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Automatically Binding Variables of Invariants to Violating

Elements in an OCL-Aligned XBase-Language

Sebastian Fiss1, Max E. Kramer1, Michael Langhammer1

Abstract: Constraints that have to hold for all models of a modeling language are often specified
as invariants using the Object Constraint Language (OCL). If violations of such invariants shall be
documented or resolved in a software system, the exact model elements that violate these conditions
have to be computed. OCL validation engines provide, however, only a single context element
at which a check for a violated invariant originated.Therefore, the computation of elements that
caused an invariant violation is often specified in addition to the invariant declaration with redundant
information. These redundancies can make it hard to develop and maintain systems that document or
resolve invariant violations.
In this paper, we present an automated approach and tool for declaring and binding parameters of
invariants to violating elements based on boolean invariant expressions that are similar to OCL
invariants. The tool computes a transformed invariant that returns violating elements for each iterator
variable of the invariant expression that matches an explicitly declared invariant parameter. The
approach can be used for OCL invariants and all models of languages conforming to the Meta-
Object Facility (MOF) standard. We have evaluated our invariant language and transformation tool by
transforming 88 invariants of the Unified Modeling Language (UML).
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1 Introduction

When models are used to develop software systems, a metamodel can be used as a language

specification that constrains all valid model instances. Not all types of constraints that have

to be enforced can directly be expressed in a metamodel. For such constraints, specification

languages can be used in addition to the metamodeling language. If a constraint has to

hold for all models of a language, it is usually called an invariant. The Object Constraint

Language (OCL) defined in the ISO 19507 standard is a popular language for defining such

invariants for object-oriented software . OCL invariants are mainly used to validate model

instances in order to ensure correctness prior to further processing or manipulation.

For many application scenarios, it is not sufficient to know whether an invariant holds

for a given model: In order to document or resolve the problem indicated by an invariant

violation, it is important to obtain the context of a violation [KPP09].In OCL, an invariant

is, however, only a boolean constraint expression that may specify a name and a context

type. Therefore, OCL-based validation engines provide only a single context element of this

type to indicate an invariant violation. Many OCL invariants navigate and inspect several
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different elements and collections of elements related to the context element at which a

check was initiated. Therefore, the context element of an OCL invariant often does not

directly indicate where, how, and why a model violates the constraints. To achieve this,

more specific elements that cause an invariant violation, e.g. by not satisfying one of several

conditions defined in the invariant, have to be retrieved.

The retrieval of such model elements that cause an invariant violation is usually defined

separately from the boolean invariant condition. As a result, model navigation statements

and condition checks are repeated in the code for element retrieval and constraint validation.

Although only a few statements may be redundant for a single invariant, the amount of

duplicated code can grow to a considerable size for metamodels with hundreds of invariants,

such as the Unified Modeling Language (UML) [ISO12a]. This code duplication can be a

source for costly errors and can lead to unnecessary development and maintenance effort. It

is common to all current approaches except EMF-IncQuery, which only support queries.

In this paper, we present an approach and tool2. to avoid this code duplication by computing

elements that cause an invariant violation directly from an OCL-aligned invariant definition

with explicit parameters. We propose a prototypical invariant language XOCL4Inv, which

extends the expression language Xbase [Eff+12] and seamlessly integrates with the popular

model transformation language Xtend3. As a result, our language is extensible and inherits

the power and expressiveness of Xbase, e.g. lambda expressions and extension methods.

The language supports the definition of OCL-aligned constraints using boolean expressions

and is in large parts syntactically and semantically equivalent to a subset of OCL. In order

to relieve developers from writing separate code for element retrieval, it adds a possibility

to define which elements should be retrieved in case of an invariant violation: Variables that

are used to iterate over collections can be declared as invariant parameters, which is not

possible in OCL. For every declared parameter, our tool computes a transformed invariant,

which collects all those elements that are a) bound to the iterator variable corresponding to

the parameter and b) causing the invariant violation. It is, however, also possible to directly

specify queries, if this is preferred to invariant-to-query transformations.

Consider a simplified example invariant for a library metamodel, which specifies in the

context of a reading room that all those books in a reading room that are used as reference

copies have to have at least three copies:

self.books.forall[Book b | b.referenceCopy implies (b.copies >= 3)]

Our tool computes a transformed invariant, which collects all books that violate the con-

straint, i.e. that are used as reference copies but have less than three copies. It replaces the

forall iterator with a select iterator and negates the condition:
self.books.select[Book b | !(b.referenceCopy implies (b.copies >= 3))]

For more complex invariants, e.g. with more iterators and parameters, it would be a waste of

time to specify such transformed invariants manually as they can be computed automatically.

