructor arguments one at a time. The notation

∧|q|
i=1 is a shorthand to define the

individual premises needed for each constructor argument.

Accumulators are delegated to the helper relation by rule Accu↑. Free variables need no
further normalization, as stated by rule V ar↑〈〉 .

Suspended applications are read back by reading back the function part and (pointing
always to an accumulator, as stated above), and normalizing the argument. Note that all
rules for the read back of accumulators result in a normal form with a shape like hv, that
is in an application of a head h to zero or more normal forms v.

Suspended case discriminations are handled by rule Case↑〈〉 . The scrutinee is read back
to value v. Moreover, for each alternative, a new constructor value Ci q is allocated,
where the constructor arguments are pointers to fresh free variable accumulators. Then,
this constructor expressions are scrutinized, thereby passing the accumulators 〈y〉 to the
corresponding branch of the alternative that now can be evaluated.

4 Linearization: SSTG1

To substitute the interpreted evaluation using S4 with a compiled system, we next define
SSTG1, short for strong normalizing STG machine, a small step operational semantics

Lam
Γ[p 7→ λx . e] : p ↓ Γ : p

Cons
Γ[p 7→ C p′] : p ↓ Γ : p

V ar
Γ : e ↓ ∆ : q

Γ ∪ [p 7→ e] : p ↓ ∆ ∪ [p 7→# q] : q

Ind
Γ[p 7→# q] : p ↓ Γ : q

App1

Γ : e ↓ ∆[q 7→ λx y . e′] : q r fresh
Γ : ep ↓ ∆ ∪ [r 7→ λy . e′[p/x]] : r

App2

Γ : e ↓ ∆[q 7→ λx . e′] : q ∆ : e′[p/x] p′ ↓ Θ : r
Γ : ep p′ ↓ Θ : r

Let
Γ ∪ [p 7→ lf [p/x]] : e[p/x] ↓ ∆ : q p fresh

Γ : let x = lf in e ↓ ∆ : q

Case1

Γ : e ↓ ∆[p 7→ Ci p′] : p ∆ : ei[p′/xi] ↓ Θ : q
Γ : case e of C x -> e ↓ Θ : q

Accu
Γ[p 7→ k] : p ↓ Γ : p

App3

Γ : e ↓ ∆[q 7→ k] : q ∆ ∪ [r 7→ 〈q p〉] : r p′ ↓ Θ : s r fresh
Γ : e pp′ ↓ Θ : s

Case2

Γ : e ↓ ∆[p 7→ k] : p q fresh
Γ : case e of alt ↓ ∆ ∪ [q 7→ 〈case p of alt〉] : q

Figure 4: Semantics S4

Lam↑
Γ ∪ [q 7→ 〈y〉] : p q l ∆ : v q, y fresh

Γ[p 7→ λx . e] : p ↑ ∆ : λ y . v

Cons↑

∧|q|
i=1 Γi : qi l Γi+1 : vi

Γ1[p 7→ C q] : p ↑ Γ|q|+1 : C v

Accu↑
Γ : k ↑〈〉 ∆ : v

Γ[p 7→ k] : p ↑ ∆ : v

V ar↑〈〉 Γ : 〈x〉 ↑〈〉 Γ : x

App↑〈〉

Γ : k ↑〈〉 ∆ : hv ∆ : q l Θ : v′

Γ[p 7→ k] : 〈p q〉 ↑〈〉 Θ : hv v′

Case↑〈〉

Γ : k ↑〈〉 ∆1 : v∧|alt|
i=1 ∆i ∪∆′i : case p of alt l ∆i+1 : v′i
where alt = C x -> e, |q| = |y| = |x| and p, q,y fresh

and ∆′i = [p 7→ Ci q] ∪ [q 7→ 〈y〉]
Γ[p 7→ k] : 〈case p of alt〉 ↑〈〉 ∆|alt|+1 : case v of C y -> v′

Figure 5: Read Back Definition for S4

equivalent to S4. As usual, to keep track of subexpressions needed for later steps, we
introduce a stack, containing function arguments, case alternatives and update frames #p,
marking heap closures for later thunk updates.

