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Abstract: This paper deals with the linear discrete-time sensor scheduling problem in
unreliable communication networks. The sensor scheduling problem, where one sen-
sor from a sensor network is selected for performing a measurement at a specific time
instant so that the estimation errors are minimized, can be solved off-line by extensive
tree search, in case an error-free communication is assumed. The main contribution
of the proposed scheduling approach is to introduce a prioritization list for the sensors
that leads to a minimization of the estimation error by selecting the most beneficial
sensor even in case of unreliable communication. To lower the computational demand
for the priority list calculation, an optimal pruning approach is introduced.

1 Introduction

For sensor networks, where a large number of sensors is used, the so-called sensor schedul-

ing is of paramount importance. Due to limited resources like energy or communication
bandwidth it is imperative to activate the sensors just selectively. Besides that, determin-
ing the best possible state estimation of the system observed by the sensor network is
essential. Instead of treating each sensor independently, global sensor scheduling schemes
permit improved estimation results [RB02]. In case of an error-free information transmis-
sion between the sensors, i.e., when no information gets lost, the optimal sensor schedule
for linear systems observed by linear sensors corrupted by Gaussian noise can be deter-
mined off-line and independently of the measurements, where the optimality criterion or
cost function is to minimize the state covariance of the system [MPD67]. Especially for
sensor networks, where wireless communication is typical, the error-free communication
assumption is too optimistic. The proposed method extends classical approaches for the
sensor scheduling problem as it takes unreliable communication explicitly into account.
Here, a prioritization list is constructed based on the optimal sensor schedule of the indi-
vidual sensors. With a given prioritization list, selecting valuable sensors is possible even
if some sensors are currently not available due to unreliable communication.

The next section gives a short introduction to sensor scheduling. The remainder of the
paper is structured as follows: In Section 3, the calculation of the priority list with optimal
pruning is described. The effect of priority list scheduling is demonstrated in Section 4 by
simulations. The paper closes with conclusions and an outlook to future work.
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2 Problem Formulation

This paper focuses on estimating the state xk of a dynamic system by means of a sensor
network at discrete time steps k = 0, 1, . . . , N , where N is the estimation time horizon.
To describe the system behavior, the linear stochastic discrete-time system equation

xk+1 = Akxk + Bkwk

is used. Here, Ak ∈ R(n×n) and Bk ∈ R(n×m) are real-valued matrices, wk is white
Gaussian noise with covariance matrix Cw

k , and the initial state vector x0 is also Gaussian
with mean x̂0 and covariance matrix Cx

0 . This equation can be used e.g. for modeling a
distributed phenomenon that is observed via a sensor network [SRH06].

For updating the state estimation, measurements obtained by S sensors are used. Each
sensor i = 1, . . . , S is described by the linear stochastic discrete-time measurement equa-
tion

ŷi
k = Hi

kxk + vi
k ,

where ŷi
k ∈ Rs is the current measurement, Hi

k ∈ R(s×n) is the real-valued measurement

matrix, and vi
k is zero-mean white Gaussian noise with covariance matrix C(v,i)

k affecting
sensor i.

Assuming that each sensor node knows the measurement matrix and noise vector of any
other sensor and further assuming the current estimate x̂k with covariance matrix Cx

k of xk

can be transmitted in an error-free manner over the sensor network, the sensor scheduling
problem can be optimally solved by an extensive tree-search [MPD67]. If sensor i takes
the measurement at time step k, the covariance evolves according to the recursive Riccati
equation

Cx
k+1 = AkCx

kA
T
k + BkCw

k BT
k − AkKi

kH
i
kC

x
kA

T
k , (1)

with Ki
k = Cx

k(Hi
k)T

(
Hi

kC
x
k(Hi

k)T + C(v,i)
k

)−1

, as in the well-known Kalman filter.

The optimal sensor sequence u∗
0:N = arg minu0:N

V (u0:N ) results from minimizing the
cost function or estimation error

V (u0:N ) =

N∑
n=0

g(Cx
n+1)

∣∣∣
i=un

, (2)

with Cx
n+1 according to (1), g( · ) can be the trace or the determinant of Cx

n+1, and un is
the n-th element of u0:N indexing that sensor to be selected for measurement at time step
n. Selecting one sensor per time step can be performed without loss of generality [Kri02].

In sensor networks, communication is typically carried out over a wireless medium. Thus,
the assumption of an error-free estimation transmission is no longer valid. The commu-
nication link between two sensors is unreliable, i.e., the packet containing the current
estimation may be dropped. This effect has not been considered so far when scheduling
sensors for measurement.
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3 Priority List Sensor Scheduling

In the optimal sensor schedule u∗
0:N , the first sensor to measure is indexed by u0. Under

unreliable communication it is possible that the optimal sensor u0 is not available. Two
possibilities arise: The measurement update for the current time step can be omitted or
another sensor can be select for measurement. In the following sections we present a
scheduling scheme that gives a practical solution to this problem.

3.1 Assumptions

First, some assumptions concerning the communication network are given. Each commu-
nication link between two distinct sensors either successfully or unsuccessfully transmits
at time step k. Communication losses between two distinct sensors are uncorrelated over
time. The probability of a communication loss is not known to the sensor nodes. A sensor
schedule u∗

k:N can be calculated in-between two consecutive time steps k and k + 1.