The presented invariant transformation algorithm can be used for OCL invariants that are

defined for models conforming to the Meta-Object Facility (MOF) ISO/IEC 19508:2014(E)

2 The language and tool are available as open-source software on http://sdqweb.ipd.kit.edu/wiki/XOCL4Inv
3 http://www.eclipse.org/xtend
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standard. Our current invariant language XOCL4Inv and transformation prototype is based

on the Eclipse Modeling Framework (EMF) and can transform invariants for metamodels

that were built with the Essential MOF variant Ecore. We evaluated the correctness by trans-

forming all 88 invariants of the UML metamodel of the Eclipse IDE4 that contain collection

iterators but do not use statements that cannot be transformed, such as allInstances.

The paper is structured as follows: In Section 2, we explain concepts and languages that are

fundamental for our approach. In Section 3, we present our OCL-aligned invariant language

XOCL4Inv. In Section 4, we explain the invariant transformation algorithm. In Section

5, we present our evaluation of the invariant language and transformation algorithm. In

Section 6, we discuss related work and in Section 7 we draw some final conclusions.

2 Foundations

In this section, we explain the technologies and concepts that we use for our approach.

2.1 Model-Driven Software Development (MDSD)

In MDSD [SV06] models and code are used to develop a software system. An important

point is that models are at least as important as the source code and not used for documen-

tation purposes only. A common use case is to automatically create source code from the

information in the models. The models are often created by domain experts to model a

specific domain. To apply these models, Stahl et al. have described three requirements:

First, DSLs are necessary to create the models. Second, model-to-code transformations

languages are required to process them. Last, specific compilers, generators or transformers

are necessary to create executable code from the models.

2.2 Object Constraint Language (OCL)

OCL [ISO12b] is a typed, declarative language that can be used to describe constraints that

apply to model instances. OCL was initially developed for UML models, but can be used

for arbitrary metamodels. Constraints that are specified with OCL are side-effect free. This

means that the queried model instance is not changed by OCL. In MDSD, OCL is used to

define constraints and invariants that cannot be easily expressed in a metamodel. Users of

OCL can check whether a specific model instance fulfills the constraints that are defined for

the metamodel. If one of these constraints is not fulfilled, the model instance is not valid.

2.3 Xtext and Xbase

Xtext [EV06] is a language development framework for creating DSLs. Users have to define

the grammar of their DSL. From the grammar definition Xtext creates the lexer, parser and

4 Eclipse UML metamodel – Rev. 57c76de64a8925e897c2a2ef0a898ea6c153816d – 2014-12-14

http://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse.uml2.uml/model/UML.ecore
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1 context ReadingRoom

2 invariant AtLeast3ReferenceCopies (Book b)

3 check self.books.forall[Book b | b.referenceCopy implies (b.copies >= 3)]

Listing 1: XOCL4Inv invariant definition with a simplified constraint for a library

the semantic analyzers for the new DSL. Xtext itself as well as the DSLs designed with it

are integrated in the Eclipse IDE.

Xbase [Eff+12] is an expression language that can be used within any DSL that is created

with Xtext. It is a partial programming language with a Java-like syntax. The goal of Xbase

is to reduce the necessary effort to implement a DSL. Xbase expressions are similar to Java

expressions and the type system is linked to the Java type system. Since it is an expression

language, Xbase does not have the concept of statements in contrast to Java.

3 XOCL4Inv: an Xbase Extension for OCL-Aligned Invariants

We present a prototypical language for invariant specifications, which provides a syntax

and look-and-feel that is very close to OCL. Unfortunately, OCL cannot directly be used to

automatically retrieve elements that cause an invariant violation as described in Section 4

for two reasons: a) a mechanism for indicating which elements shall be retrieved is needed,

and b) the language should be restricted to forbid the formulation of invariants for which the

demanded elements cannot be retrieved. Both could also be achieved by extending an OCL

grammar, editor, and validation engine. We decided, however, to develop a new language

that can easily be extended and integrated with other languages for further research and that

leverages the functional programming style and tool-support of Xtend. We first present the

structure of our language and then we explain the relation to OCL.