While most rules are standard, the rules dealing with accumulators are new. Accumulators
act like other weak head normal forms by overwriting a thunk with an indirection when a
update frame is present, cf. var4. When a parameter is on the stack, app3 grabs and saves
it within a application accumulator. Similarly, case3 grabs sequences of case alternatives.

The normalization using SSTG1 is defined by rule Norm in figure 7. An expression e is
evaluated in several steps to weak head normal form, as usual →∗ denotes the transitive
and reflexive closure of→. We define W(∆ : p : p′) to be true iff either p points to an
constructor value or accumulator and p′ = ♦, or p points to a λ-abstraction with more
formal parameters than present in p′, thus detecting feasible final states of the transition
system. This final state is then read back.

The read back definition for SSTG1 is given in figure 8. In contrast to the corresponding

Heap Control Stack Name

Γ ∪ [p 7→ e] p S var1
→ Γ e #p ·: S

Γ[p 7→ λx y . e] p p′ ++ #q ·: S var2
→ Γ ∪ [q Z⇒ pp′] p p′ ++ S

Γ[p 7→ C p′] p #q ·: S var3
→ Γ ∪ [q 7→# p] p S

Γ[p 7→ k] p #q ·: S var4
→ Γ ∪ [q 7→# p] p S

Γ[p 7→# q] p S ind1

→ Γ q S

Γ[p Z⇒ e] p S ind2

→ Γ e S

Γ ep S app1

→ Γ e p ++ S

Γ[p 7→ λx . e] p p′ ++ S app2

→ Γ e[p′/x] S

Γ[p 7→ k] p p′ ·: S app3

→ Γ ∪ [q 7→ 〈p p′〉] q S
where q fresh

Γ let x = lf in e S let
→ Γ ∪ [p 7→ lf [p/x]] e[p/x] S

where p fresh

Γ case e of alt S case1
→ Γ e alt ·: S

Γ[p 7→ Ci p′] p C x -> e ·: S case2
→ Γ ei[p′/xi] S

Γ[p 7→ k] p alt ·: S case3
→ Γ ∪ [q 7→ 〈case p of alt〉] q S

where q fresh

Figure 6: Semantics SSTG1

Norm
Γ : e : S →∗ ∆ : p : p′ W(∆ : p : p′) ∆ : p : p′ ↑ Θ : v

Γ : e : S l Θ : v

Figure 7: Normalization using SSTG1

Lam↑
Γ ∪ [q 7→ 〈y〉] : p : p′ :· q l ∆ : v q, y fresh

Γ[p 7→ λx . e] : p : p′ ↑ ∆ : λ y . v

Cons↑

∧|q|
i=1 Γi : qi : ♦ l Γi+1 : vi

Γ1[p 7→ C q] : p : ♦ ↑ Γ|q|+1 : C v

Accu↑
Γ : k ↑〈〉 ∆ : v

Γ[p 7→ k] : p : ♦ ↑ ∆ : v

V ar↑〈〉 Γ : 〈x〉 ↑〈〉 Γ : x

App↑〈〉

Γ : k ↑〈〉 ∆ : hv ∆ : q : ♦ l Θ : v′

Γ[p 7→ k] : 〈p q〉 ↑〈〉 Θ : hv v′

Case↑〈〉

Γ : k ↑〈〉 ∆1 : v∧|alt|
i=1 ∆i ∪∆′i : p : alt ·: ♦ l ∆i+1 : v′i
where alt = C x -> e, |q| = |y| = |x| and p, q,y fresh
and ∆′i := [p 7→ Ci q] ∪ [q 7→ 〈y〉]

Γ[p 7→ k] : 〈case p of alt〉 ↑〈〉 ∆|alt|+1 : case v of C y -> v′

Figure 8: Read Back Definition for SSTG1

definitions for S4, this time we avoid the generation of new code: while figure 5 cre-
ated applications in rule Lam↑, the pseudo-argument is placed onto the stack in figure 8.
Similarly rule Case↑〈〉 created case-expressions in figure 5 where we now place the case
alternatives onto the stack, where they will be found by case2 in the first evaluation step.

