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Abstract: Modularity is a desirable characteristic for software systems. In this article
we propose to use a quantitative method from complex network sciences to estimate
the coherence between the modularity of the dependency network of large open source
JAVA projects and their decomposition in terms of JAVA packages. The results pre-
sented in this article indicate that our methodology offers a promising and reasonable
quantitative approach with potential impact on software engineering processes.

1 Introduction

The modularity of a software architecture is considered a key feature that contributes to the

sustainability of large scale software projects [PCW85]. Ideally, modularization fosters the

decoupling of software development efforts, which can then be performed independently

if a binding standard interface is established. As the software evolves in time, modula-

rity might even favor its maintainability and expandability. If the development of a given

system is meant to be sustainable, the amount of effort required to perform modifications

in the software architecture must be compatible with the resources (time, human, etc)

available at any time. Therefore monitoring the modularity of an evolving software sys-

tem promises to be an important step towards a sustainable software development regime,

however such a task would be tedious and slow if performed manually.

In this article we propose an efficient automatic quantitative approach to estimate the co-

herence between the modularity of the dependency network of large open source JAVA

projects and their decomposition in terms of JAVA packages. Our method is based on the

well-established complex networks framework [AB02][New03b]. In order to adopt this

framework, the first necessary step is to restate software modules and software systems in

terms of network structures (see [HR92][Mye03][Koh09][GS11]).

Through a network perspective, it is straightforward to visualize that the expected func-

tionality of a software module is provided by the cooperation of fundamental software

entities (functions, classes, procedures, etc) which perform the necessary operations. Thus

a software module is a mesoscopic abstraction for a collection of entities acting micro-

scopically. At the mesoscopic scale, software modules themselves become interdependent
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when integrated into a software system. Therefore the challenge in modularization of soft-

ware consists in clustering highly dependent microscopic software entities, which are then

packaged into software modules by minimizing the number of dependencies across mo-

dules after a system integration. This can be directly mapped to the software engineering

literature, where modularity is defined as a high degree of intra-module cohesion and low

inter-module coupling [GJM03]. As an example, since the number of dependencies across

modules is expected to be minimized, a modular system is relatively easy to be upgraded

through the replacement of an obsolete software module by a new one.

Our contribution is based on a quantitative metric that measures the coherence between

the decomposition of a software system into software modules and the cluster structures

found in the network model of the software at a microscopic scale. However, here we do

not attempt to construct module mappings that optimize this coherence. We only monitor

the modularity of a software system already decomposed in terms of software modules.

For this, we use a quantitative metric which describes a macroscopic property of a system

composed of microscopic and mesoscopic structures (software dependencies and modular

decomposition respectively). In other words, our method can measure the global impact of

modifications made locally during the time evolution of a given software project. To illus-

trate the dynamics of this process, we study the time evolution of the degree of modularity

expressed through our method for 28 open source JAVA projects. Our dataset contains

different versions of the source code which were extracted periodically from the respec-

tive online software repositories. We argue that the application of the complex systems

framework in the study of software systems provides valuable insights into the software

engineering processes and the sustainability of large scale software projects.

In section 2 we present the details of our implementation and approach. Section 3 discusses

our preliminary results and in section 4 we comment on related work. Finally, in section 5

we conclude our work and we then elaborate on further research ideas.

2 Methodology

The starting point of our methodology is the re-expression of source code dependencies

in terms of network structures. Conceptually, such an approach will differ for the targeted

programming language and programming paradigm.

We choose to focus our efforts on software written in JAVA, for it is an object-oriented

programming language which suggests a straightforward re-interpretation in terms of net-

works: JAVA classes are taken as network nodes, while a network edge will connect any

two nodes if the corresponding JAVA classes share at least one software dependency (call,

access of property, inheritance, etc). Another relevant aspect of JAVA is its built-in support

for software modularization through the assignment of classes to packages. Last but not

least, JAVA is a very popular programming language among free and open source software

developers, and therefore plenty of examples containing the complete source code evolu-

tion is available online in software repositories and web software development platforms,
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such as GITHUB
1 and SOURCEFORGE

2.

Figure 1 presents a visual example of the software network resulting from the application

of the aforementioned method to one of the versions of the source code of ASPECTJ, which

is a JAVA framework supporting the implementation of software using the aspect-oriented

programming paradigm. In our dataset, this network grows from 654 up to 1651 nodes

(classes). In this example, each color represents the package membership (module) of each

class found in source code. This network perspective on source code can be extended in a

relatively easy way to other programming languages and paradigms. See [HR92][Mye03]

for more examples and approaches.

