
B. Juurlink, W. Karl (Hrsg.)
Proceedings 28th PARS Workshop

A Quantitative Analysis of Processor Memory Bandwidth of
an FPGA-MPSoC

Robert Drehmel1, Matthias Göbel2, Ben Juurlink3

Abstract: System designers have to choose between a variety of different memories available on
modern FPGA-MPSoCs. Our intention is to shed light on the achievable bandwidth when accessing
them under diverse circumstances and to hint at their suitability for general-purpose applications. We
conducted a systematic quantitative analysis of the memory bandwidth of two processing units using
a sophisticated standalone bandwidth measurement tool. The results show a maximum cacheable
memory bandwidth of 7.11 GiB/s for reads and 11.78 GiB/s for writes for the general-purpose
processing unit, and 2.56 GiB/s for reads and 1.83 GiB/s writes for the special-purpose (real-time)
processing unit. In contrast, the achieved non-cacheable read bandwidth lies between 60 MiB/s and
207 MiB/s, with an outlier of 2.67 GiB/s. We conclude that for most applications, relying on DRAM
and hardware cache coherency management is the best choice in terms of benefit-cost ratio.

Keywords: Memory Bandwidth; MPSoC; Interconnects

1 Introduction

As MPSoCs evolve into more complex devices containing increasingly heterogeneous
processing units, a growing variety of specialized memories becomes available to developers.
Although logically connected to a single system bus, the processors and memories in modern
MPSoCs are physically connected using an intricate net of interconnects with distinctive
performance characteristics. As interconnects are often seen as the limiting factor of SoC
performance[1], being aware of their influence on bandwidth can play an important role
in the process of designing a system. The achievable bandwidth when accessing different
memories depends on various factors, e.g. the processor’s performance, the pathway of
interconnects between the processor and the memory, and the cacheability associated with
the memory region. To make informed decisions about which memory to use for a given
task, developers need to understand their capabilities and limitations and need to be able to
compare their performance systematically.
1 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

drehmel@campus.tu-berlin.de
2 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

m.goebel@tu-berlin.de
3 Technische Universität Berlin, Embedded Systems Architecture, Einsteinufer 17 (6. OG), 10587 Berlin, Germany

b.juurlink@tu-berlin.de

drehmel@campus.tu-berlin.de
m.goebel@tu-berlin.de
b.juurlink@tu-berlin.de

Robert Drehmel, Matthias Göbel, Ben Juurlink

The main contribution of this paper is a systematic and comprehensive evaluation of the
processor memory bandwidth achievable using the different processing units of the Xilinx
Zynq Ultrascale+ MPSoC line.

This paper is organized as follows. Section 2 discusses related work, section 3 gives a brief
overview of the platform used, section 4 outlines the design and implementation of the
bandwidth measurement tool, section 5 details the experimental setup and presents the
results of the evaluation. Finally, section 6 draws conclusions based on the results.

Note that in the following, when using the term memory bandwidth, we mean the observed
bandwidth (or throughput) when accessing a certain memory, including and emphasizing the
multiplicity of components involved in the process, like caches, store buffers, interconnects,
memory controllers, and the memory itself.

2 Related Work

Göbel et al.[2] conducted thorough system bus bandwidth analyses of chips from the
previous generation of FPGA-MPSoCs: the Intel Cyclone-V, the Xilinx Zynq-7020, and
the Zynq-7045. Choi et al.[3] evaluated specialized systems with an FPGA and processor
combination, i.e. Intel Xeon E5-2680v2/Stratix V on an Intel HARP board and Intel Xeon
E5-2620v3/Xilinx Virtex 7 on an Alpha Data board.

Closely related to our work, Bansal et al.[4] recently evaluated the memory subsystem
of the Zynq Ultrascale+, but with a focus on giving advice for the design of real-time
applications. They measured bandwidth only for a single processing unit running Linux to
three different memories for a specific amount of time (5 seconds) and using unspecified
instructions generated by the compiler. In contrast, we measured sequential accesses for
varying transfer sizes to four different memories using a sophisticated standalone application,
for two processing units, and for two types of instructions.