5 Environments instead of substitutions: SSTG2

As a step between the linearized semantics SSTG1 and the compiled of ISSTG in the
next section, we defined SSTG2, not shown in this paper for space reasons. It replaces
explicit substitutions with the modification of environments. The definition is fairly stan-
dard, especially since SSTG2 is close to STG2 of [dlEP03]. The modification includes
the addition of an environment into the configuration of the abstract machine and to heap
values possibly containing variables. Note that the rules dealing with accumulators do not

perform substitutions, thus the translation of rules var4, app3 and case3 is as simple as
the translation of the rules for the read back relation.

To avoid memory leaks by storing unused variables in the environments, λ-forms and
sequences of case alternative are annotated with trimmers, simple sequences of used vari-
ables, and environments are restricted to the variables contained in the trimmers when
necessary. Annotated λ-forms and case branches look like lf |x and alt|x, respectively.

6 Imperative Code: ISSTG

The translation of FUN expressions to machine code is given in figure 9. We use a further
restricted variant of FUN here, function positions in applications and scrutinees in case
expressions are restricted to be mere variables, not arbitrary expressions. This simplifies
the stack layout to enable the read back phase.

Since environments are split into stack parts for function arguments and closure parts al-
located on the heap and accessed through a node pointer for other free variables of thunks,
the translation functions use compile time environments for the stack and the node vari-
ables, denoted by ρ and η, respectively. We write variable lookups as (ρ, η)x, resulting in
either (STACK, p) or (NODE, p), depending on the location of x on the stack or the heap.
We require the domains of ρ and η to be disjoint. This lookup definition is complemented
by the function ptr, used in the definition of the semantics of ISSTG, with ptr (STACK, i)
being the i-th stack element and ptr (NODE, i) the i-th element of the closure environment.

The node environment η is a simple mapping from variable names to indices in the node
variable list. The stack environment ρ is a tuple of a corresponding mapping from variable
names to indices on the stack, and the number of local variables that have to be removed
from the stack before entering another closure.

Additionally we use a code store cs and a branch information table bi. Both are modified
by operations given after & as monadic side effects of the translation functions. The
code store maps pointers to code sequences or branches, the latter mapping constructor
names to code sequences. The branch information table is especially introduced for strong
normalization and not present in [dlEP03]. It collects the number of variables saved on the
stack for use by case branches, and records for which constructors branches exist and how
many arguments these constructors have.

The definitions of the translation functions trE for expressions, trAs and trA for case
alternatives and trB for let bound λ-forms are best read together with the definition of
the corresponding transition rules in figure 10 of the generated instructions.

The translation of applications builds a stack environment containing the function x and
all arguments y, removes all local variables from the stack, and finally calls the function.

For case expressions, all variables needed in the branches and accessed via η are saved on
the stack first. Then a pointer to the compiled alternatives and the scrutinee is left on the
stack before the latter is entered. The notation ρ++ denotes a stack environment where all
indices are incremented by one, thus taking care of the branch pointer pushed on the stack.

trE (xy) ρ η = [BUILDENV (ρ, η)x ·: (ρ, η) y,
SLIDE (1 + |y|) (snd ρ),
ENTER]

trE (case x of alt|y) ρ η = [BUILDENV a,
PUSHALTS p,
BUILDENV (ρ′++ , η)x,
ENTER]