Figure 1: Visualization of the modular network structure of ASPECTJ as of 01-Aug-2004 (only the
largest set of nodes connected via direct or indirect edges - largest connected component). This
visualization was generated by GEPHI [BHJ09].

1https://github.com/
2http://sourceforge.net/
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As demonstrated in Figure 1, the visualization of network structures is a very useful tech-

nique for the analysis of the modularity of a given software architecture. However, a

quantitative approach is still desirable since it allows us to capture the structural organiza-

tion of a network in terms of a single numeric measure. This can be used to analyze the

time evolution of a modular software architecture and can also be applied in a statistical

correlation analysis when considering different quantitative metrics.

In recent years, the network sciences community has developed a number of quantitative

metrics which capture structural features like e.g. clusters as well as the impact of nodes,

clusters or any other structural entities on dynamical processes like e.g. information or

failure spreading, consensus, opinion formation or synchronization [New10]. According

to our needs, we adopt a network metric which was first used to study assortative mixing

in networks, which is the tendency for network nodes to be connected to other nodes that

are like (or unlike) them in some way [New03a]. Assuming that sharing the same module

membership makes nodes alike (and unlike otherwise), this metric could then be used to

measure the modularity of network structures [NG04]. For a given definition of modules

or clusters and their underlying network structure, its respective degree of modularity is

defined by

Q =
n

i eii −
n

i aibi

1 −
n

i aibi
(1)

where eij is the fraction of all edges in the network that link nodes in module i to nodes

in module j, ai =
n

j eij , bi =
n

j eji (column and row sum respectively) while n is the

total number of existing modules. If the network is an undirected graph the matrix defined

by e is symmetric and ai = bi [New03a]. The metric defined by equation (1) measures

the fraction of network edges that connect nodes within the same module (
n

i eii) minus

the expected value of the same quantity measured from a random network with the same

node/module allocation (
n

i aibi). If the first is not better than random Q = 0 [NG04].

However, Q would not be defined if all edges are concentrated within a single module

because the scaling factor 1 −
n

i aibi = 0 (no modular structure). In such a case we

define Q = 0 as well. In general, Q ∈ [−1, 1], i.e. the more modular the network, the

closer Q is to 1. Figure (2) provides two examples of networks and their respective Q

scores.

Figure 2: Two examples of undirected networks where nodes (circles) with the same color are part
of the same module. (left) modular network Q=0.8499. (right) random connectivity Q=0.0545.
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In the analysis of software structures, this metric is useful because in many cases the

definition of modules is given by means of programming constructs like classes, files,

namespaces or packages. The Q–metric can thus be used to study how well the cluster

structures in the network of dependencies correspond to the modular decomposition of a

project in terms of packages, namespaces, etc. We applied the Q-metric in an analysis of

the evolution of the modularity of the software architecture of a set of JAVA open source

projects and we discuss our preliminary results in section 3.

3 Preliminary Results

Our analysis is based on a dataset containing the detailed time evolution for the source

code of 28 open source JAVA projects. The snapshots of the source code of each project

were extracted from the respective CVS online software repositories, on a monthly basis.

Table 1 displays the recorded period for each project. Most of those projects are hosted at

SOURCEFORGE and were selected because they were the largest (number of classes) at the

time the dataset was collected. The single exception is ECLIPSE, which has its own online

facilities3. The source code for ECLIPSE was thus obtained through a different setup.

For each project the CVS change history and class dependence structure were extracted,

processed and stored in a directed graph format, i.e. (c1, c2, T ) which reads as c1 depends

on c2 at time T .

Table 1: The 28 JAVA projects which compose our source code evolution dataset. Most of those
projects were extracted from the respective CVS software repositories hosted by SOURCEFORGE.

project name record start record end project name record start record end

architecturware 2004-04-01 2007-12-01 jnode 2003-06-01 2005-12-01

aspectj 2003-01-01 2008-02-01 jpox 2003-09-01 2006-12-01

azureus 2003-08-01 2008-01-01 openqrm 2007-04-01 2008-03-01

cjos 2000-11-01 2007-12-01 openuss 2003-06-01 2006-12-01

composestar 2003-12-01 2005-12-01 openxava 2004-12-01 2007-12-01

eclipse 2001-05-01 2008-03-01 personalaccess 2004-11-01 2007-12-01

enterprise 2002-11-01 2007-12-01 phpeclipse 2002-08-01 2007-12-01

findbugs 2003-04-01 2007-12-01 rodin-b-sharp 2005-11-01 2007-12-01

fudaa 2003-02-01 2007-12-01 sapia 2002-12-01 2007-12-01

gpe4gtk 2005-08-01 2006-12-01 sblim 2001-07-01 2007-12-01

hibernate 2001-12-01 2005-12-01 springframework 2003-03-01 2007-12-01

jaffa 2003-03-01 2007-12-01 squirrel-sql 2001-12-01 2007-12-01

jena 2001-02-01 2008-02-01 xmsf 2004-02-01 2007-12-01

jmlspecs 2002-03-01 2007-12-01 yale 2002-04-01 2008-02-01

Using the schema described in section 2, we applied the Q-metric to the network extracted

