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Abstract: We have been witnessing a rapid growth in quantum computing research over the years,
with the emergence of demonstrable quantum computers of moderate size. The major issues that are
faced to run a quantum algorithm reliably on these systems are: (i) lower qubit coherence period, (ii)
noisy primitive gate operations, (iii) limited number of available physical qubits, and (iv) support
of restricted set of 2-qubit operations. Overcoming these issues mandates physical resources that
exceeds the capabilities of these noisy intermediate scale quantum (NISQ) systems. On the other hand,
computation using bare qubits get further disturbed due to the inclusion of additional gates to mitigate
the nearest neighbor constraints. In the present work, the 2-dimensional square, heavy-hex and fully
hexagonal qubit coupling lattices are considered for mapping quantum circuits. The beneőts are
assessed in terms of minimal additional gates needed to satisfy the nearest neighbor (NN) constraint
and the compilation complexity of mapping circuits on these architectures. From the experiments by
mapping benchmark circuits on 16-qubit square and 65-qubit heavy-hex architectures from IBM as well
as on a 64-qubit fully hexagonal architecture, it is observed that none of the square or heavy-hex lattice
architecture provides uniform compilation advantage compared to the fully hexagonal architecture.
It is expected that beyond the NISQ era, strongly connected lattices like hexagonal will become
practically feasible.

1 Introduction

With the emergence of quantum computers in recent years, researchers have started to work

on application mapping with respect to more realistic qubit architectures [IB]. The size of

quantum computers in terms of the number of qubits has been steadily increasing over the

years. For example, IBM has recently announced their 127-qubit Eagle processor [CDG21].

In quantum computing, qubits are used as the fundamental unit of information as opposed to

bits in classical computing. The qubits can be regarded as hardware, on which the quantum

gates operate in the axis of time.
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In a quantum computer, the qubit architecture deőnes how the qubits are laid out physically

and the ways they can interact. The concept of coupling map has been used in the earlier

generations of IBM Q series of quantum computers [IB], which speciőes the way the

physical qubits can interact during 2-qubit gate operations. Some other qubit architectures

have also been proposed in recent years, like the hexagonal architecture [Li17, Ta18], where

a qubit can be connected with up to six other neighboring qubits in a two dimensional (2-D)

grid. In fact, all practical qubit architectures consider the layout of the qubits on a 2-D

plane with realistic interconnections. The number of neighborhood connections to a qubit is

determined by factors like physical layout, errors during gate operations, etc. [Na21]. One

of the basic constraint in mapping a quantum circuit to these physical architectures is that

the interacting qubits must be neighbors. For a large quantum circuit with fewer physical

connectivity amongst qubits, it is indeed a major challenge to satisfy this constraint. In most

of the cases, Swap gates are inserted to exchange the states of two qubits, where each Swap

gate is implemented using three back-to-back CNOT gates. The consequent increase in the

number of gates in the circuit makes it more prone to errors, and hence reducing the number

of Swap gate operations is of vital importance.

In the present NISQ era, with the availability of limited number of noisy qubits, the degree of

association of the qubits is limited to 2 or 3 (e.g., 2-D and heavy-hex architectures). However,

with further developments in fabrication technology, emergence of strongly connected qubit

architectures (e.g., hexagonal) is a strong possibility. The main objective of the present work

is to compare some of the recent qubit architectures with the hexagonal architecture with

respect to the cost of mapping quantum circuits, and evaluate how much reduction in gate

overheads can be achieved.

In this paper we analyze the performances of 16-qubit IBM QX5 (Rueschlikon) and 65-qubit

IBM Q65 (Hummingbird) architectures, as well as the hexagonal architecture. We propose

methods to map a given quantum circuit to these architectures. The rest of the paper is

organized as follows. Section 2 provides a survey of the selected IBM and the hexagonal

architectures. Section 3 proposes the qubit mapping algorithms for the architectures selected

for comparison. In section 4 we provide the experimental results followed by concluding

remarks in section 5.

2 Recent Quantum Architectures

In this section we provide a brief review of the IBM QX5 and Q65 architectures and also the

2-D hexagonal architecture. The IBM Q series of quantum computers are based on qubits

that are built using superconducting transmon, using materials like niobium and aluminum,

patterned on a silicon substrate. IBM őrst came up with 5-qubit chips in 2016 and made it

available in the cloud. Since then, IBM came up with several quantum chips of increasing

capacity, like 16-qubit Canary and Rueschlikon, 27-qubit Falcon, 65-qubit Hummingbird,

and 127-qubit Eagle [IB17]. In this paper we particularly focus on IBM’s QX5 (Rueschlikon)

and Q65 (Hummingbird) architectures. Earlier qubit architectures by IBM like the QX5
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relied on 2-D lattice structure. In contrast, the Q65 architecture uses the heavy-hex lattice

structure, which is the topology used in recent IBM quantum computers. The choice of

such topology is based on experimental evaluation to ensure reduced error-rates, which

also provides room to explore error correcting codes. In these topologies, a single qubit is

connected with a maximum of two or three neighboring qubits.