3 Xilinx Zynq Ultrascale+

A chip of the Zynq Ultrascale+ series provides an Application Processing Unit (APU)
and a Real-Time Processing Unit (RPU)[5]. The APU consists of an ARM Cortex-A53
processor[6] with four cores, each with 64 KiB L1 cache (separate 32 KiB for instructions
and data) and a shared 1 MiB L2 cache. The RPU consists of two single-core ARM
Cortex-R5 processors[7], each with 32 KiB L1 cache (combined for instruction and data).
One of the two main regions of the chip, the Processing System (PS), contains common
MPSoC components; the other one, the Programmable Logic (PL), holds the integrated
FPGA fabric. We used the Zynq Ultrascale+ ZU9EG chip for our tests. It supplies the system
designer with memories of four main categories, namely

• external Dynamic RAM (DRAM) through an memory controller integrated in the PS,

 Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

• 256 KiB On-Chip Memory (OCM),
• 256 KiB Tightly-Coupled Memory (TCM), 128 KiB coupled to each Cortex-R5 of

the RPU, again divided into two separate 64 KiB blocks (ATCM and BTCM),
• 32.1 MiB Block RAM (BRAM) in 912 blocks in the PL.

Some chips of the series include so-called UltraRAM on-chip memory in the PL. Unfortu-
nately, this is not the case with the ZU9EG, therefore we were not able to include this kind
of memory in our tests.

4 Benchmark Tool
The core functionality of our benchmark tool is to measure the time it takes the processor to
complete the execution of a bandwidth test function in a specific execution context. The
context of the execution of the test function – and the arguments passed to it – are highly
parameterizable.

The tool allows the user to set parameters to

• select various forms of cacheability for inner and outer domains (ARM-specific),
• select the ISA to use for the memory access (base or Adv. SIMD)[8][9],
• select the access type (read or write),
• select the width of the memory transfer (in powers of two),
• enable or disable the data cache,
• specify the number of rounds of reading and writing before the measurements (to fill

the cache with read-allocate and write-allocate, respectively),
• select the shareability domain (ARM-specific), and
• enable or disable APU coherency (Zynq Ultrascale+-specific).

The user can define a stack of functions to automatically gather results for a set of parameters.
Each function included in the stack iterates through all possible values of a single parameter
and calls the next function in the stack after setting a new value. The last function in the
stack is the test run function that evaluates all the currently set parameters, sets up the
context (e.g., hardware configuration and memory attributes) accordingly and runs the test.
The results for each test run are saved along with the parameters used for the test. After all
tests completed, the user can query the result database for further processing, for example
to perform advanced analyses to find statistical anomalies or to generate plots in LATEX
documents.

To retain full control of the hardware configuration, we developed our benchmark tool
as a bare-metal application using Xilinx’s standalone library. The tool currently supports
Cortex-A53 and Cortex-R5 processors through a hardware abstraction layer that provides
functionality like management of hardware cycle counters, caches, Memory Protection
Units (MPUs), and Memory Management Units (MMUs).

The hardware abstraction layer also provides a set of hand-optimized read and write
benchmark test functions. For a given processor, if 2Wbus bytes is the width of the master

Robert Drehmel, Matthias Göbel, Ben Juurlink

Processor Mnemonic Access width (bytes) ISA Type

APU LDP 2 · 8 = 16 ARMv8-A load
APU STP 2 · 8 = 16 ARMv8-A store
APU LD1 8 · 8 = 64 ARMv8-A Adv. SIMD load
APU ST1 8 · 8 = 64 ARMv8-A Adv. SIMD store
RPU LDM 8 · 4 = 32 ARMv7-R load
RPU STM 8 · 4 = 32 ARMv7-R store
RPU VLDM 8 · 8 = 64 ARMv7-R Adv. SIMD load
RPU VSTM 8 · 8 = 64 ARMv7-R Adv. SIMD store

Tab. 1: Instructions used in the bandwidth test functions

interface to the system bus, and 2Winsn bytes is the largest number of bytes transferable with
a single instruction, for each n in [Wbus : Winsn] an optimized function is provided that
transfers 2n bytes in one loop iteration. Assuming Wbus ≤ Winsn, for a test width of Wtest
bytes, the function that is optimized to transfer Wf bytes is selected, where

Wf =

Wbus : Wtest ≤ Wbus
Wtest : Wbus < Wtest < Winsn
Winsn : Wtest ≥ Winsn

Each function is provided in all four possible combinations for read/write access types and
base ISA/Adv. SIMD instructions. Table 1 shows the instructions used in the bandwidth test
functions and their corresponding access widths.