& bi ∪ [p 7→ (snd ρ′, info alt)]
where ρ′ = ρ+ [yi 7→ i− 1 | i← 1.. |y|]

p = trAs alt ρ′

a = [(NODE, η z) | z ← y ∧ z ∈ dom η]
info (C x -> e) = (C, |x|)

trE (let x = lf |y in e) ρ η = [ALLOC |yi| | i← |y| ..1] ++
[BUILDCLS (i− 1) pi ai | i← 1.. |y|] ++
trE e ρ′ η

where ρ′ = ρ+ [xi 7→ i− 1 | i← 1.. |x|]
p = trB lf |y
a = (ρ′, η) y

trAs alt ρ = p
& cs ∪ [p 7→ [C 7→ trA alt ρ]]

where alt = C x -> e
and p fresh

trA (C x -> e) ρ = trE e ρ [xi 7→ i− 1 | i← 1.. |x|]

trB (C x |y) = p
& cs ∪ [p 7→ [RETURNCON C]]

where p fresh

trB (λx . e |y) = p
& cs ∪ [p 7→ [ARGCHECK |x|] ++ trE e ρ η]

where ρ = ([xi 7→ i− 1 | i← 1.. |x|], |x|)
η = [yi 7→ i− 1 | i← 1.. |y|]

and p fresh
trB (e |y) = p

& cs ∪ [p 7→ [UPDMARK] ++ trE e ρ∅ η]
where ρ∅ = (∅, 0)

η = [yi 7→ i− 1 | i← 1.. |y|]
and p fresh

Figure 9: Translation of FUN to Machine Code

Code Stack Node Heap

[ENTER] q ·: S p Γ[q 7→ (r, r′)]
→ is S q Γ

where cs[r 7→ is]

[RETURNCON C] q ·: S p Γ
→ is S p Γ

where cs[q 7→ bt] and bt[C 7→ is]

[RETURNCON C] #q ·: S p Γ
→ [RETURNCON C] S p Γ ∪ [q 7→ (pind, p)]

ARGCHECK n ·: is q ++ S p Γ
→ is q ·: S p Γ

where n = |q|

ARGCHECK n ·: is q ++ #r ·: S p Γ ∪ [r 7→ (pbh, q
′)]

→ ARGCHECK n ·: is q ++ S p Γ ∪ [r 7→ (ppap, p ·: q)]
where n > |q|

ALLOC n ·: is S p Γ
→ is q ·: S p Γ′

where q points to a new closure with space for n variables
and Γ′ is the resulting heap after allocation

BUILDCLS i q a ·: is S p Γ
→ is S p Γ ∪ [S!i 7→ (q, ptr a)]

BUILDENV a ·: is S p Γ
→ is ptr a ++ S p Γ

PUSHALTS q ·: is S p Γ
→ is q ·: S p Γ

UPDMARK ·: is S p Γ ∪ [p 7→ (q, q′)]
→ is #p ·: S p Γ ∪ [p 7→ (pbh, q

′)]

SLIDE n m ·: is q ++ q′ ++ S p Γ
→ is q ++ S p Γ

where n = |q| and m = |q′|

PAP ·: is S p Γ[p 7→ (q, q′)]
→ is q′ ++ S p Γ

[ACCU] q ·: S p Γ[p 7→ (paccu, k)]
→ [ACCU] S r Γ ∪ [r 7→ (paccu, 〈p q〉)]

where r fresh

[ACCU] #q ·: S p Γ ∪ [q 7→ (pbh, q
′)]

→ [ACCU] S p Γ ∪ [q 7→ (pind, p)]