3.1 Language Structure

In XOCL4Inv, model constraints can be declared using invariants. Listing 1 shows the

running example. Within the invariant declaration, a context type has to be specified that

conforms to a type from the constrained model (ReadingRoom, line 1). The constraint must

hold for all model instances of the provided type. These context elements are bound by the

tool as implicit first parameters for each invariant declaration. Furthermore, a unique name

is used as an identifier for the invariant (AtLeast3ReferenceCopies, line 2).

In addition to the context element, XOCL4Inv allows the declaration of optional invariant

parameters (Book b, line 2). Each parameter has a unique name and specifies an element

type. These parameters are used to indicate which elements of a certain type need to be

bound from the invariant upon its violation. XOCL4Inv allows the specification of multiple

invariant parameters which get bound to independent sets of constraint-violating elements.

Finally, the language allows the declaration of a constraint (line 3). A constraint is a boolean

expression that has to hold for every model instance of the context element type, which
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OCL Xbase Expression of extension method for XOCL4Inv

iterate fold -

forAll forall -

forAll(a,b) - coll.product(coll).forall(predicate)

exists exists -

exists(a,b) - coll.product(coll).exists(predicate)

select filter -

reject - coll.filter[e|!predicate.apply(e)]

collect flatten ◦ map -

collectNested map -

isUnique - coll.groupBy[function.apply(it)].values

.forall[it.size == 1]

sortedBy sortBy -

any findFirst -

one - coll.filter(predicate).size == 1

Table 1: OCL iterators and corresponding Xbase or XOCL4Inv extension methods

is referenced using the keyword self within the expression. The constraint is an ordinary

expression of the expression language Xbase used in the DSL bench Xtext.It can contain

iterators to specify expressions that are iteratively evaluated for a multi-valued property

of a metaclass or another collection. For each iterator, an iterator variable can be used to

reference the individual element for each evaluation of the iterator expression. If such an

iterator variable is explicitly declared as an invariant parameter, then the algorithm described

in Section 4 can be used to transform the invariant in order to collect the violating elements.

3.2 OCL Alignment

Invariant declarations in XOCL4Inv are very similar in their structure to OCL. Both lan-

guages allow the specification of an invariant name, a context element, and a boolean

constraint. Additionally, XOCL4Inv allows the optional specification of invariant parame-

ters to indicate which model elements shall be retrieved for an invariant violation. Since

XOCL4Inv constraints are formulated in Xbase, model elements, attributes, references,

operations, collection types and primitive types can be used. Most constructs, such as

enumerations, null values, and arithmetic and logical expressions exist in Xbase and OCL.

Furthermore, OCL provides methods marked with the prefix ocl, for instance oclAsType or

oclIsTypeOf. These methods either rarely occur within invariant constraints, e.g. oclIsIn-

State, or have an equivalent Xbase method, for instance type casts or instanceof-checks.To

provide equivalent functionality for the remaining OCL operations that are commonly used,

we defined extension methods which add custom behavior to existing types. Most of these

extension methods operate on multi-valued properties. In Table 1, we show which operations

for OCL iterators are already available in Xbase and which had to be added to XOCL4Inv.

Other common collection operations that do not iterate over collections are shown in Table 2.
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OCL Xbase Expression of extension method for XOCL4Inv

includes contains -

includesAll containsAll -

excludes - !coll.contains(object)

excludesAll - objects.forall[!coll.contains(it)]

isEmpty empty -

notEmpty - !coll.empty

size size -

Table 2: OCL operations without iterator variables and corresponding Xbase or XOCL4Inv methods

For every OCL operation, we either show a corresponding Xbase operation or an expression

implemented in an equivalent XOCL4Inv extension method with the same name.

Like in OCL, constraints formulated in XOCL4Inv have to be side-effect free. Xbase in

general does not have this restriction, so the language has to be restricted in order to prevent

modifications of the model state through constraint checking. Side-effect free methods

can be marked with a @Pure annotation. Additionally, library methods that cannot be

annotated can be added to a user-defined whitelist for pure methods. The tools checks

whether constraints only call methods that are marked accordingly or that are whitelisted.

The whitelist and static analysis for side-effect free methods should, however, be improved

in future work in order to reduce the amount of false positives.

4 Binding Variables of Violating Elements to Parameters

In this section, we explain how invariants formulated in XOCL4Inv are used to compute

constraint-violating elements based on invariant parameters. First, we present our algorithm

for transforming invariants to queries on a high level and introduce a running example. Then,

we explain the individual steps and transformation rules in detail. Finally, we illustrate how

the algorithm works by discussing the transformation of the running example.