To configure the caching behavior for the Cortex-A53, the tool sets the memory attributes
in the page table entries corresponding to the tested memory region to normal memory,
inner/outer non-cacheable and normal memory, inner/outer write-back to test non-cacheable
and cacheable accesses, respectively. We found that disabling the data cache (by clearing
the C bit in the SCTRLR_ELx register) can have a different effect (i.e. reduced bandwidth) than
marking a region non-cacheable in its page table entries. We attribute this to the fact that
clearing the abovementioned bit disables the data cache and the unified caches, and has
non-intuitive effects such as preventing the caching of page table memory.

The boot code of the standalone library for the Cortex-R5 installs a default MPU configuration
that includes a region that spans the first 2 GiB of the address space. On the Zynq Ultrascale+,
the ATCM is mapped to 0x0 for each Cortex-R5. The code and data segments, the heap, and
the stack of the bandwidth tool are held in a region starting at 0x10000000. We use a region
starting at 0x20000000 to test the DRAM. So instead of a single memory region that spans
the first 2 GiB of the address space, beginning at the start of the address space, the tool
configures three consecutive memory regions that each span 256 MiB. This is necessary to
change the cacheability attributes for the TCM and the DRAM without interfering with the
cacheabilty of the region the bandwidth tool runs in.

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

5 Evaluation

In the following, we first detail the experimental setup and subsequently present the
quantitative results gathered.

5.1 Experimental setup

The benchmark tests use the following fixed parameters: enabled data cache, four rounds
of prefilling the data cache with reads (read-allocate), zero rounds of prefilling the data
cache with writes (write-allocate), outer shareability domain, and enabled APU coherency.
We are basing our decision to leave the APU coherency enabled on the premise that most
system designers will keep it enabled – it is the default setting and is useful for all except a
minority of special applications.

We ran tests for every combination of the parameters processor (APU/RPU), caching
(write-back/non-cacheable), memory (DRAM/OCM/ATCM/BRAM), instruction type/ISA
(base ISA/Adv. SIMD), and access type (read/write), and transfer size (N + 1 different
transfer sizes, 20 to 2N bytes, where 2N bytes is the size of the memory region tested).
Every test was run 1000 times and averaged accordingly.

We tested memory accesses to 16 MiB DRAM, 256 KiB OCM, 64 KiB ATCM, and 1 MiB
BRAM. The ZCU102 board used for the evaluation has 4 GiB of DDR4 memory (2133
MHz) installed. Although the four 64 KiB TCMs available on the chip can be mapped into
a consecutive 256 KiB region, this is only possible when both Cortex-R5 processors are
running in lock-step mode (coupled execution of both processors). A more common mode
of operation is the antithetic split mode (separate execution of both processors), in which
each processor can only access its own (non-consecutively-mapped) ATCM and BTCM.
These and other particularities of the TCM as implemented in the Zynq Ultrascale+ are
described in detail in [5]. We decided to choose a single 64 KiB ATCM as the TCM test
region to cover a broader range of potential applications. The 1 MiB of BRAM (128 bit
data width and 64 KiB depth) consist of 256 RAMB36 BRAM blocks (a utilization of
roughly 28%) generated by a Xilinx Block Memory Generator [10], connected to a Xilinx
AXI BRAM Controller [11] that is in turn connected to the PS using the HPM0 port.

