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Abstract: In this paper we study a formal concept of redesign for object-oriented
specifications. This concept corresponds to the UML notion of abstraction. The
notion of refinement, which has been extensively studied also at the formal level,
models well incremental approach where new requirements are added, but can not
be changed. This assumption is usually not satisfied in software engineering pro-
cess where permanent change is a constant factor. We study therefore a new notion
which generalizes the notion of interpretation used in algebra. This notion is very
flexible and allows us for comparison of different class diagrams even if one of
them contains requirements excluded by another. To compare specifications, we
map model elements in the first specification on the related model elements in the
second specification. This mapping defines a UML trace; it can be lifted to the level
of OCL as well as to the level of first order logic and then extended to an interpreta-
tion function. We also provide a formal foundation for our concepts and prove its
soundness. We demonstrate the applicability of our approach in a series of exam-
ples.

1 Introduction

OO0 modelling languages provide textual and diagrammatic means for system specification
(cf [UML99]). An object oriented system and its real-world environment are modelled us-
ing a set of abstractions like class, association, generalization, operation or property. Class
diagrams describe the structure of the system specifying common structure and behavior
of a set of objects as well as their relationship. The model of the real-world is then extended
to the system model specifying the system structure. This happens in a series of steps.

In 80°ties and in the first half of 90°ties, the software engineering processes was in a sense
incremental and it was hard to modify requirements. For example, in the waterfall model
one has to start with a correct requirement specification which then has to be refined to
design specification, and the design specification has to be implemented. These steps can
be well described using the notion of refinement. In the area of object-oriented software
engineering there have been several formal notions of refinement studied (cf e.g. [La95,
Le97, PR94], see also [EK99]).
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This works fine, if the requirements do not change and the software developers have a
clear idea how to proceed. But in practice, a specification is not only extended, but con-
stantly changes due to several factors like changed or new requirements, new technology
enablers and so on. In such a case an extensive reengineering of system specification, de-
sign or implementation is needed; this implies redesign and reimplementation of the class
structure.

While changing the specification or design one has to be aware which properties have to
be preserved and what is irrelevant. The notion of refinement with its monotonicity as-
sumption can hardly model such changes. Unfortunately, the research on formal founda-
tions of class structure redesign is underdeveloped.

In this paper we are going to preset a formal notion of interpretation for UML class dia-
grams with OCL constraints [UML 99, WK99]. Our concept differs from the idea of using
transformation rules describing what can be done (such rules may have the form of graph
rewriting rules for example, cf e.g. [Gr99]). Our concept is motivated by the notion of ab-
straction as it is used in UML which allows to relate model elements in different specifi-
cations. It generalizes the notion of interpretation used in abstract algebra [Ta73]; the idea
is to relate structures with the same behavior but possibly different signatures. Interpreta-
tion and refinement functions usually concern all properties, but in a redesign some prop-
erties may be intentionally neglected, moreover one specification may contain
requirements which contradict requirements in the other. This is well modelled by the par-
tiality of the interpretation function. To compare different specifications selected model el-
ements in the first specification are mapped on the related model elements in the second
one. Such a mapping can be first lifted to a formalization of the specifications in the first
order logic and extended to an interpretation function. We provide a sufficient condition
guaranteeing existence of such an interpretation function. Moreover, this function can be
directly defined on the OCL level. In general, the idea is that an implementer has to specify
explicitly the trace, i.e. those properties which have to be preserved, and if necessary, the
implementer has to provide a proof that these properties are really satisfied, since it is not
automatically guaranteed by existence of the interpretation function.

Our notion applies also to state machines which are the basic mean for describing an object
behavior in UML. There are several possibilities to implement state machines, for example
states can be implemented by enumeration types or by classes. We show how to compare
such implementations in an abstract way.