4.1 Transformation Overview

Invariants in XOCL4Inv contain a boolean constraint for which named invariant param-

eters may be specified. For each of these parameters, our automated approach finds the

corresponding model elements that violate the constraint, and binds these elements to the

parameters. More precisely, our algorithm finds the unique multi-valued collection property

that is iterated with an iterator variable and that matches the invariant parameter’s name and

type. For this collection, only those elements that are responsible for the invariant violation

are bound. The tool transforms the invariant into a query that collects the constraint-violating

elements and binds them to the parameters by executing several transformation steps.

First, the constraint expression is parsed into a custom expression tree. Then, the specified

invariant parameters are matched to expression nodes for iterate operations. For every
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1 context Library

2 invariant AtLeast3OpenReferenceCopies (Book b, List<Edition> editions)

3 check self.books.select[Book b|!b.stack.closed]

4 .map[it.editions.filter[it.referenceCopy]]

5 .forall[List<Edition> editions|editions.reduce[e1,e2|e1.copies + e2.copies] >= 3]

Listing 2: Complete example invariant ensuring at least three copies for open reference books

invariant parameter that needs to be bound, transformation rules are applied to the iterator

node and its parent nodes in a copy of the expression tree. The resulting transformed

expression tree represents the desired query. In a last step, this expression tree is converted

back into a query expression, which is used to bind the computed elements to the parameters.

The presented approach has a few limitations: Currently, only invariant parameters that

match an iterator variable can be specified. Other attributes and members of model elements

can be used to formulate invariants but they cannot be bound to parameters. The effect

of variables and members can also be expressed with iterators. Therefore, this is not a

limitation of the expressiveness but an inconvenience. Nevertheless, we plan to support

invariant parameters that match members or variables similar to the let-statement in OCL

in future work. Furthermore, the algorithm has to apply transformation rules to the iterator

node and all direct and indirect parent nodes. Only operations that correspond to a node for

which a transformation rule is defined are therefore allowed after a parameterized iterate

expression. Currently, these operations are not, and, or, select, map, forall, and

exists. No such limitations exist for child nodes, i.e. the partial expressions prior to a

matched iterator can be arbitrary Xbase expressions.

4.2 Running Example

In Listing 2, we present a complete version of the library invariant, which we already used

to motivate our approach and to explain our language. This complete invariant illustrates

more transformation rules (see Section 4.6) and applies to the more precise metamodel

presented in Figure 1. In contrast to the metamodel used in the simplified invariant, books

do not belong to a fixed reading room but to the library. They are stored in a stack which

may be open to the public or not. Furthermore, the flag for reference copies and the attribute

for number of copies are no longer specified for a book but for a specific edition of a book.

Library

Book
Edition

referenceCopy:boolean
copies:int

Stack

closed:boolean

books

1

1..*

editions

1 1..*

stack

1..*1

stacks

1

1..*

Figure 1: Library metamodel for the complete version of the example invariant
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1 context Library

2 invariant Books4AtLeast3OpenReferenceCopies (Book b)

3 query self.books.select[Book b|!b.stack.closed &&

4 !(b.editions.filter[it.referenceCopy].reduce[e1,e2|e1.copies + e2.copies] >= 3)]]

Listing 3: Query for the complete example returning open reference books with less than three copies

The constraint of the extended example specifies that for every book in an open stack the

sum of copies for all editions must total to more than three (line 3–5). If the constraint

is violated, the responsible elements have to be computed. A trivial solution would be to

return the library context element (line 1). This solution ignores, however, the collection

and properties that are inspected during a check and does not determine a precise cause

for an invariant violation. The directly responsible elements are those lists of editions for

which the sum of copies does not satisfy the constraint. With our approach, these elements

could be retrieved by specifying an invariant parameter List<Edition> editions. For our

running example, we choose the invariant parameter Book b (line 2) to obtain those books

of the library that have such a list. These indirectly responsible books can be retrieved by a

query that is automatically derived from the invariant and shown in Listing 3.

Both example versions illustrate cases in which invariant parameters are needed in addition

to contexts. First, there are cases in which an invariant only has to hold for instances with

incoming references from the context element: The simplified invariant does not have to

hold for books that are not in the reading room. Second, there are cases where a single

context as in OCL is not enough because several elements may lead to a violation: Violations

of the complete invariant can be resolved by manipulating books or lists of editions.