5.2 Results

Non-cacheable APU memory access. First, we discuss the bandwidth results for non-
cacheable APU memory accesses as displayed in figure 1. Results for reads and writes
both show the maximum sustainable bandwidth. Non-cacheable read bandwidth only
increases with the size of memory transferred (a slope similar to figure 5b). This is a trivial
consequence of a decreasing percentage of time spent processing the prologue and epilogue
instructions of the test function. Reading using the base ISA provides roughly twice as much

Robert Drehmel, Matthias Göbel, Ben Juurlink

cba

5.49 5.49
5.11 5.18

8.41
8.03

7.95 7.95

DRAM OCM ATCM BRAM
0
1
2
3
4
5
6
7
8
9

10

0.14 0.17
0.12 0.15

5.49 5.49

1.89
3.2

0.07 0.09
0.06 0.08

7.78

6.63

1.89
3.2

Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 1: Bandwidths of non-cacheable APU memory accesses (for the largest tested transfer size).

cba

denotes unsustainable or short-term write bandwidth.

cba

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9

10

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9
10

Transfer size (bytes)

(a) Base ISA (b) Adv. SIMD

DRAM OCM ATCM BRAM

Fig. 2: Bandwidths of non-cacheable APU write memory accesses

bandwidth as using the Advanced SIMD instructions. Still, none of the non-cacheable APU
read bandwidths exceeds 172 MiB/s. Results for write accesses also show the maximum
short-term bandwidths. While read instructions need to move data back to the processor core
and therefore need to wait for the read request to finish, write requests are simply handed off
to another stage. This stage then processes the queued write requests autonomously. If that
stage does not have the capacity to store more outstanding write requests, the hand-off from
the processor is stalled. This might happen because one or more components in the path to
the memory are too slow to keep up or congestion occurs. These throttling effects are visible
in figure 2. Using the base ISA write instructions (figure 2a), the throttling effect appears
at transfer sizes of 211 bytes and 212 bytes for writes to ATCM and BRAM, respectively,
while for DRAM and OCM the limiting factor is the processor core. On the other hand, the
Adv. SIMD write instructions (figure 2b) show a throttling effect for all memories: starting

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

cba

20 24 28 212 216 220 224
0
1
2
3
4
5
6
7
8
9

10
11
12
13

D$-only D$+memory

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA)
Write (base ISA)

Read (Adv. SIMD)
Write (Adv. SIMD)

Fig. 3: Bandwidths of cacheable APU memory accesses to DRAM

cba

DRAM OCM ATCM BRAM
0

1

2

3

0.18 0.2

2.1

0.190.23
0.17

2.1

0.170.18 0.2

2.67

0.190.23
0.17

2.67

0.17Ba
nd

w
id

th
(G

iB
/s)

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 4: Bandwidths of non-cacheable RPU memory accesses (for the largest tested transfer size)

at transfer sizes of 211 bytes for ATCM and BRAM, 212 bytes for OCM and 213 bytes for
DRAM.

Cacheable APU memory access. Figure 3 shows the cacheable APU memory bandwidths
for the DRAM. As the bandwidths of cacheable APU memory accesses up to the transfer
size of 215 bytes are practically the same for all memories due to little to no cache misses,
we show only the DRAM plot. There is a first significant drop at a transfer size of 216 bytes,
where the L1 data cache with its size of 32 KiB can only hold part of the data. Another drop
is found at 221 bytes, where the L2 cache size of 1 MiB is exhausted. The read bandwidth
peaks at 7.11 GiB/s and the write bandwidth peaks at 11.78 GiB/s, both using Adv. SIMD
instructions. It is notable that the Advanced SIMD instructions for writing outperform the
base ISA instructions almost by a factor of two at transfer sizes around 214 bytes.