The formalization of OCL we use here comes from [BHTW99] and is performed in CASL
[CoFI98]. But in general we do not restrict our concepts to any particular OCL formaliza-
tion. Let us point out, that the notions developed here can be used beyond the realm of for-
mal methods. Nevertheless, the formal framework is necessary to provide an unambiguous
foundation for our approach and prove its soundness. An important feature of this formal
approach is that it can be combined with different methods and techniques (like for exam-
ple Refactoring, cf [Fo00]). Those methods are usually informal and often lack appropriate
tool support. Let us point out that our approach is not biased at any particular method.
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We illustrate our approach with a series of examples: In the first one we transform a nav-
igation path. In the second example we redesign an inflexible class structure using the role
pattern (cf e.g. [B400]). In the third example, we show how to eliminate multiple inherit-
ance from a class diagram. In the fourth example, we describe a very simple flip-flop game
using state machines. The states are implemented by enumeration types and then by state
classes instead of enumeration types.

2 OCL syntax and semantics

2.1 OCL syntax

In this subsection we define a context free grammar for restricted part of OCL.
Identifier := Var | ClassName | self
BTerm = b | BTerm[land|or |implies] BTerm | not BTerm |
Term[=1<1>] Term|
oclIsTypeOf (ClassName) | oclIsKindOf (ClassName) |

Term -> forAll (BTerm) | Term -> exists (BTerm) |
Term -> isEmpty

Term := Identifier | Identifier.b | BTerm |
if BTerm then Term else Term |
nl Term[+|-1*1/]Term |

Term.qop (Term,..., Term)

The nonterminal BTerm defines the boolean valued OCL operations, in particular b stands
for boolean values like true or false. The nonterminal Term defines the set of other
OCL terms and their composition as well as constants like integers or reals (denoted by the
nonterminal 7). The OCL terms can be translated to terms in the sense of algebra, this al-
lows for a formal semantics (see below).

2.2 OCL semantics

In this subsection we present shortly an OCL semantics which is a slight modification of
[BHTW99], the underlying algebraic notions can be found in the appendix. The basic OCL
types Boolean, String, Integer, Real are modelled in our semantic by the sorts
Boolean, String, Integer, Real. Every OCL operation defined on this types is modelled by
a corresponding function. An element is of sort collection iff it is of sort Set or of sort Bag
or of sort Sequence. We assume that singleton sets, bags or sequences, i.e. sets, bags or
sequences containing one element only, are identified with their elements. This assump-
tion is often made in algebraic specification and does not lead to a contradiction.
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Every function f : A —>B is lifted to the corresponding sets f : Set(A) —>Set(B) in a nat-
ural way f(X) = {f(x) | x € X)} similarly for bugs and sequences. We use boolean valued
functions _->exists(o | ...), _->forAll(o|...), _->isEmpty,... for the equally named OCL op-
erations on collections types (the definition is straightforward).

The environment is modelled by the sort Env. We add also a sort for class names CIN and
for each class C € CIN an equally named sort C of object identifiers. The set of all object
id*s belonging to all classes is denoted by Id. The current values of object attributes are
defined by a pair <e, 0>, i.e. we have a pair constructor <_, _>: Env x C —>Env_C for
each class C, as well as the two corresponding selectors:
_.Env: Env_C —>Env and _.C : Env_C —>C specified by the equations:

<e, 0>.Env =e, <e, 0>.C = 0, <x.Env, x.C>=x.
Moreover, we require that the constructor distributes with the set theoretical union:

<e, X ->union(y) > = <e, X> ->union(<e, y>).
For every class C, there is a function _ocllsTypeOf(_) : Env_Id x CIN —> Boolean such
that <e, 0>.oclIsTypeOf(C) evaluates to true iff the object o in the current environment
e is of class C, but not of any of its subclasses. This function corresponds to
0.0c1lIsTypeOf (C). The OCL expression o.o0clIsKindOf (C) states that o is of
class C or any of its subclasses; this operation is modelled by the term
_oclIsKindOf(_) : Env_Id x CIN —>Boolean .

Every operation op (x;: Ty, .., x,: T,) returns new environment and optionally a value.

An operation or property returning a value of type T is modelled by a function of the form
op: Env_C x T X...x T, —>Env_T. We need the Env component since op may modify

the environment. If the operation is a query, then the environment component is kept un-
changed. Attributes and associations are treated as query operations. If a is an object at-
tribute, then the function _.a returns the corresponding value (i.e. <e, 0>.a). Similarly, we
model associations between classes as functions, if 1nkB is a directed association from
class A to class B, then we model 1nkB as a function _.InkB : A Env —>Set(B).