4.3 Obtaining a Custom Expression Tree Suited for our Transformation

Currently, the XOCL4Inv grammar specifies that invariant constraints can be arbitrary

Xbase expressions. Therefore, we obtain an Abstract Syntax Tree (AST) of XExpressions

from the parser generated with Xtext. The transformation algorithm defines rules based

on much finer distinctions. For instance, all method calls result in a XMemberFeatureCall

in Xbase, but method calls have to be transformed in a method-specific way. Calls to the

methods select or forall, for example, have to be transformed differently. Therefore,

we use a custom expression tree that differentiates between node types that have to be

transformed differently and unifies node types that can be treated identically. This makes

it possible to define transformation rules exactly for these node types and to focus on

properties that are relevant for the transformation. The metamodel for the nodes of the

custom expression tree is shown in Figure 2. A constraint in Xbase syntax is converted into

an expression tree that consists of these custom nodes. The nodes’ metaclasses are listed in

Table 3, along with the XExpression and example expressions from which they are parsed.

The last benefit of a custom tree model are references to parent and child nodes, which are

essential for the traversal of the expression tree during the transformation process. These



Automatically Binding Variables of Invariants to Violating Elements 197

Node

FeatureNode

feature:String

BlockNode AbstractBinaryNode

operation:String

AndNodeBinaryNode OrNode

NotNode

FunctionNode

parameters:Map<String,JvmReferenceType>

AbstractOperationNode

operation:String

IterateNodeOperationNode

IntermediateIterateNode

MapNode SelectNode

TerminalIterateNode

ForallNode ExistsNode

parent0..11..*
children

1

1..*

left1

1

right 1

1

child

1

1

expression 1

1

target1

1

arguments 1

0..*

functionNode

1

1

Figure 2: Custom node metamodel for expression trees

references are not contained in XExpressions and make it easier to create, copy, substitute,

and modify nodes to apply individual transformation rules.

Currently, the following expressions cannot be transformed because we did not yet define

custom node types and transformation rules: type casts, control structures, and variable

declarations. Our prototype provides extension methods to transform equivalent constraints

that use them instead of the unsupported expressions. In future work, these node types and

transformation rules will be added and these extension methods will no longer be needed.

The expression tree for the running example invariant is presented in Figure 3. To obtain the

pretty-printed expression shown in Listing 2, an in-order traversal is performed on the tree.

Forall[]

Function[editions] Binary[>]

Operation[reduce]

Function[e1,e2] Binary[+]

Operation[copies] Feature[e1]

Operation[copies] Feature[e3]

Feature[editions]

Feature[3]

Map[]

Function[it] Operation[filter]

Function[it] Operation[referenceCopy] Feature[it]

Operation[editions] Feature[it]

Select[]

Function[b] Not[!] Operation[closed] Operation[stack] Feature[b]

Operation[books] Feature [self]

Figure 3: The custom expression tree that is obtained for the complete example invariant
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Node type Example expressions Corresponding XExpression

ForallNode forall XMemberFeatureCall

ExistsNode exists XMemberFeatureCall

SelectNode select XMemberFeatureCall

MapNode map XMemberFeatureCall

OperationNode self.getBooks(), edition.copies XMemberFeatureCall

AndNode && XBinaryOperation

OrNode || XBinaryOperation

BinaryNode <, +, /, ... XBinaryOperation

NotNode ! XUnaryOperation

FeatureNode self, editions, b, it, 3 XFeatureCall or Literal

FunctionNode [a|expression(a)] XClosure

BlockNode {...} XBlockExpression

Table 3: The classification of nodes that are used to build the expression tree

4.4 Matching Parameters to Iterator Nodes

In order to transform the invariant expressions for each specified invariant parameter, the

algorithm first matches every parameter to its corresponding iterator node. More precisely,

the expression tree is traversed with in-order depth-first search to find all nodes of type

IterateNode. If the lambda function of an iterator node specifies an iterator that has the same

name as the invariant parameter, the node is a name match candidate. In order to provide

only unambiguous matches, both invariant parameter names and iterator variable names

have to be unique within the complete invariant constraint.

A name match candidate is only a parameter match if the type of the iterator variable is

assignment-compatible to the type of the invariant parameter. This ensures that the resulting

query retrieves elements that can be bound to the statically typed invariant parameter. In

the running example (Listing 2), the name of the invariant parameter b (line 2) matches the

iterator variable of the select operation (line 3). Both have the same type and therefore

the algorithm can proceed. In general, the algorithm finds a matching iterator node for each

invariant parameter and transforms a separate invariant copy into a query to retrieve the

violations. The required transformation rules are presented in the next section.

