
René Röpke und Ulrik Schroeder (Hrsg.): 21. Fachtagung Bildungstechnologien (DELFI),

Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 23

cba doi: 10.18420/delfi2023-02

Automatic feedback and hints on steps students take when
learning how to program

Johan Jeuring 1

Abstract: Every year, millions of students learn how to write programs. Learning activities for

beginners almost always include programming tasks that require a student to write a program to

solve a particular problem. When learning how to solve such a task, many students need feedback

on their previous actions, and hints on how to proceed. For tasks such as programming, which are

most often solved stepwise, the feedback should take the steps a student has taken towards

implementing a solution into account, and the hints should help a student to complete or improve a

possibly partial solution. In this talk I will give an overview of the approaches to automatic feedback

and hints on programming steps and discuss our research on how to evaluate the quality of feedback

and hints. I will also take the opportunity to involve the audience in some of the dilemmas we are

facing.

Keywords: Programming education, feedback, automatic feedback and hints, stepwise solutions

Introduction

Every year, millions of students study some form of computing. In many countries,

computer science is part of the obligatory part of the secondary school curriculum, many

universities offer computing programs, and at quite a few universities it is one of the

largest programs. A computer science program consists of many components, but every

program includes at least one module on learning to program.

Learning to program can be done in many ways. It involves amongst others understanding

and decomposing a problem, and planning, implementing, and evaluating a solution

[RRR03]. When learning to program students may solve Parsons problems, trace code,

complete a program with a hole, etc. At some stage in their learning, a student needs to

write (part of) a program.

When learning, a student needs feedback [Ra05]. Feedback can be defined as information

provided to a learner relating to their skills or understanding as demonstrated on a task or

in the completion of a task; usually after instruction [HT07]. Hattie and Timperley propose

that effective feedback answers three key questions: <Where am I going?= (Feed-up),

<How am I going?= (Feed-back), and <Where to next?= (Feed-forward). Feed-up is about

the reason why a student should complete a task and is related to the learning goals of the

1 Utrecht University, department of Information and Computing Sciences, Utrecht, NL, j.t.jeuring@uu.nl,

https://orcid.org/0000-0001-5645-7681

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/delfi2023-02
mailto:j.t.jeuring@uu.nl
https://orcid.org/0000-0001-5645-7681
https://orcid.org/0000-0001-5645-7681

24 Johan Jeuring

task. Feed-back analyses and gives information about a learner’s progress on a task. Feed-

forward, finally, consists of help to move students from their current level of

understanding towards task mastery.

The influence of feedback on student achievement is well established, with the potential

to lead to significant learning gains [KD96]. The effects of feedback vary a lot, depending

on the kind of feedback that is provided. Feedback can be on the level of self (<Well
done!=), task (<The input-output behavior of your solution is not expected behavior=),
process (<First write some test cases before you start on the implementation of the

solution=), and self-regulation (<Did you watch the video about testing?=). These levels

all vary in their influence on student outcomes, but there is some proof that the latter three

categories lead to better results.

Computing education research has studied the potential of providing automatic grading

and feedback [Al05,KJH18,Me23] to both realise the potential advantages of providing

feedback, and address the large numbers of students taking programming courses and the

lack of computer science teachers in many countries. There are many environments that

(may) support beginners learning how to write a program, including intelligent tutoring

systems [CLW18], online coding environments (Codecademy, Datacamp, Khan academy,

Code.org, and many more), and educational games [GX20]. In addition, LLM-based tools

such as ChatGPT and Github Copilot may also be helpful in providing feedback to

beginners [He23]. Some of these learning environments give automatic feedback on

(sometimes partially finished) student solutions, and hints on how to proceed.

Feedback and hints need to be of good quality to support learning. But when do students

need feedback and hints when learning how to program, how should it be given, and how

can it be automatically generated? How do the general principles for feedback described

above translate to the situation in which a student is writing a program? Designers of

learning environments make different choices here. How can we evaluate the quality of

the feedback and hints provided by the different learning environments?

An ITiCSE Working Group tried to answer the above questions by collecting datasets of

steps students take when solving programming problems and annotating these datasets

with feedback [Je22]. It turned out that there was quite some disagreement among different

experts on providing feedback on student programs. Together with several colleagues, I’m

currently working on trying to gain more insight into why experts disagree on giving

feedback.

In this talk I will give an overview of the approaches to automatic feedback and hints on

programming steps and discuss our research on how to evaluate the quality of feedback

and hints. I will also take the opportunity to involve the audience in some of the dilemmas

we are facing.

Automatic feedback and hints on steps students take when learning how to program 25

Acknowledgements

This work builds upon the work of the 2022 ITiCSE working group on <Steps learners
take when solving programming tasks, and how learning environments (should) respond

to them=. Together with Hieke Keuning, Nathalie Kiesler, and Dominic Lohr, I am looking
further into how experts would give feedback on programming steps of students learning

to program.

Bibliography

[Al05] Ala-Mutka, K. M.: A survey of automated assessment approaches for programming

assignments. Computer science education, 15(2), 83-102, 2005.

[CLW18] Crow, T.; Luxton-Reilly, A.; Wuensche, B.: Intelligent tutoring systems for

programming education: a systematic review. In Proceedings of the 20th Australasian

Computing Education Conference (pp. 53-62), 2018.

[GX20] Giannakoulas, A.; Xinogalos, S.: A review of educational games for teaching

programming to primary school students. In Handbook of Research on Tools for

Teaching Computational Thinking in P-12 Education, 2020.

[HT07] Hattie, J.; Timperley, H.: The power of feedback. Review of educational research 77.1,

81-112, 2007.

[He23] Hellas, A.; Leinonen, J.; Sarsa, S.; Koutcheme, C.; Kujanpää, L.; Sorva, J.: Exploring

the Responses of Large Language Models to Beginner Programmers' Help

Requests. arXiv preprint arXiv:2306.05715, 2023. To appear in ICER 2023.

[Je22] Jeuring, J.; Keuning, H.; Marwan, S.; Bouvier, D.; Izu, C.; Kiesler, N.; Lehtinen, T.;

Lohr, D.; Peterson, A.; Sarsa, S.: Towards Giving Timely Formative Feedback and Hints

to Novice Programmers. In Proceedings of the 2022 Working Group Reports on

Innovation and Technology in Computer Science Education, 95-115, 2022.

[KJH18] Keuning, H.; Jeuring, J.; Heeren, B.: A systematic literature review of automated

feedback generation for programming exercises. ACM Transactions on Computing

Education (TOCE), 19(1), 1-43, 2018.

[KD96] Kluger, A. N.; DeNisi, A.: The effects of feedback interventions on performance: a

historical review, a meta-analysis, and a preliminary feedback intervention

theory. Psychological bulletin, 119(2), 254, 1996.

[Me23] Messer, M.; Brown, N. C.; Kölling, M.; Shi, M.: Automated Grading and Feedback

Tools for Programming Education: A Systematic Review. arXiv preprint

arXiv:2306.11722, 2023.

[Ra05] Race, P.: Making learning happen – A guide for post-compulsory education. Sage, 2005.

[RRR03] Robins, A.; Rountree, J.; Rountree, N.: Learning and teaching programming: A review

and discussion. Computer science education, 13(2), 137-172, 20