[ACCU] q ·: q′ ++ S p Γ[p 7→ (paccu, k)]
→ [ACCU] S r Γ ∪ [r 7→ (paccu, k

′)]
where bi[q 7→ (n, info)], |q′| = n, k′ = 〈case p of (q, q′)〉 and r fresh,

Figure 10: Semantics ISSTG

Norm

[ENTER] : S : q : Γ→∗ is : p′ : p : ∆
W(is : p′ : p : ∆) ∆ : p : p′ ↑ Θ : v

Γ : S l Θ : v

Figure 11: Normalization using ISSTG

Local bindings are compiled to a sequence of ALLOC instructions to reserve heap space,
that is in turn filled by a sequence of BUILDCLS instructions, before the compiled body
is executed. The bound λ-forms are compiled by trB. Constructors are compiled to a
single instruction, RETURNCON, that dereferences the branch pointer found on the stack
and selects the right branch. Compiled abstractions check whether enough arguments are
present on the stack via ARGCHECK. When this check is positive, the body of the abstrac-
tion is executed, otherwise an update frame is expected on the stack and the corresponding
closure on the heap is overwritten by a partial application (pap). The code of other bound
expressions starts with UPDMARK that pushes an update frame.

During execution we expect several code sequences preallocated in the code store. For
indirections, we make use of pind with cs[pind 7→ [BUILDENV (NODE, 0),ENTER]].
For blackholing, that is for marking expressions under evaluation, we use pbh pointing
to an empty code sequence, i. e. cs[pbh 7→ ♦], such that evaluation gets stuck when an
expression is re-entered before reaching WHNF. When allocating partial applications, we
use ppap with cs[ppap 7→ [PAP,ENTER]]. And finally, for accumulator allocations, we use
paccu with cs[paccu 7→ [ACCU]], i. e. paccu points to the code that grabs either function
arguments or case alternatives together with their environments from the stack, using the
branch information table where necessary.

The normalization rule, given in figure 11, now normalizes a stack. The topmost stack
element is entered, taking the remaining stack values as function arguments or pointers to
case branches. The necessary adoptions for read back are shown in figure 12.

7 Conclusion and Related Work

We used the derivation of the STG machine presented in [dlEP03] as a basis for our strong
normalization system. At this, we used the idea of accumulators and a separate read back
phase as presented in [GL02], adopting them for lazy evaluation and the STG machine.

Correctness proofs are ongoing, proving the equivalence of normalization with different
semantics, i.e. ∃∆. ∅ : e lsi ∆ : v ⇔ ∃∆′. ∅ : e lsi+1 ∆′ : v with the si from
{S4, SSTG1, SSTG2, ISSTG}. The steps between S4, SSTG1 and SSTG2 are already
completed. We expect no difficulties for the step to ISSTG. Upon completion, we intend
the publication of the proofs as a technical report.

In [Cré90] an abstract machine is presented for strong normalization of λ terms. It differs
from ours and Grégoire’s in the missing distinction of weak evaluation and read back. This

Lam↑
Γ ∪ [q 7→ (paccu, 〈y〉)] : p ·: p′ :· q l ∆ : v

q, y fresh
cs[r 7→ ARGCHECK ·: is]

Γ[p 7→ (r, r′)] : p : p′ ↑ ∆ : λ y . v

Cons↑

∧|q|
i=1 Γi : [qi] l Γi+1 : vi cs[r 7→ [RETURNCON C]]

Γ1[p 7→ (r, r′)] : p : ♦ ↑ Γ|q|+1 : C v

Accu↑
Γ : k ↑〈〉 ∆ : v cs[r 7→ [ACCU]]

Γ[p 7→ (r, k)] : p : ♦ ↑ ∆ : v

V ar↑〈〉 Γ : 〈x〉 ↑〈〉 Γ : x

App↑〈〉

Γ : k ↑〈〉 ∆ : hv ∆ : [q] l Θ : v′

Γ[p 7→ (r, k)] : 〈p q〉 ↑〈〉 Θ : hv v′

Case↑〈〉

Γ : k ↑〈〉 ∆1 : v∧|C|
i=1 ∆i ∪∆′i : p′ ·: q ·: q′ l ∆i+1 : v′i
where bi[q 7→ (n, (C,m))], |p′′| = |y| = mi and p′,p′′,y fresh
and ∆′i = [p′ 7→ (pCi p′′)] ∪ [p′′ 7→ (paccu, 〈y〉)]

Γ[p 7→ (r, k)] : 〈case p of (q, q′)〉 ↑〈〉 ∆|alt|+1 : case v of C y -> v′

Figure 12: Read Back Definition for ISSTG

might be faster when reducing to normal forms, but when the normalization system is used
for dependent type systems, it prevents some improvements as detailed in [GL02, Kle08].