4.5 Transforming Iterator Nodes to Queries

Once the expression tree is generated and the matching iterator node is found for a specified

invariant parameter, the tool transforms a copy of the expression tree into a tree for a query

that selects the desired elements. This transformation is executed independently for every

specified unique invariant parameter. The root of this tree is a SelectNode which selects the

invariant-violating elements from the invariant context.

Given the constraint expression tree and an iterator node matching an invariant parameter,

the algorithm recursively applies transformation rules. It starts top-down at the root node
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and transforms child nodes until the iterator node is converted into the desired SelectNode.

The query expression is finally obtained by performing an in-order traversal on the resulting

query expression tree. The tool uses the transformed expression to bind the elements

responsible for a specific constraint violation to the invariant parameter.

In the next paragraph, we explain the individual transformation rules for all transformable

node types. The algorithm transforms the parent nodes recursively before transforming the

actual node. Therefore, the transformation rules are not isolated but take the transformation

result of the parent node into account.

For NotNodes rules of standard predicate logic are applied: Negated conjunctions (AndNode)

and disjunctions (OrNode) are transformed by applying DeMorgan’s laws. The nodes are

replaced with their negated counterparts by pushing the negation inwards. A negated uni-

versal quantification (ForallNode) is replaced with an existential quantification (ExistsNode)

for the negated predicate, and vice versa.

The ForallNode specifies that all elements in the target collection have to satisfy a given

predicate. Therefore, the resulting query selects all elements that do not satisfy the predicate

and thus violate the constraint.

coll.forall[e | predicate(e)]

coll.select[e | !predicate(e)]

The ExistsNode specifies a predicate that has to be satisfied by at least one element in the

target collection. If the constraint is violated, then all elements in the target collection are

responsible as none of them satisfies the predicate. But if one element satisfies the predicate,

then no elements have to be retrieved even if some of them may not satisfy the predicate.

coll.exists[e | predicate(e)]

coll.select[!coll.exists[e | predicate(e)]]

A SelectNode only occurs with a parent node or as the result of a prior transformation.

First, the parent node is transformed by applying the appropriate transformation rule to

it. The result is a SelectNode for the parent. Then, the predicate of this parent SelectNode

is conjunct with the predicate of the current SelectNode and the iterator variables are

substituted accordingly to form a single resulting SelectNode.

coll.select[e | predicate(e)].select[p | parentPredicate(p)]

coll.select[e | predicate(e) && parentPredicate(e)]

A MapNode applies a function to each element of the target collection. On this mapped

collection, further iterate operations may be used. First, these operations are transformed

into a SelectNode. Then, the mapping is inlined into the SelectNode: The MapNode is

replaced by the SelectNode and all occurrences of the iterator variable are replaced with an

application of the function that was specified in the MapNode.

coll.map[e | function(e)].select[p | predicate(p)]

self.select[e | predicate(function(e))]

An AndNode combines an expression that contains the unique iterator variable matching the

invariant parameter with another expression. For the resulting query, elements referenced
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by this iterator variable have to be retrieved if the expression with the matched variable

evaluates to false. Whether the other expression without the matched variable also evaluates

to false has no influence on the elements to be retrieved. Therefore, the transformation

algorithm removes the expression without the matched variable and only transforms the

expression with the matched variable. The order of the expressions does not matter. A

swapped invariant otherExpression && self...e... is transformed the same way.

coll.forall/exists[e | predicate(e)] && otherExpression

coll.select[e | predicate(e)]

An OrNode combines a parameterized expression and another predicate similar to an

AndNode. But in contrast to the transformation for the conjunction, the other predicate of

the disjunction cannot be ignored. If the expression evaluates to false but the other predicate

holds, then the constraint is not violated. Therefore, the retrieved elements of the child

expression may only be selected in the query if the other predicate is violated.

coll.forall/exists[e | predicate(e)] || otherPredicate

coll.select[e | predicate(e) && !otherPredicate]

4.6 Transformation Example

To illustrate the transformation we come back to the running example shown in Listing 2

and 3. In order to transform the SelectNode printed in bold in Figure 3 with the invariant

parameter Book b, the algorithm recursively transforms the parent nodes printed in italics.