To interpret OCL invariants we define interpretation function Trans by structural induc-
tion:
Trans(self) =4 self

Trans(u.a) =4 <env, Trans(u)>.a, for an OCL term u

Also an OCL term of the form self.a;. ... .a,.1.a, is translated to the term of the term
ap(env, a,_q(env,...a;(env, self)...)) written in the standard prefix notation. Trans is as-
sumed also to preserve operations on the basic OCL types like equation. The suffix *.T*
means that we select the value.

On the other hand, it is not hard to observe that the Trans has an inverse function Trans™!

such Trans!(Trans(u)) = u, for all OCL terms u. This function allows us to translate alge-
braic terms, as introduced in this section, into OCL terms.
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Given constraint of the form ([:T] means that T is optional):

context C
inv : ¥

op(xy: Ty,w, Xt Ty) [:T]

This constraint is formalized by the formula:

Y env: Env, self : C, x1 5 T1 o xn t T [ resule -1 result = <env, self>.op(x,..., X,) A ]

Trans(¥)

2.3 Example

In this example, we show how to translate OCL formulas to the first order logic. An oo-
database stores information about students and the staff working in a faculty (see figure 1).
The abstract class Person is extended by the class Student, Assistant and Pro-
fessor. The class Professor is extended by the class Dean.

<<abstract>>
Person

name : String

A

Student

Assistant

number : Integer

salary :Real

Professor

getSalary() : Real

salary : Integer

getSalary() : Real

b

| Dean |

Figure 1: Role classes

We assume that the following OCL formulas have to be satisfied:

context Assistant inv:
self.salary > 0 and self.salary = self.getSalary()

Similarly for the class Professor. We express selected class dependencies of this dia-
gram using OCL formulas. The property that Person is an abstract class can be expressed
by the following invariant:

context Person inv:
not (self.oclIsTypeOf (Person))

This diagram implies that each Dean is a Professor. This property can be expressed in
OCL as follows:

context Dean inv:
self.oclIsKindOf (Professor)
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We may formulate this in a different way, namely we may say that each person who is a
dean must be a professor:

context Person inv:
self.oclIsKindOf (Dean) implies self.oclIsKindOf (Professor)

This property is weaker then the previous one, and relativizes the previous statement to the
Person class. For example, it would be possible that an object, which does not instantiate
the class Person, was a dean without being a professor. Let us observe that the first con-
straint implies that the class Professor is navigable from the class Dean, but the sec-
ond is not (cf example 5.2).

We formalize the above OCL formulas as follows: We introduce sort names Person, Stu-
dent, Assistant, Professor, Dean for the classes in the diagram. The attributes like number
in the class Student, salary in the classes Assistant and Professor are for-
malized by functions:

_.number : Env_Student —>Integer

_.salary : Env_Assistant —>Integer,

_.salary : Env_Professor —>Integer, resp.

The query operations are formalized by functions:

_.getSalary() : Env_Assistant —>Integer
_.getSalary() : Env_Professor —>Integer

The property that Person is an abstract class and that every person which is a dean is a
professor are formalized by the formula ®; of the form:

Venv - Env, self : Person NOt(<env, self>.ocllsTypeOf(Person)) A

(<env, self>.ocllsKindOf(Dean) => <env, self>.oclIsKindOf(Professor))
If we formalize the salary constraint for the class Assistant, then we get the formula @, of
the form:

Venv - Env, self : Assistant <€NV, self>.salary >0 A <env, self>.getSalary() =
<env, self>.salary

Similarly for the salary constraint in the class Professor.

3 Interpretation function

In this section we introduce a new notion of interpretation. We define it on the level of first
order logic, but it can be defined on the level of OCL expressions, thanks to the existence
of the function Trans™!. To compare different specifications, selected model elements in
the first specification are mapped on the related model elements in the second one. Let us
point out that our notion has much weaker properties then the notion of interpretation used
in abstract algebra [Ta73], since we assume that the underlying function is partial and pre-
serves only selected properties, i.e. we do not require that it preserves the satisfaction re-
lation in general, but we assume that it preserves composition of terms and the basic OCL
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types. Interpretation and refinement functions usually concern all properties, but during re-
design some properties may be intentionally neglected, moreover one specification may
contain a requirements which contradicts requirements in the other. These weaker assump-
tions provide sufficient flexibility in relating different class structures, they allow us for
example to skip those parts of a refined structure which prove to be irrelevant. This is well
modelled by the partiality of the interpretation function.