Non-cacheable RPU memory access. Figure 4 shows the maximum bandwidths achiev-
able with non-cacheable RPU memory accesses. The throttling effects exposed by the results

Robert Drehmel, Matthias Göbel, Ben Juurlink

cba

20 24 28 212 216 220 224
0

1

2

3
D$-only D$+memory

Transfer size (bytes)

Ba
nd

w
id

th
(G

iB
/s)

20 24 28 212 216
0

1

2

3

Transfer size (bytes)

(a) DRAM (b) ATCM

Read (base ISA) Write (base ISA) Read (Adv. SIMD) Write (Adv. SIMD)

Fig. 5: Bandwidths of cacheable RPU memory accesses

for the non-cacheable APU write memory accesses do not appear with non-cacheable RPU
write memory accesses. The reason is not because the Cortex-R5 is not fast enough to force
congestion. In fact, it congests an internal component; when the processor encounters a write
instruction destined to access a non-cacheable memory region, it submits a write request
to its store buffer which directly generates an AXI write request [12] on the AXI master
interface [7]. The processor then has to wait for the AXI request to complete before it can
submit the next write request to the store buffer. Hovering between 181 MiB/s (DRAM) and
207 MiB/s (OCM), read bandwidth to all memories except the ATCM is roughly comparable
to non-cacheable APU read bandwidth, apart from the non-existence of a performance
gap between base ISA and Adv. SIMD instructions that is present in the non-cacheable
APU memory access results. The ATCM unveils its strength in this benchmark with read
and write bandwidths of 2.1 GiB/s for ISA instructions and 2.67 GiB/s for Adv. SIMD
instructions.

Cacheable RPU memory access. Figure 5a shows the bandwidths of cacheable RPU
memory accesses with different transfer sizes to DRAM. Like for the APU, up to a certain
transfer size, the bandwidth of cacheable memory accesses is determined by the L1 cache.
For the RPU, the transfer size where cache misses and ensuing cache line fills start to
noticeably impact the bandwidth is 215 bytes: a minor drop occurs from 214 to 215 bytes,
because the 32 KiB L1 cache of the Cortex-R5 is a combined instruction and data cache
and therefore instructions use up some of the cache capacity. Starting at transfer sizes of
216 bytes, frequent L1 cache misses drag the bandwidth down immensely as there is no L2
cache. Figure 5b shows a dissimilar behavior for the ATCM as the Cortex-R5 processor
always treats accesses to its TCMs as non-cacheable accesses. Accordingly, the bandwidths
for transfer sizes of 216 bytes shown in figure 5b match those of the ATCM in figure 4. The

A Quantitative Analysis of Processor Memory Bandwidth of an FPGA-MPSoC

peak cacheable read bandwidth is 2.56 GiB/s (96% of the ATCM read bandwidth) and the
peak cacheable write bandwidth is 1.83 GiB/s (69% of the ATCM write bandwidth).

6 Conclusions

We used our benchmark tool to systematically measure the memory bandwidth of the
different processing units of an FPGA-MPSoC.

Our results show surprisingly underwhelming non-cachable read memory bandwidths,
generally ranging from 60 MiB/s to 207 MiB/s, across the board for both processing units
and all non-TCM memories. This extends to non-cachable write memory bandwidths on
the RPU, ranging from 174 MiB/s to 237 MiB/s for non-TCM memories. Exceptions are
the read and write ATCM bandwidths of up to 2.67 GiB/s, but only when accessing the
ATCM from the RPU. Write memory bandwidths can, in theory, be much higher – and
are in practice for the APU – but depend heavily on processor-internal request queueing.
The APU achieves maximum non-cachable short-term write bandwidths ranging from 5.11
GiB/s to 8.41 GiB/s and is able to sustain a maximum bandwidth of 7.78 GiB/s to DRAM
using Advanced SIMD instructions. Cacheable memory accesses from the APU show high
maximum bandwidths, reaching 7.11 GiB/s for reads (Adv. SIMD) and 11.78 GiB/s for
writes (Adv. SIMD). In comparison, the RPU reaches a maximum cacheable memory
bandwidth of 2.56 GiB/s (Adv. SIMD) for reads and 1.83 GiB/s (Adv. SIMD) for writes.