In [Klu04, chapter 10] a lazy variant of the π-RED system is presented, that can strongly
reduce functional programs. Its η-extension mechanism corresponds to our rule Lam↑.
The π-RED system is based on a tagging mechanism instead of the STG machine, thus we
had to find a way to implement free variables without using tag bits, resulting in accumula-
tors with the same calling conventions as ordinary functions and constructors in STG code.
Additionally, the focus of π-RED is broader: the system allows to reconstruct source code
for unevaluated closures. This broader focus complicates matters, in π-RED the machine
instructions have several modes depending on a reduction counter, and function pointers
are referenced indirectly through descriptors. Since we are only interested in weak and
strong normal forms, the ISSTG design keeps simpler.

Our approach is related to untyped normalization by evaluation (nbe) [AJ04], where λ-

terms are translated to their semantical meaning, from which normal forms are extracted.
In our case, the meaning of a FUN expression can be seen as the state transitions of the
running machine code, from which the normal forms are obtained by read back. But
our approach implements e.g. function calls more efficient: A straightforward definition
of untyped nbe as given in [AJ04] has to check at each application whether the applied
function is semantical or syntactical, while in ISSTG the applied function can be called
directly because of the calling convention of accumulators.

Another related line of research is partial evaluation, most closely type-directed partial
evaluation (tdpe) introduced by Danvy in [Dan96]. This evaluator generates constructors
expressions not only when free variables are scrutinized in case expressions, but when-
ever functions take arguments of disjoint sum types, introducing additional case analyses.
These analyses change the strictness properties of normalized expressions, even non-strict
functions are normalized to strict functions. This is avoided by our approach of residuat-
ing case expressions only when free variables are analyzed by a case expression. For the
same reason our implementation deals better with recursive data types: tdpe cannot create
pseudo arguments for functions with inductively defined domain types. Moreover, tdpe
produces η-long normal forms, which is not feasible in some dependently typed systems.

References

[AJ04] Klaus Aehlig and Felix Joachimski. Operational aspects of untyped normalisation by
evaluation. Mathematical Structures in Computer Science, 14(04):587–611, 2004.

[Cré90] P. Crégut. An abstract machine for Lambda-terms normalization. In LFP ’90: Proceed-
ings of the 1990 ACM conference on LISP and functional programming, pages 333–340.
ACM Press, 1990.

[Dan96] Olivier Danvy. Type-directed partial evaluation. In POPL ’96: Proceedings of the 23rd
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
242–257. ACM Press, 1996.

[dlEP03] Alberto de la Encina and Ricardo Peña. Formally deriving an STG machine. In PPDP
’03: Proceedings of the 5th ACM SIGPLAN international conference on principles and
practice of declaritive programming, pages 102–112. ACM Press, 2003.

[GL02] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction.
In ICFP ’02: Proceedings of the seventh ACM SIGPLAN international conference on
Functional programming, pages 235–246. ACM Press, 2002.

[Kle08] Dirk Kleeblatt. Checking dependent types using compiled code. In Implementation and
Application of Functional Languages, 19th International Workshop, IFL 2007. Revised
Selected Papers, volume 5083 of Lecture Notes in Computer Science, pages 165–182.
Springer, 2008.

[Klu04] Werner Kluge. Abstract computing machines. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2004.

[PJ92] Simon Peyton Jones. Implementing lazy functional languages on stock hardware: the
spineless tagless g-machine. Journal of Functional Programming, 2:127–202, 1992.