from each snapshot within the recorded period. In order to facilitate the presentation of the

time evolution of these projects, we first compose all projects into four groups, according

to the degree of fluctuation of the Q–metric. In Figure 3, we thus compute the mean

3http://www.eclipse.org
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fluctuation in time of the Q-metric, i.e. < Q(t + 1) − Q(t) > where t and t + 1 are

consecutive snapshots of the software and the average < · > is over all snapshots in the

dataset. This approach captures the average incremental change of the Q-metric over the

observation period. In the same figure, we also show the standard deviation of Q(t+ 1)−
Q(t), which captures the degree of fluctuation of the changes in modularity over the same

period. We performed a ranking of projects along both the average incremental change

and the fluctuations of modularity and these rankings are indicated in the abscissae of the

respective plots (see Figure 3).
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Figure 3: Ranking software projects using the Q-metric. (left) ranking by average incremental
change of the Q-metric over the observation period, estimated with < Q(t + 1) − Q(t) >. (right)
ranking by degree of fluctuation of the changes in the modularity over the studied period, estimated
with σ(Q(t+ 1)−Q(t)).

The resulting plot, with the projects grouped and ranked by the average incremental change

of Q (see the left pannel of Figure 3), is shown in Figure 4. Here, we observe that the Q-

metric effectively classifies projects according to different dynamic regimes. In Figure 3

(left) we can for instance focus on those projects that increase or decrease the software

modularity, while Figure 3 (right) can be used to study the most dynamical and the most

stable software development regimes.

In the following we discuss two projects with contrasting evolution of modularity in more

detail. In particular, for this we chose the projects AZUREUS, which is a torrent client

being one of the projects with the largest average decrease in the Q-metric, as well as

JENA which is a framework for building semantic web applications. In our dataset JENA

actually shows one of the largest average increase of Q (see the left plot in Figure 3). In

Figure 5, the time trajectory of the evolution of Q is shown for both projects as a function

of the total number of classes. As indicated in the Figures 5(a) and 5(b), three snapshots

of the source code have been selected which cover the states of minimum and maximum

modularity, as well as an intermediate state.
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Figure 4: Time evolution of the Q-metric score for each project in our dataset. The projects were
sorted by the mean fluctuation in time of the Q-metric, i.e. < Q(t+ 1)−Q(t) >, and displayed in
increasing order of value (top-to-bottom). (top) highest mean decrease in Q. (bottom) highest mean
increase in Q.
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Figure 5: Detailed time evolution of the Q-metric for AZUREUS and JENA.

(a) 2003-10-01 (b) 2003-11-01 (c) 2004-06-01

(d) 2001-02-01 (e) 2001-10-01 (f) 2003-01-01

Figure 6: Three snapshots of the dependency networks of the projects AZUREUS (a-c) and JENA

(d-f). Node colors in the individual networks indicate the decomposition in JAVA packages.
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In Figure 6, we show the dependency networks for the snapshots mentioned above. These

networks have been created according to the methodology described in section 2, i.e. each

node represents a JAVA class, while a dependency indicates a call, inheritance or usage

relationship. Furthermore, nodes have been colored according to package membership.

In order to visualize the coherence between the package decomposition of the classes and

the modular organization of the dependency network, the networks have been layouted

with the force-directed Yifan-Hu layout algorithm [Hu05], which spatially organizes nodes

according to cluster structures. In particular, nodes in networks with highly modular struc-

tures will be densely clustered in the resulting layouts and the modules will become clearly

distinguishable. In the resulting networks we can visually examine how well the modular

structures of the dependency network match the package structure of a project and thus

obtain a visual impression of the module coherence expressed by the Q-metric.

