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Multiple polylogarithms
Multiple polylogarithms [1] (abbreviated MPL) are very
important and well-understood special functions of sev-
eral complex variables. They are indexed by a list
n1, . . . , nd ∈ N of positive integers and may be defined
by their power series

Lin1,...,nd(z1, . . . , zd) :=
∑

0<k1<···<kd

zk11 · · · z
kd
d

kn1
1 · · · k

nd
d

(1)

inside the region |zd| , |zdzd−1| , . . . , |zd · · · z1| < 1
of absolute convergence. Analytic continuation ex-
tends them to multivalued functions like the logarithm
Li1(z) = − log(1 − z) and the famous dilogarithm
Li2(z) =

∑∞
n=1 z

n/n2 of Euler, which has plenty of
interesting properties and applications [2].

These functions fulfil a huge number of functional
equations, like for example (ζ2 = π2/6)

Li2
(
− z−1

)
= −ζ2 −

log2(z)

2
− Li2(−z). (2)

Also, MPL specialize at z1 = · · · = zd = 1 to general-
izations of the Riemann zeta values Lin(1) = ζ(n) =∑∞

k=1 k
−n, the multiple zeta values (MZV)

ζn1,...,nd
=

∑
0<k1<···<kd

1

kn1
1 · · · k

nd
d

(nd ≥ 2). (3)

These fascinating numbers are subject to many conjec-
tures1, like transcendence of all odd ζ2n+1, and arise
from various integrals [4]. For example,∫

0<t1<t2<t3<1

dt1dt2dt3
(1− t1)t2(t3 − t1)

= 2ζ3. (4)

Apart from applications in mathematics [5], MPL
also appear at several places in physics. Most abundantly

they emerge from the calculation of some Feynman in-
tegrals, which are used to predict quantitatively the in-
teractions of elementary particles. Such calculations
are required to compare different theories with actual
measurements, as obtained for example in collider exper-
iments at the LHC.

We will present HyperInt [6], an open-source pro-
gram for multiple polylogarithms written in Maple. It
was designed for the calculation of Feynman integrals
in [7, 8], but here we will sketch the underlying ideas
and applications to compute transformations like (2) and
integrals similar to (4).

Hyperlogarithms
The representation (1) as nested sums opens the door
to apply summation algorithms to problems involving
polylogarithms, for example see [9].

However, HyperInt is a complementary approach
and exploits a different structure: polylogarithms are it-
erated integrals. This means that d Li1(z) = −ω1 and
d Lin+1(z) = ω0 Lin(z) arise from each other by re-
peated integration with the differential forms ω0 = dz/z
and ω1 = dz/(z − 1).

More generally, we set ωσ := dz/(z − σ) for all
σ ∈ C and define for each word w = ωσ1 · · ·ωσn the
associated hyperlogarithm recursively through2

Lωσw(z) :=

∫ z

0

dz′

z′ − σ
Lw(z′) (5)

such that ∂zLωσw(z) = Lw(z)/(z − σ). This rep-
resentation renders the integration and differentiation
(with respect to z, for fixed σ) elementary, and we
can write any polylogarithm as a hyperlogarithm:
Lin1,...,nd(z1, . . . , zd) = (−1)dLw(1) if we set w =

ωnd−10 ωσd · · ·ω
n1−1
0 ωσ1 and σk :=

∏d
i=k z

−1
i .

In this way, linear combinations of words can be
used to efficiently represent MPL. Operations on these

1Despite lots of efforts, still only very little is known beyond the irrationality [3] of ζ3.
2An exceptional case is the definition Lωn

0
(z) := logn(z)

n!
, where the integral (5) would diverge.
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functions can be rephrased in terms of the words, which
is crucial to obtain algorithms suitable for implementa-
tion. For example, a product Lv(z)Lw(z) = Lv�w(z)
is a linear combination of hyperlogarithms, where the
shuffle product v� w is the sum of all permutations of
vw which preserve the order of the letters of v and w
individually; e.g.