Let A and B be sets of terms. We say that A spans B iff A is contained in B and every non-
variable term of B can be obtained from terms belonging to A by variable renaming and
term composition (see the appendix). The set A is a base of B iff in addition every term
t € B can be obtained in a unique way by renaming and composing terms from A.

We call a partial function ¢ : T(Z, X) —> T(X", X) compositional iff for all terms t the
following conditions hold

e var(@(t))< var(t)
e if tis of the form ty[t;/X,..., t,/X,], @ is defined on terms t;, for i=0,..., n, and ty",..., t,”
are the corresponding values, then ¢ is defined on t and @(t) = ty[t; /X,..., t,/x,].

The first condition eliminates some pathological cases. The second one is a compositiona-
lity requirement which allows to extend a mapping to a partial function. For example, if
has the form (S, F, <), then the set {f(x,..., X,) | f : sq,....s,—s € F} is a base of T(Z, X).
This function could be also defined using the forget, restrict and identify operations, but
this would complicate the definition and proof.

The following statement justifies the name ‘base‘. It can be easily proved by structural in-
duction.

Statement

Let B be set of terms and let A be a base of B. Every term valued mapping on A can be
uniquely extended to a function on B; moreover if B is closed on composition of terms,
then the extended mapping is compositional.

For example, every interpretation function in the sense of abstract algebra [Ta73] can be
defined as a total interpretation function which uniquely extends a mapping on the set
{f(X15ees Xp) 1 £ 2 89,0585 € F}.

In the following, all the redesign examples rely on the theorem below that provides a suf-
ficient condition for a set to be a base. It says that a set of terms generates a base, if it does
not simultaneously contain a term and its subterm. The notion of decomposition does not
depend on variable names, therefore in the theorem we abstract from variables using a
variable renaming and in the proof we prune of the leafs corresponding to variables.
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Extendability theorem
Let A be a set of terms such that for all pairwise different terms t;, t, € A and all variable

renamings 6, Gy, t;°! is not a subterm of t,°2. Then A is the base of the set B obtained by

composing terms of A.

Sketch of the proof

We can represent each term t € B as a tree where nodes correspond to function symbols
and where variables are not represented. A decomposition of t corresponds to a coloring
of the corresponding tree, where colors correspond to the elements of A.

We prove this theorem by contradiction. Let us suppose that A is not the base of B, then
there must exist a non variable term t € B with two different decompositions. We can as-
sume that t has minimal height, i.e. there exist no other term with two different colorings
having height smaller than the height of t. Since there exist two different decompositions
of t there must exist two different colorings of t. If all the leafs have the same colors, then
in both trees we can prune of the corresponding subtrees and obtain a tree of a smaller
height than t. Therefore there exist subtrees t*, t”", such that t”, t”” share the same leaf but
have different colors. Since t”, t”” are subtrees of the same tree, t” is a subtree of t™*, or vice
versa. This yields the contradiction with the assumption that in A there are no two different
terms such that one of them is a subterm of the other. *

To compare different class structures compositionality is not enough and the interpretation
function has to preserve more properties. We call a partial function @ : T(X, X) —T(X", X)
interpretation function iff the following conditions are satisfied:

* (@ is compositional

e for every term t of a basic OCL type s, @(t) is of type s too, if defined

e if t has the form f(xy,..., X,) where f is a predefined OCL operation, such that the vari-
ables are of the basic OCL types, then @(t) =t

The second condition requires that ¢ preserves basic OCL types. The last one requires that
¢ preserves predefined operations on the basic OCL types. Interpretation function would
not make much sense, if not extended to formulas. This can be done by structural induc-
tion:

Let Sp = Spec(Z, Ax), Sp” = Spec(X’, Ax") be specifications and let ¢ : T(Z, X) —>T(X", X)
be an interpretation function. If @(®) = ®” and @(\¥') =¥, then (P A ¥) =4t P A V",
similarly for other boolean operations. If @(®) = @7, then @(V, P)) =4.; V, D, similarly
for the existential quantifier.