The effect of the different dynamical regimes in terms of the evolution of the Q-metric

can easily be seen in the respective network structures. For the AZUREUS project, which

is shown is Figures 6(a) - 6(c), the coherence of the modular structure of the network of

software dependencies with the package decomposition actually worsens over time, thus

making it difficult to clearly separate packages in the resulting network structure. On the

contrary, the evolution of the JENA project shows a very different dynamics. While the

growth in terms of the number of nodes, packages and dependencies is in the same order

of magnitude, the project maintains and even improves its modular decomposition, as is

clearly shown in the Figures 6(d) - 6(f). From a software engineering perspective, the

structure of JENA shown in Figure 6(f) is favorable, since it allows for an easy decompo-

sition, maintenance and replacement of individual packages. One of the possible reasons

for the discrepancy between JENA and AZUREUS is that the first is a framework aimed at

an audience of developers. Thus, its structure must be well organized to facilitate its adop-

tion, while the second is an end-user application and therefore the focus is on functionality

rather than structural quality.

We are currently working on the extension of our approach in a way in which we hope

to uncover the full potential of the Q-metric and its correlation with other software deve-

lopment processes, by modeling this dynamics as a simple network growth process with

an underlying modular decomposition. This is the subject of ongoing research [ZSTS12].

Along the way we aim at improving our research methodology with more insights based

on the network science framework as well as aligning it with existing results from the soft-

ware engineering community. Prior to concluding this article and giving details on future

research, in the next section we comment on related work.

4 Related Work

One of the eye catching features of the time evolution of the Q-metric, as presented in

Figure 4, is the large fluctuation of Q at early stages of the project development. This is in

accordance with results reported in [TGS11]. There, it was shown that young open source

software projects display an accelerated growth rate while mature projects stabilize their

dynamics and can grow further in a sustainable regime.
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Another possible, complementary, reason for fluctuations are refactoring events, where

software is usually rewritten or restructured in order to improve multiple features such

as functionality, flexibility, reusability or structural quality. Such events could lead to

the sudden jumps observed in Figure 4 along the time evolution of a software project.

In [DDN00], refactoring metrics are proposed which take into account the dynamics of

changing code. This line of research is well aligned with our purposes and can be easily

adapted and augmented by our network perspective on software development processes.

For an early attempt of the application of network science to the analysis of software

engineering processes we recommend [Mye03], which also contains a short review of

classical approaches used in the software engineering literature. Finally, a recent article

published in the PNAS journal used a similar network approach, though with a different

metric, to study modularity of code and its relation to module survival, drawing a parallel

to ecological systems and making use of a predator-prey model variation [FBL11].

5 Conclusion and Outlook

The results presented in section 3 indicate that the Q-metric known from the analysis of

cluster structures in network science is a promising and reasonable approach to quantify

the coherence between the package decomposition of large software projects and their

dependency structures. As such, it constitutes a macroscopic measure that allows us to

monitor and evaluate software engineering processes and reason about the sustainability

of software architectures. In particular, it provides a simple mapping from local deve-

lopment activities to their respective impact on the mesoscopic and macroscopic structures

of software systems. One of the problems of the current version of the Q–metric is that

it is not scaled according to the size of the corresponding network, therefore making it

hard to compare the Q score of different projects with vastly different sizes. This is a

well known issue [FB07]. Although the current metric offers interesting insights, a further

problem is that it is being influenced by intra-module dependencies. However it would

be more thoughtful to look at the impact of inter-module dependencies because these are

the most relevant dependencies in a modular structure. Last but not least, JAVA packages

which were used as proxy for modularity in JAVA source code have a hierarchical struc-

ture. Therefore, dependencies between packages a.b.c.d and a.b.c.e are of less concern

than between packages a.b.c.d and x.y.z.

While all these issues are the subject to future investigations, our study already foreshad-

ows a number of interesting research questions: How does the evolution of Q impact the

sustainability of distributed software engineering efforts? Can the incorporation of such

macroscopic measures into software development tools improve the design and mainte-

nance of software architectures? How is the dynamics of Q over the lifetime of software

projects correlated with software development acts like refactoring or bug fixing? How

is it correlated with social aspects, coordination acts or communication processes taking

place between developers? Intuitively, one would assume that a reasonable modular de-

composition of complex software systems facilitates distributed development processes

and mitigates change propagation between interdependent modules. An interesting future
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work is thus to augment the results in this paper with data on coordination and communica-

tion acts in the respective projects. In this line of arguments, a further interesting question

is whether the pronouncedness of modular structures in the dependency network allows us

to infer statements about the hierarchical organization of development teams.

While the exploration of these questions in this study has been necessarily incomplete, we

argue that the associated line of research is a good demonstration for the potential impact

of complex systems science on the engineering of complex software systems.
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