LωσωτLωρ = Lωσωτωρ + Lωσωρωτ + Lωρωσωτ .

Transformation into hyperlogarithms
A given hyperlogarithm Lw(z) can be integrated easily
with respect to z, provided that all letters which occur in
the word w are independent of z. But often an expression
is given in a form where the letters do depend on z. In
this case, we must first transform the expression into a
representation where all letters are z-independent. As
observed in [10], this can be achieved by differentiation
under the integral sign and integration by parts, which
prove that

dLw(z) =
n∑
i=1

L···6ωσi ···(z) · d log
σi−1 − σi
σi − σi+1

(6)

where we set σ0 := z, σn+1 := 0 while w = ωσ1 · · ·ωσn
and the hyperlogarithm in the sum has its i’th letter
deleted.

This reduction of weight (length of the words)
yields a recursive algorithm to write any MPL
Lin1,...,nd(z1, . . . , zd) or hyperlogarithm Lωσ1···ωσn (z) as
a hyperlogarithm in any parameter t, provided that the ar-
guments z, z1, . . . , zd and letters σ1, . . . , σn depend only
rationally on t.3

Example 1 Let f := Li1,1(x, y) = Lω1/yω1/(xy)
(1), we

want to rewrite it as a hyperlogarithm in x. The differen-
tial (6) with respect to x gives

∂xf =
Lω1/y

(1)

x− 1
+

(
1

x
− 1

x− 1

)
Lω1/(xy)

(1).

Note that for any σ 6= 0, Lωσ(x) = log(1−x/σ). There-
fore Lω1/(xy)

(1) = Lω1/y
(x) and we can integrate the

above equation to

f = Lω1(x)Lω1/y
(y) + Lω0ω1/y

(x)− Lω1ω1/y
(x).

The integration constant is fixed because both sides van-
ish at x = 0.

Constants of integration
The above procedure still lacks an important ingredient:
the constants of integration are not always zero and need
to be determined exactly.

Example 2 It is easy to check that Li1(−1/z) =
Lω0(z)− Lω1(z), and together with

∂z Li2(−1/z) = −1

z
Li1(−1/z)

we conclude that Li2(−1/z) and

Lω0ω−1(z)− Lω0ω0(z) = −Li2(−z)−
log2(z)

2

can only differ by a constant. Comparison with (2) re-
veals this number as the non-zero −ζ2.

Essentially, these constants are the limits at zero, because
any Lw(z) vanishes at z = 0. The only exception are the
words w = ωn0 , which yield the divergent logn(z)/n!. In
general one finds that any hyperlogarithm f(z) can be
expanded as

f(z) =

n∑
k=0

logk(z)fk(z), (7)

a polynomial in log(z) with coefficients fk(z) that are
analytic at z = 0 (this fixes the fk uniquely). The re-
quired constants of integration are precisely the values
f0(0), which can be computed by a seperate set of algo-
rithms as explained in [11, 6]. Together with the above
recursive transformation procedure, these from the core
routines of HyperInt.

The HyperInt library
We will sketch a small subset of HyperInt only

and refer to [11, 6] and the accompanying worksheet
Manual.mw for further details.

The program requires no installation and is simply
loaded into a Maple session by invoking
> read "HyperInt.mpl";

The package includes the reduction of multiple zeta val-
ues up to weight 12 to the (conjectured) basis of the data
mine [12].

Representation of polylogarithms
Internally, polylogarithms are represented as lists

f = [[g1, [w1,1, . . . , w1,r1 ]], [g2, [w2,1, . . . , w2,r1 ]], . . .]

of pairs of rational functions gi and lists of words wi,j .
These encode the function

f =
∑
i

gi · Reg
z→∞

[
Lwi,1(z) · · ·Lwi,ri (z)

]
,

where Regz→∞ is the limit z →∞ with any logarithmic
divergences set to zero.4 Apparently this representation
is far from unique (e.g. we could use the shuffle prod-
uct to enforce ri = 1), but it turns out that this form
makes the implementation particularly simple and rather
efficient in practice.