Let us remind that we do not assume that interpretation function preserves satisfaction re-
lation in general, as in the case of institutions, but only selected properties. As in the case
of institutions we do not want to restrict the notion of satisfaction. We say that ¢ preserves
specification Sp, if @ is defined on Ax and @(®) is valid in Sp”, for every ® € Ax.
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As we mentioned, an interpretation function can be lifted to OCL terms. Given an inter-
pretation function ¢ such that ¢ maps class C on another class ¢ (C) and an OCL con-
straint of the form

context C inv:

v
let us define ¢(x) =4¢ Trans“l((p(Trans(x)). We obtain a new OCL constraint:

context 0(C) inv:

o ()
4 Redesign

The concept of redesign is more general then the concept of refinement. We do not assume
that properties are added or refined, but we allow to change them in an arbitrary way as
long as some selected properties are kept unchanged, for example a number of design level
classes might be restructured or a specification level class might be split into several de-
sign level classes. Preserved properties may concern dependencies between classes, asso-
ciations, operations, or generalization relation.

In UML [UML99], dependency is a term for a directed relationship from a client to a sup-
plier stating that the client depends on the supplier. The notion of redesign studied here
corresponds to the notion of abstraction in UML. Abstraction is a kind of dependency
which relates two elements or sets of elements that represent the same concept at different
levels of abstraction or from different viewpoints. There are four standard stereotypes for
the abstraction dependency: «derive», «realize», «refine» and «trace». The derived ab-
straction specifies that the client may be computed from the supplier. The realize abstrac-
tion is a mapping between specification model elements (the supplier) and model elements
that implement it (the client); the implementation model elements are required to support
the operations that the specification model element declares. The refine abstraction speci-
fies refinement relationship between model elements at different levels, such as analysis
and design. The trace abstraction specifies a trace relationship between model elements
that represent the same concept in different models. Traces are used for tracking require-
ments and changes across models.

Usually while redesigning or implementing a specification one has an intuitive idea what
a the trace of one specification in the other is. For example, if in the initial and in the latter
specification two equally named classes exist, then the class in the second specification is
meant to implement or redesign the class in the first one; similarly when in such classes
equally named operations exist. Below we show that one can map model elements on mod-
el elements and that such a mapping can be formalized as an interpretation function. In the
UML metamodel a mapping is an expression that is used for mapping model-elements in
one diagram on model elements in another diagram. A mapping expression states an ab-
straction relationship between the supplier and the client. It may be formal or informal and
unidirectional or bidirectional. The idea of this approach is that a mapping has to be de-
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fined on its ‘generators‘, and that such an implicitly defined mapping can be then extended
to an interpretation function on the level of OCL specifications and on the level of formal
specifications, if the assumption of the extendability theorem is satisfied. The applicability
of this theorem can be easily checked even at the informal OCL level. The designer or im-
plementer have to provide explanation how these selected properties are reflected in the
new class structure by providing a mapping.

mapping

ModelElements » ModelElements”
* interpretation *
OclSpec @ - — — — — — e OclSpec’
Trans Trans™! Trans Trans™!

interpretation function
FormalSpe¢ @ - — — — — — -  FormalSpec”

Figure 2: Logical relation

The figure above shows the relation between introduced concepts. Model elements are im-
plicitly modelled by OCL terms. OCL constraints are translated to first order logic, as we
have shown in section 2. A mapping between model elements generates an interpretation
function on the level of OCL and on the level of formal specifications, if the condition of
the extendability theorem is satisfied. In such a case the diagram above commutes.

The interpretation function is very flexible, we will show that this notion allows one to
treat not incremental changes of class diagrams. Since it does not preserve the subtype re-
lation, the generalization relationship is in general not preserved, but it can be modelled by
other dependencies. We can for example model or implement inheritance by associations
(cfe.g. [GR99]). The interpretation function may map a query or an association on a com-
position of associations, if they are navigable. Similarly, an operation can be delegated to
another class, if there is a path from one of the classes to the other.

In general, if a property has to be preserved, then all navigability properties implicitly im-
plied by this property must be preserved too. We will say that a class is navigable from
another class if there exists a traversable sequence of classes connected by associations,
query operations which return objects from another class and generalization relationship.
The navigability is implicitly preserved by the interpretation function, provide that the
function is defined on all parts of the navigation path.