We conclude that the use of dedicated on-chip memory, except tightly-coupled memory,
has no additional benefits in terms of bandwidth over external DRAM memory. To achieve
high memory bandwidth and therefore high computational performance on the Zynq
Ultrascale+ platform, leveraging the use of system-wide hardware cache coherency is
therefore recommended. As hardware cache coherency management has the potential –
depending on the application – to reduce software complexity, we see a dependence solely
on DRAM and hardware cache coherency as the best choice for most applications. On the
other hand, using our findings on unsustainable non-cacheable write memory bandwidths,
an application could optimize parallelism by writing chunks of memory in specific sizes to
fill the write request queue and doing other processing while the write requests are being
completed. The caches behave as expected, so the usual recommendations naturally apply,
such as exploiting data locality by taking knowledge of specific cache implementation
parameters like cache line size into account for the implementation of an application.
Advanced SIMD instructions provide at least the same – in some cases vastly superior –
bandwidth compared to the base ISA instructions – non-cacheable APU reads being the
exception.

To gain a better understanding of interconnect behavior, further work could include
methodical stress testing that focusses on inducing interconnect congestion using multiple
bus masters, i.e. multiple processor cores or multiple processing units that simultaneous
issue memory access requests. Evaluation of UltraRAM memory could also prove to produce
interesting results.

Robert Drehmel, Matthias Göbel, Ben Juurlink

Acknowledgements

This research was partially funded by the German Academic Scholarship Foundation
(Studienstiftung des deutschen Volkes).

References

[1] Luca Benini and Giovanni De Micheli. “Networks on chips: A new SoC paradigm”.
In: Computer 35 (1 Jan. 2002), pp. 70–78. doi: 10.1109/2.976921.

[2] Matthias Göbel et al. “A Quantitative Analysis of the Memory Architecture of
FPGA-SoCs”. In: Applied Reconfigurable Computing. 13th International Symposium,
ARC 2017. Lecture Notes in Computer Science 10216. Springer, 2017, pp. 241–252.
doi: 10.1007/978-3-319-56258-2_21.

[3] Young-kyu Choi et al. “A Quantitative Analysis on Microarchitectures of Mod-
ern CPU-FPGA Platforms”. In: 2016 53rd ACM/EDAC/IEEE Design Automation
Conference (DAC). IEEE, 2016. doi: 10.1145/2897937.2897972.

[4] Ayoosh Bansal et al. “Evaluating the Memory Subsystem of a Configurable Hetero-
geneous MPSoC”. In: Proceedings of OSPERT 2018. the 14th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time Applications. 2018, pp. 55–60.

[5] Zynq UltraScale+ Device. Technical Reference Manual. Version v1.9. UG1085.
Xilinx. Jan. 17, 2019.

[6] ARM Cortex-A53 MPCore Processor. Technical Reference Manual. Version Issue J
(r0p4). ARM DDI 0500J (ID071918). ARM. June 13, 2018.

[7] Cortex-R5. Technical Reference Manual. Version Issue D (r1p2). ARM DDI 0460D
(ID092411). ARM. Sept. 15, 2011.

[8] ARM Architecture Reference Manual. ARMv7-A and ARMv7-R edition. Version Issue
C.c. ARM DDI 0406C.c (ID051414). ARM. May 20, 2014.

[9] ARM Architecture Reference Manual. ARMv8, for ARMv8-A architecture profile.
Version Issue D.a. ARM DDI 048D.a (ID103018). ARM. Oct. 31, 2018.

[10] Block Memory Generator v8.4. LogiCORE IP Product Guide. PG058. Xilinx. Oct. 4,
2017.

[11] AXI Block RAM (BRAM) Controller v4.1. LogiCORE IP Product Guide. PG078.
Xilinx. Dec. 5, 2018.

[12] AMBA AXI and ACE Protocol Specification. AXI3, AXI4, AXI5, ACE and ACE5.
Version Issue F.b. ARM IHI 0022F.b (ID122117). ARM. Dec. 21, 2017.

https://doi.org/10.1109/2.976921
https://doi.org/10.1007/978-3-319-56258-2_21
https://doi.org/10.1145/2897937.2897972

	Introduction
	Related Work
	Xilinx Zynq Ultrascale+
	Benchmark Tool
	Evaluation
	Experimental setup
	Results

	Conclusions