3This rationality ensures that each ∂t log(· · · ) in (6) is a linear combination of terms 1/(t− τ) (τ independent of t).
4Explicitly, we expand the hyperlogarithms as in (7), but now fk(z) are analytic at infinity and Regz→∞ f(z) := f0(∞).
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For convenient in- and output, HyperInt extends
the native function convert to transform any of the
functions

{log,ln,polylog,dilog,Hlog,Mpl,Hpl}

into hyperlogarithms (5) or multiple polylogarithms (1),
using the notations

Hlog (z, [σ1, . . . , σr]) := Lωσ1···ωσr (z) and

Mpl([n1, . . . , nr], [z1, . . . , zr]) := Lin1,...,nr(z1, . . . , zr).

For example, the dilogarithm Li2(z) is
> convert(polylog(2,z), Hlog);
> convert(polylog(2,z), Mpl);

−Hlog (1, [0, 1/z])

Mpl ([2] , [z])

and Lω0ω−1ω0(z) = Li3(−z)− log(z) Li2(−z) from
> convert(Hlog(z,[0,-1,0]), Mpl);

Mpl ([3] , [−z])− ln(z) Mpl ([2] , [−z])

Normal forms from fibrations
Due to functional equations, a general polylogarithm
f(~z) has many different representations. One way to get
a unique representation is by writing

f(~z) =
∑
i

ciLwi,1(z1) · · ·Lwi,n(zn) (8)

as a linear combination of products of hyperlogarithms
of words wi,j with the requirement that the letters in wi,j
may only depend on the subsequent variables zi+1,. . . ,
zn and such that the factors ci are constants (with re-
spect to ~z). Its implementation constitutes the essential
function

fibrationBasis (f, [z1, . . . , zn]) ,

which writes a polylogarithm f in the form (8) with re-
spect to the order ~z = [z1, . . . , zn] of variables.

Example 3 This function obtains functional relations
between polylogarithms. For example,
> fibrationBasis(polylog(2,1-z), [z]);
> convert(%, Mpl);

−Hlog (z, [1, 0]) + ζ2
−Mpl ([2] , [z]) + ln(z) Mpl ([1] , [z]) + ζ2

reproduces the classic identity Li2(1−z) = ζ2−Li2(z)−
log z log(1− z). Similarly, we obtain (2) as
> fibrationBasis(polylog(2,-1/z), [z]);
> convert(%, Mpl);

−ζ2 + Hlog (z, [0,−1])−Hlog (z, [0, 0])

−ζ2 −Mpl ([2] , [−z])− 1
2 ln(z)2

The analogous inversion relation for Li5(−z−1) is
> fibrationBasis(polylog(5, -1/z), [z]):
> convert(%, Mpl);
1
6ζ2 ln(z)3 + 1

120 ln(z)5 + Mpl ([5] , [−z]) + 7
10ζ

2
2 ln(z)

As an example involving multiple variables, the five-term
relation of the dilogarithm is recovered as

> polylog(2,x*y/(1-x)/(1-y))-polylog(2,x
/(1-y))-polylog(2,y/(1-x)):

> fibrationBasis(%, [x, y]);

Hlog (y, [0, 1]) + Hlog (x, [0, 1])

−Hlog (x, [1]) Hlog (y, [1])

For more than one variable, each choice ~z of order de-
fines a different basis and a function may take a much
simpler form in one basis than in another. For example,
Li1,2(y, x) + Li1,2(1/y, xy) is just
> Mpl([1,2],[y,x])+Mpl([1,2],[1/y,y*x]):
> fibrationBasis(%, [x,y]);

Hlog (x, [0, 1/y, 1]) + Hlog (x, [0, 1, 1/y])

but in another basis it takes the longer form
> fibrationBasis(%, [y,x]);

Hlog (y, [0, 1, 1/x]) + Hlog (y, [0, 1/x]) Hlog (x, [1])

−Hlog (y, [0, 0, 1/x])−Hlog (y, [0, 1]) Hlog (x, [1])

But still, any order ~z defines a true basis without rela-
tions. In particular this means that f = 0 if and only
if fibrationBasis(f, ~z) returns 0, no matter which
order ~z was chosen. This allows for an easy check of
functional equations.