Let us point out here that of course we are not the first ones who consider restructuring of
UML specifications with OCL constraints (cf e.g. [DW98]), but to our best knowledge we
are the first who do it at the formal level.
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5 Applications

5.1 Example: Navigation path

<<trace>>
r—— - - - - — — — — — — — 7
R gty InkB
" Inkl | InkB — Yln -
A I A s
k
b : Integer b : Integer
L ssmee> )

Figure 3: Navigation path redesign

In this subsection we consider a redesign of a navigation path. The path 1nkI.1nkB on
the left hand side of figure 3 is reduced to 1nkB by deleting the intermediate class I. Such
a redesign can be easily treated in our framework.

We map class A of the first specification on class A of the second one, similarly we map
class B on class B, 1nkI.1nkB on 1nkB, and the attribute b in the first specification on
the attribute b in the second specification. On the formal level class names A, B are mapped
on A, B, respectively. The term <env, <env, self : A>.InkI>.InkB : B is mapped on the term
<env, self : A>.InkB : B, and the term <env, self : B>.b : Integer in the first specification
on the term <env, self : B>.b : Integer in the second one.

This mapping induces an interpretation function, since the condition of the extendability
theorem is satisfied. Let us observe, that also the inverse mapping can be extended to an
interpretation function.

5.2 Example: Role pattern

Person PS InkRole Role

name : String *

4

name : String

i
| |

Student Staff
number : Integer salary : Integer
getSalary() : Real
A
| Assistant | | Professor | | Dean |

Figure 4: Role pattern

Let us consider the class structure described in example 2.3 (cf figure 1). It is well known
that this structure makes hard any change of person‘s class, it also disallows a single per-
son to play multiple roles. Therefore, we use the much more flexible role pattern (see fig-
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ure 4, cf e.g. [Ba00]). It would not be reasonable to assume that the class Person is
abstract and only its subclasses can be instantiated, but we may mirror this property by re-
quiring that each person must play a role. In the previous specification it was automatically
guaranteed that a dean is a professor. In this class diagram it is not guaranteed any more,
therefore we add a constraint that each person being a dean is a professor:

context Person inv:

not (self.lnkRole->isEmpty) and

self.lnkRole->exists(r | r.oclIsKindOf (Dean)) implies
self.lnkRole->exists(r | r.oclIsKindOf (Professor))

The following constraint is analogous to the salary-constraints in example 2.3.

context Staff inv:
self.salary > 0 and self.getSalary() = salary

Let @, be the formalization of the first OCL constraint, then ®; “ has the form:

A

env : Env, self : Person —(<env, self>.InkRole->isEmpty) A

<env, self>.InkRole->exists(r | <env, r>.oclIsKindOf(Dean)) =>
<env, self>.InkRole->exists(r | <env, r>.oclIsKindOf(Professor))

The formalization of the second OCL constraint yields a formula @, of the form:

A

env : Env, self : Staff <€NV, self>.salary >0 A <env, self>.getSalary() = <env, self>.salary

Let us analyze the relation between these two class structures. We map the term
(x : Env_Person).oclIsKindOf(Student) on the term

(x : Env_Person).lnkRole -> exists(ol<env, 0>.oclIsKindOf(Student)),

similarly for the classes Assistant, Professor and Dean. The terms corresponding
to attributes and queries are mapped on the corresponding terms in the formalization of the
second specification, for example the term _.salary : Env_Assistant —>Integer is mapped
on the term _.salary : Env_Assistant —> Integer in the second specification. We interpret
x.oclIsTypeOf(Person) as x.InkRole->isEmpty. It is not hard to prove that the condition of
the extendability theorem is satisfied, therefore the mapping can be extended to an inter-
pretation function @.