It starts at the ForallNode and transforms it into:

...select[editions|!(editions.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The algorithm continues with the transformation of the MapNode. The previously obtained

SelectNode is substituted with the following expression:

...select[!(it.editions.filter[it.referenceCopy]

.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

Last, the SelectNode with the invariant parameter is transformed by incorporating the parent

node’s predicate and substituting the iterator variable:

...select[Book b | !b.stack.closed &&!(b.editions.filter[it.referenceCopy]

.reduce[e1,e2 | e1.copies + e2.copies] >= 3)]

The final result is the query presented in Listing 3. It retrieves all books that transitively

violate the constraint and is bound to the invariant parameter Book b by our tool.

5 Evaluation and Discussion

We evaluated the correctness of the language and of the invariant transformation in two

stages: In the first stage, we used synthetic test cases to ensure that invariants formulated

in our language produce the same results as the equivalent OCL invariants and that the

transformation algorithm produces queries that retrieve the correct elements. In the second

stage, we used 88 out of 444 real invariants of the Eclipse metamodel for the UML to check

that the language and the transformation algorithm fulfill these properties on them as well.
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5.1 Evaluation of the Invariant Language

Our XOCL4Inv language is strongly aligned to OCL, which is commonly used for the

specification of metamodel constraints. Therefore, it is necessary that OCL invariants can

be expressed in a similar way in XOCL4Inv and produce identical results. We created

19 synthetic language test cases to compare OCL and XOCL4Inv expressions for every

operation defined in tables 1 and 2. Each test case provides the same input models to an

OCL expression and an XOCL4Inv expression containing Xbase or extension methods and

verifies that they retrieve the same results.

In addition to these basic synthetic tests, we also evaluated XOCL4Inv using real invariants

from the UML metamodel. It contains 444 constraints, which we categorized individually.

24 constraints have only a textual description, leaving 420 invariants in OCL notation. 175

of these compare attributes or properties of the context element and could be expressed in

XOCL4Inv. Further 79 invariants compare sizes of collections from multi-valued properties

of the context element. These constraints use the Xbase size or empty operations. In

general, it is not possible to determine the elements that cause an invariant violation for

these cardinality constraints because they may be part of the collection or not.

Most importantly, 88 constraints of the UML metamodel contain iterators that can be

transformed, i.e. expressions containing forall, exists, select, or map. We formulated

each of these invariants in XOCL4Inv, as described in the next subsection. A last set of

78 invariants cannot be assigned to any of the previous categories the invariants contain

nested combinations of multiple operations or calls to unsupported operations, such as

allInstances. These nested operations may contain nested invariant parameters, i.e. pa-

rameterized iterate operations within the predicate of other iterate operations, which are

currently not supported by our prototype. Our approach is able to transform only the 88

invariants that contain non-nested iterate operations that specify an iterator variable. We are

currently working on nested expressions by transforming non-nested and nested expressions

separately and combining them afterwards.

5.2 Evaluation of the Binding Transformation

In order to test the correctness of the transformation, we checked for 19 additional synthetic

transformation test cases that the tool generates the correct query for a given invariant with a

parameter and that this query retrieves the correct model elements. For each test, input-output

pairs verify that the retrieved elements are equal to the expected ones. The synthetic tests

cover all node-operation combinations and the following numbered expression categories:

1-2 Unchained parameterized forall and exists invariants

3-4 A select with the invariant parameter followed by forall (3) or exists (4)

5-6 A parameterized map followed by forall or exists

7-8 Both && and || combining a parameterized forall with a second predicate

9-16 The negation of 1-8

17-19 The operations forall and exists as well as conjunctions and disjunctions in

combination with parent nodes
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The transformative approach is evaluated on all 88 invariants of the UML metamodel

that contain iterators that can be transformed or rewritten to be transformed. For each

invariant, we provide an equivalent formulation in XOCL4Inv and manually checked that

the generated query equals the expected outcome of the transformation algorithm.

5.3 Discussion

The language and transformation evaluation results for the UML metamodel are promising

but have to be complemented by evaluations on further metamodels and further invariants.

We demonstrated successfully that we can express and transform 88 invariants of a popular

UML metamodel, but it is unclear whether all other Ecore metamodels and OCL invariants

can be processed. Therefore, additional invariants should be used to confirm that the

language and transformation also work for OCL expressions that are not used in the UML

invariants and for structural patterns that do not occur in the UML metamodel.

Furthermore, the transformation evaluation for the UML invariants is based on a manual

inspection of the obtained query. In future work this inspection should be automated in

order to ensure systematically that the obtained query retrieves the correct elements for

several input models. It is, however, an open question whether some of these input models

and the sets of elements to be returned for violations can be generated or whether they have

to be created manually and can only be automatically compared.