3.2 Scheduling Scheme

The key idea of the proposed sensor scheduling approach is to provide a prioritization of
the sensors. The sensor with the highest priority at time step k + 1 is the first sensor of the
sensor schedule with the overall minimum estimation error during time horizon N . The
sensor with the second highest priority is the first sensor of the sensor schedule with the
second lowest estimation error and so on. As illustrated in Fig. 1, at time step k the priority
list for S = 2 sensors is calculated (framed by rounded box) by determining the optimal
schedules u∗

k+1:N,1 and u∗
k+1:N,2 for uk+1 = 1 as well as uk+1 = 2, respectively . If the

sensor schedule starting with uk+1 = 1 has the lowest cost, then sensor 1 is the sensor
with highest priority and the priority list is Pk = {1, 2}. Otherwise, sensor 2 is the sensor
with the highest priority and the priority list is Pk = {2, 1}.

In the proposed priority list scheduling algorithm for any time step k three operations have
to be performed:

Priority List Calculation For each sensor i its optimal sensor schedule u∗
k+1:N,i with

uk+1 = i is calculated according to (2). Ranking the sensors in ascending order
with respect to the cost function or estimation error V (u∗

k+1:N,i) yields the priority
list Pk. All these calculations take place on sensor s, which was selected at time
step k − 1 for performing the measurement.

Reachability Check Sensor s broadcasts the priority list to the sensors of the sensor net-
work. Sensors that received the list send an ACK back to s. Sensor s lists all
responding sensors in the reachability list Rk.

Sensor Selection The sensor with highest priority in Pk that is listed in Rk is the best
reachable sensor for performing the next measurement. Sensor s sends the current
state estimate x̂k and state covariance Cx

k to this sensor.
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Figure 1: (a) Priority list determination for two sensors. (b) Simulation run for N = 8, where the
blue, dashed line denotes the evolution of the estimation error of the proposed approach PS.

At time step k + 1 the operations described above are repeated until the end of the time
horizon is reached. It is obvious that in case of an error-free communication, the sensor
sequence resulting from the priority list approach is identical to the well-known solution
neglecting communication constraints.

3.3 Optimal Pruning

Due to the fact that calculating the priority list requires searching each sub-tree of a sensor,
naive implementation is computationally demanding. Pruning techniques of search trees
for sensor scheduling range from suboptimal methods, where conserving the best sched-
ule is not guaranteed [GCHM04], to optimal methods, where eventually many complete
schedules have to computed [CMPS06]. By employing the monotonic character of the
Riccati equation (1), the computational demand can be drastically reduced by early prun-
ing paths that lead to suboptimal schedules. Comparing two paths leading from time step
n to N with differing initial sensors i and j but otherwise identical sensors along the path,
the path of sensor i can be pruned, if the following two conditions are satisfied:

1. C(x,i)
n+1 > C(x,j)

n+1 , where ’>’ implies that C(x,i)
n+1 − C(x,j)

n+1 is positive definite,

2. V (u0:n,i) > V (u0:n,j).

Thus, it is not necessary to calculate complete schedules to decide if early pruning is
possible, while on the other hand conserving optimal schedules is guaranteed. Proofs and
quantitative analyses are omitted due to space limitation.

4 Simulation Results

For simulations a sensor network with S = 3 sensor nodes is considered. A two-dimensional
system is observed for N = 8 time steps and is characterized by Ak = I, Bk = I, and
Cw

k = 0.05I, where I is the identity matrix. Furthermore, g( · ) in (2) is the trace. Initially,
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the system state is x̂0 = [0, 0]T with covariance matrix Cx
0 = 0.5 I. The measurement

matrices and noise covariance matrices of the sensors are

H1
k = 0.5 I , C(v,1)

k = 2 I , H2
k =

[
0 1
0 1

]
, C(v,2)

k = I , H3
k =

[
1 0
1 0

]
, C(v,3)

k = 0.1 I .

The communication error probability between sensor node 1 and 2 is 0.7, between node
2 and 3 it is 0.5, and between node 1 and 3 it is 0.3. For comparison two further sen-
sor scheduling methods are used: The method denoted by NS omits measurement up-
dates when communication fails, while ES selects sensors as communication would be
error-free and thus provides the lower error bound. 10 Monte Carlo simulation runs are
performed. In Fig. 1, one of these simulation runs is depicted. It is obvious that the
prioritization used in the proposed approach (PS) significantly outperforms NS, while
being relatively close to the lower bound. According to this the root means square er-
ror RMSPS = 0.69 of PS with respect to the lower bound over all runs is lower than
RMSNS = 1.65 of NS.

5 Conclusions and Future Work

A novel sensor scheduling approach that explicitly considers unreliable communication
has been presented. By priorizing individual sensors, the best reachable sensor for specific
time instants can be selected for measurement. This approach can be extended in many
ways. Especially weakening the assumptions in Section 3.1 is relevant for practical appli-
cation, e.g. knowing the communication loss probability improves the estimation quality.
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