Let us observe, that the interpretation of the formula ®; from example 2.3 coincides with
D, i.e. ¢ (@) = Dy . The interpretation of @, is not equal to P, ", but has the form :

Vem, - Env, self : Assistant <€DV, self>.salary >0 A <env, self>.getSalary() =
<env, self>.salary

The formula @, implies @(P,), since the second one is relativized to a smaller set Assis-

tant and since in an order sorted algebra, a function on supersorts and subsorts must agree
(see the appendix). Consequently, the interpretation function @ preserves the initial speci-
fication.
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5.3 Example: Multiple inheritance

There are many ways to resolve multiple inheritance; one possibility is to use delegation
(cfe.g. [GHIWIS5, GR99]). Let us consider the following example: Class C inherits from
classes A and B (see the left hand side of figure 5). We require also that the following OCL
constraint holds:

context B inv:
self.getB() = b

A B A
a : Integer b : Integer a : Integer
getA() : Integer getB() : Integer getA() : Integer B

ZP ZF Z% b : Integer
C InkB [oe(B() : Integer
getB() : Integer

Figure 5: Resolving multiple inheritance

One can not directly implement this class structure in Java, therefore a redesign is needed.
In the redesigned structure, class C inherits from classes A and delegates operation
getB () toclass B.

The second diagram is augmented with the following constraints:

context B inv:
self.getB() = self.b

context C inv:
self.getB() = self.lnkB.getB()

The classes A, B and C with their attributes and operations are mapped on the correspond-
ing model elements in the second specification respectively. The inherited operations
getA () and getB () of class C in the first specification are mapped on the inherited op-
eration getA () and the new operation getB () of class C in the second specification.
Formally:

x.oclIsKindOf(X) is mapped on x.oclIsKindOf(X), for X = A, B, C.
<env : Env, self : A>.a : Integer is mapped on <env : Env, self : A>.a Integer

<env : Env, self : A>.getA : Integer is mapped on <env : Env, self : A>.getA : Integer

<env, self : C>.b : Integer is mapped on <env, <env, self : C>.InkB>.b : Integer
<env, self : C>.getB : Integer is mapped on <env, self : C>.getB : Integer

Let us observe, that the interpretation function generated by this mapping does not pre-
serve the subsort relation and in particular that two function are treated as different if they
types differ, what makes interpretation function work (cf the appendix). It is also not hard
to observe that the generated function preserves the first OCL constraint.
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This mapping can be reversed. Let us extend the inverse mapping by mapping:

<env, <env, self>InkB>.getB() : Integer on <env, self>.getB() : Integer.

The extended mapping satisfies the extendability condition, since 1nkB was not mapped
on any element in the first specification. The second OCL invariant in the second specifi-
cation is mapped on the trivial invariant:

context C inv:
self.getB() = self.getB()

5.4 State machines, pre- and post-conditions

State machines are the basic mean to describe object behavior in UML. In object-oriented
modelling there exist several approaches to implement state machines. For example states
in a state machine can be implemented by enumeration types or by state classes as in the
State Pattern [GHIW95]. The problem arises how to compare such seemingly different im-
plementations. On the other hand, there exists several formal semantics of state machines
(cf e.g. [RACHOO0]) which at the first glance seem to concern a very specific case or class
structure. This approach allows to compare them and treat these semantics in a more ab-
stract way.

In this section we apply our concept to a simple state machine example. First we imple-
ment states by using enumeration type, then using object classes. The state machine is con-
straint by pre- and post- conditions. Pre- and post-conditions can be formalized in similar
way as invariants, but one has to take care of different system states before and after exe-
cution of the operation. Given a constraint of the form:

context C :: op(xy: Ty,., X Ty [:T]
pre : ¥
post : W

To translate the pre-condition use the function Trans, and to translate the post-condition
we use the function Tlranspost [BHTWO99] which is defined as Trans, but Transpost(t.a) =

<env’, Transpost(t)>.a and Transpost(t.a@pre) =<env, Transpost(t)>.a, where a is a proper-

ty returning value of type T and env” is a new variable. The variables env, env” used by
functions Trans and Trans,,q, model the environments before and after the execution of

the operation op, respectively. Above constraint is formalized as follows:
v self : C, env, env” : Env, x1 * T],.,., Xn - Tn [, result : T result = <env, self>.0p(x1,. X Xn)-T Al
env’ = <env, self>.op(Xy,..., X,).Env A Trans(¥) = Transpost(‘l”)

In this example we consider a state machine diagram for the class FlipFlop. An object of
this class can be in the state £1ip or £1op. There exists an operation next () which
changes one states to the other (see figure 6).
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FlipFlop flip
state : enum{flip, flop} next() next()
next()

flop

Figure 6: FlipFlop game

The behavior of this state machine can be specified in OCL as follows:

context FlipFlop :: next()
post: state@pre = #flip implies state = #flop and
state@pre = #flop implies state = #flip

This constraint is formalized as follows

A self : FlipFlop, env, env” : Eny €0V = <env, self>.next().Env =
(<env, self>.state = flip = <env’, self>.state = flop A
<env, self>.state = flop = <env’, self>.state = flip)

next() A

Figure 7: States as classes

We may redesign this state machine using the State Pattern. In the redesigned version, the

states are modelled by objects of the class State, which has two subclasses F1ip and
Flop (see figure 7).