If the transformation is extended in order to transform further expressions, this extension

should be evaluated using some of the 78 invariants of the UML metamodel that can

currently not be transformed, but also using further invariants of other metamodels. A

formal proof of correctness could be done for each transformation rule, but as it mainly

realizes well-known predicate logic the benefit of such proofs is disputable.

6 Related Work

Sigma [KC12] is a hybrid model transformation library or internal domain-specific lan-

guage for Scala. It supports declarative transformation rules and imperative validation

and transformation code. Sigma groups constraints in validation contexts and provides

facilities to define severity levels for invariant violations, error messages and repair actions.

If model elements that caused an invariant validation are used in such repair actions, then

the computation of these elements has to be explicitly defined in addition to the definition of

the invariant check [cf. KCF14, p.1613, ll.19–22]. Parts of the checking of an invariant can,

of course, be factored out and be reused for retrieving model elements. For most invariants

this is, however, much more verbose than specifying constraint parameters in our approach.

The Epsilon Validation Language (EVL) [KPP09] of the Epsilon framework is similar to

OCL but overcomes several shortcomings of it. Similar to Sigma, it supports the definition

of fix procedures for invariants. These fixes are tightly coupled to a constraint, so that it is

not possible to write several fixes for a single constraint without repeating it. In contrast to
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our approach, parameters that are defined in invariant checks cannot be reused directly in

fixes. They have to be defined and computed again in fixes [cf. KPP09, p.215, ll.47–63].

Furthermore, both Sigma and EVL do not separate the definition of invariant checks from

fixes. This may be crucial if different fixes are to be defined for different editors, transfor-

mations, development projects, or customers while some of the corresponding invariants

may be defined for a metamodel regardless of its usage. We are planning to support such a

reuse of invariants in the domain-specific language for model consistency [Kra15], which

will integrate the invariants language presented in this paper.

EMF-IncQuery [Ber+12; Ujh+15] is a framework for declarative model queries. It performs

incremental graph pattern matching based on Rete networks. IncQuery provides a live

validation service that can report constraints validations directly after the modification that

lead to it. An annotation can be used to turn an ordinary graph pattern into constraints and

to define severity levels or error messages for it. Parameters of a constraint pattern can be

designated as keys to identify a violation which is a pattern match. These constraint keys

are equivalent to the invariant parameters of the presented approach: They also provide

elements that lead to a violation based on explicit constraint parameters and do not force

developers to repeat parts of the constraint checking logic in order to obtain these elements.

The main difference to our approach is, however, the relation to OCL: If elements that cause

an invariant violation shall be computed for pre-existing OCL invariants, the transition to our

approach based on an OCL-aligned language should require less effort than implementing

these invariants again with IncQuery. In projects where such invariants exists and where

developers are already familiar with OCL but not with IncQuery, our approach may be

more appropriate. To further ease such a use for legacy OCL invariants we are currently

working on a automated conversion from OCL to XOCL4Inv. There is a translation from

OCL queries to graph patterns that can be queried using EMF-IncQuery [bergmann2014a].

With this approach, it would be possible to modify the patterns that result from an OCL

invariant in order to obtain wanted elements that violate the invariant. The goal of the

translation was, however, better performance. Therefore, a conceptual mapping from the

resulting patterns to the initial OCL invariant may not always be straightforward, in contrast

to our approach.

7 Conclusion

In this paper, we have presented an OCL-aligned language for invariants with explicit

parameters and an algorithm to bind elements causing an invariant violation to these

parameters. First, we have explained why an automated computation of such elements

from a redundancy-free invariant definition is important to document or resolve invariant

violations without unnecessary effort. Then, we have introduced the XOCL4Inv language

that combines the style of OCL invariants with the extensibility and power of the expression

language Xbase. We have presented an algorithm that obtains queries that compute elements

causing an invariant violation by recursively applying transformation rules for invariant

expressions. Last, we have discussed how we evaluated the correctness of our language and
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transformation algorithm with a prototypical implementation and invariants taken from a

popular UML metamodel.

In future work, we are going to evaluate the language and algorithm with invariants of

additional case studies. We are also planning to add transformation rules for invariant

expressions and parameters that cannot yet be processed. Finally, we are going to reduce

the amount of false alarms for side-effects in invariants.
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[KC12] F. Křikava and P. Collet. “On the Use of an Internal DSL for Enriching EMF
Models”. In: Proceedings of the 12th Workshop on OCL and Textual Modelling.
OCL ’12. ACM, 2012, pp. 25–30.
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