HyperInt ensures that the generated expression
holds for 0 � z1 � · · · � zn. The analytic continua-
tion may introduce imaginary parts like in
> fibrationBasis(log(1+z), [z]);

−Iπδz + Hlog (z, [0])

where δz = ±1 indicates the infinitesimal imaginary
part assumed for z ∈ H±. For example, the dilogarithm
Li2(z) develops an imaginary part for z > 1:
> fibrationBasis(polylog(2, 1+z), [z]);

Iπδz Hlog (z, [−1])−Hlog (z, [−1, 0]) + ζ2

Series expansions
HyperInt extends series to expand hyperloga-
rithms near zero. Other expansions are possible with
a transformation. So to consider Li2,3(1,−z) at large z,
we substitute −1/z and expand in z → 0:
> Mpl([2,3],[1,-1/z]):
> fibrationBasis(%,[z]):
> series(%,z=0,2);

−2ζ2ζ3 − 4ζ5 − 19
10ζ

2
2 ln(z)− ζ3 ln(z)2 − 1

6ζ2 ln(z)3

− 1
120 ln(z)5 +

(
7 + ζ2 − 3 ln(z) + 1

2 ln(z)2
)
z +O(z2)

Integration of hyperlogarithms
The main purpose of HyperInt is the function

hyperInt (f, [z1 = a1..b1, . . . , zr = ar..br])

:=

∫ br

ar

· · ·
[∫ b1

a1

f dz1

]
· · · dzr

(9)

which computes integrals if the integrands can be trans-
formed into hyperlogarithms.
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Example 4 To compute
∫∞
0

Li1,1(−x/y,−y)
y(1+y) dy, type

> hyperInt(Mpl([1,1],[-x/y,-y])/y/(y+1),
y=0..infinity):

> fibrationBasis(%, [x]);

ζ2 Hlog (x, [1]) + Hlog (x, [1, 0, 1])−Hlog (x, [0, 0, 1])

Example 5 The integral (4) from [13] is
> hyperInt(1/(1-t1)/(t3-t1)/t2,[t1=0..t2,
t2=0..t3,t3=0..1]):

> fibrationBasis(%);

2ζ3

Divergences
Endpoint divergences as in

∫∞
0

ln z
1+zdz are detected:

> hyperInt(ln(z)/(1+z), z);

Error, (in integrationStep)
Divergence at z = infinity of type
ln(z)^2

Linear reducibility
The method of HyperInt for integration requires that
at each step, the integrand can be expressed as a hy-
perlogarithm in the next integration variable. This is a
very strong restriction which may depend on the order of
integration. Suppose we want to integrate

f0(x, y, z) :=
1

((1 + x)2 + y)(y + z2)

over x, y ∈ (0,∞). Integration of x yields a hyperloga-
rithm with irrational letters −1± i√y:∫ ∞

0
f0 dx =

arctan
√
y

√
y(y + z2)

.

This cannot be written as a hyperlogarithm in y, so the
integration of y is not possible as-is with HyperInt.
But if we integrate over y first, we obtain only letters
which are rational functions of x:∫ ∞

0
f0 dy = 2

log(1 + x)− log(z)

(x+ 1 + z)(x+ 1− z)
.

Now this is a hyperlogarithm in x, so HyperInt can
perform its integration over x with the result∫ ∞

0
dx

∫ ∞
0

dy f0 =
Lω1ω0(z)− Lω−1ω0(z)

z
.

Whenever an order of the integration variables exist such
that at each step we have a hyperlogarithm in the inte-
gration variable, the original integrand is called linearly
reducible. Luckily, it is not necessary to try out all per-
mutations of the variables in practice because there are
algorithms (polynomial reduction) which can often find
a suitable order if it exists [10, 14].
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