This class diagram is augmented with the following OCL constraint:

context FlipFlop :: next() post:
InkState@pre.oclType = Flip implies lnkState.oclType = Flop
and

IlnkState@pre.oclType = Flop implies lnkState.oclType = Flip

This constraint is formalized as follows:

V el : FlipFlop, env, env” : Eny €0V = <env, self>.next().Env =
( <env, self>.InkState.oclType = Flip = <env’, self>.InkState.oclType = Flop A
<env, self>.InkState.oclType = Flop = <env’, self>.InkState.oclType = Flip)
We map the elements of the enumeration class on the corresponding classes i.e. #£11ip,
#f1lop are mapped on classes F1ip and Flop, respectively, and the attribute state is

mapped on the operation oc1Type. It is not hard to observe that this mapping, defined on
the level of model elements, induces an interpretation function.
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6 Concluding remarks

In this paper, we have developed a simple and practically useful approach to formal rede-
sign of various kinds of class structures with OCL constraints. It allows us to relate dis-
similar class structures and to define the trace relationship between model elements
representing the same concepts in such structures. We have provided a formal foundation
for this approach and proved its soundness.

Nevertheless their is still a lot to be done.We have to investigate means allowing one to
avoid tedious definitions of mappings. As pointed out by the anonymous referees, defining
a mapping, even on the generators only, is too tedious for real size systems, therefore one
needs additional means like mapping equally names elements on equal named elements.
We have also to extend our approach to allow us for comparison of different UML models
corresponding to different views. We have to study the properties of the interpretation
function in logical terms in particular the relation to institutions (cf [Ta99]). And last but
not least, we plan to implement a tool supporting class redesign. Such a tool would be very
helpful since a purely manual transformation of complex OCL constraints is very labori-
ous and error prone.
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7 Appendix: signatures, structures and formulas

A many sorted signature X is a pair (S, F) where S is a set of sorts and F is a set of function
symbols paired with their types, i.e. f : sy,...,s,—>s € F. An order sorted signature X is a

triple (S, F, <), where (S, F) is an algebraic signature and < is a partial order on S. The set
of all terms with variables in S sorted set X = (X{)¢ s is denoted by T(Z, X). For a term t,

var(t) is the set of variables contained in t. The notation t(xy,..., X,) means that t contains
at most the variables Xj,..., X, , 1.e. var(t) S {Xy,..., Xy }. tolt;/Xy,..., t,/X,] denotes the term
obtained from t(xy...., X,) by simultaneous substitution of t; for x;, for i = 1,..., n (this op-
eration is called term composition). The terms t; are called subterms of ty[t{/X,..., ty/X,].
Term sorts are defined by structural induction: If t; : s; and £ : sy,...,s, = s, then f(ty,..., ) :
s. Let A= (Ay)c s, B = (By)se s be two S-sorted sets, a function f : A —>B is an S-indexed
family of functions A, —>B,, fors € S. Let p: X —>T(X’, X) be a mapping, we can extend
p to p: T(Z,X) —>T(X",X) defined by pg(t(Xy,..., Xp)) =def t(psl(x Dseees psn(xn)) where x; is
of sort s; fori=1,..., n. p is called variable renaming, if it maps variables on variables. An

order-sorted algebra [GM92] A = ((Ag)sc s> (fA),:E p) over a signature X consists of a family

of non empty carrier sets (Ag)qcs such that A;C A, for s < u, and a family of functions

f:uy,...,u,—u, where s; are subsorts of u;, then both functions must coincide on the sets

A A specification is a pair Spec(Z, Ax) consisting of a signature X and a set formulas Ax
e

over the signature X. The set Ax can be a set of formulas.
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