The IBM Q series architectures support a limited number of 2-qubit gate operations. Fig. 1

shows the qubit arrangements in the QX5 [Ga] and Q65 [IB20] architectures. An edge

denotes coupling between physical qubits for conducting 2-qubit gate operations (e.g.

CNOT) on such architectures. The QX5 architecture (see Fig. 1a) is more restrictive, where

the edge directions indicate control and target qubits for 2-qubit CNOT operations, e.g.

for a directed edge like 𝑞𝑖 → 𝑞 𝑗 between physical qubits 𝑞𝑖 and 𝑞 𝑗 , the QX5 architecture

supports CNOT(𝑞𝑖 , 𝑞 𝑗 ) operation, whereas it needs four additional Hadamard operations to

conduct CNOT(𝑞 𝑗 , 𝑞𝑖) operation [ZPW19].

(a) (b)

Fig. 1: (a) IBM QX5 Rueschlikon architecture, (b) IBM Q65 Hummingbird architecture.

Recently quantum mechanical systems based on hexagonal architecture have been pro-

posed [Li17, Ta18]. In this architecture, each qubit can have a maximum of 6 neighbors.

Having more connectivity amongst neighbors provides ŕexibility in the mapping of quantum

circuits. Fig. 2 shows a 6 × 5 hexagonal architecture where the height is 5 and width is

6. Recently few works have been reported on mapping quantum circuits to hexagonal

structures [CL21, Da22]. As mentioned earlier, Swap gates are typically inserted to make

a quantum circuit NN-compliant. In [CL21], Chang et al. have used Swap gates to make

quantum circuits NN-compliant. Due to increased connectivity among qubits, the hexagonal

architecture is found to reduce the number of Swap gates required as compared to existing

architectures. In [Da22], Datta et al. have used the CNOT templates [RD12] as the cost

metric for NN-compliance in hexagonal architecture, instead of Swap gates. The method

1111



uses a Genetic Algorithm based global ordering of qubits for generating the initial qubit

placement, and is found to outperform other NN-mapping techniques in two dimensions.

Fig. 2: Hexagonal qubit architecture.

It is evident that IBM’s QX5 and Q65 architectures have less connectivity as compared to

hexagonal architecture, and therefore have distinct advantages in terms of overall error rate.

Although hexagonal architecture seems promising with higher connectivity, commercial

products based on such architecture are expected only in the post-NISQ era.

3 Mapping Quantum Circuits to Various Architectures

In this section we discuss how the logical qubits in a quantum circuit can be mapped to

various qubit architectures. For the sake of comparison, we have used Swap gates as the

evaluation metric for all the methods. The overall ŕow of quantum circuit mapping is shown

in Fig. 3. We őrst discuss the steps for qubit mapping in the Q65 architecture; the mapping

for the QX5 architecture is very similar.

Fig. 3: The overall mapping ŕow.

3.1 Mapping Quantum Circuits to IBM’s 65-bit Hummingbird Architecture

The problem of mapping quantum circuits to IBMQ architectures has been explored by

several researchers [ZPW19, dADdS19, Ko20, Ni20, NBD21]. In most of these methods

either 5-qubit (e.g., QX2 (Yorktown) and QX4 (Tenerife)) or 16-qubit (e.g., QX3 and

QX5) Rueschlikon architectures have been considered. In this paper we have used QX5

as well as Q65 architectures for experimentation. A generalized architecture-independent

qubit mapping tool has been developed for the purpose. The inputs to the tool are the
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architectural speciőcation of the qubits (e.g., Q65), and the given quantum circuit. The

algorithm generates the qubit placement, and calculates the number of Swap gates required to

make the circuit NN-compliant. When we map a circuit with 𝑛 logical qubits (𝑄0, . . . , 𝑄𝑛−1)

to the Q65 architecture, the 𝑛 physical qubits can be selected in
(

65

𝑛

)

ways. It may be noted

that the qubit association is bidirectional in Q65, i.e. an edge (𝑞𝑖 , 𝑞 𝑗 ) in the coupling map

indicates that either 𝑞𝑖 or 𝑞 𝑗 can be used as target in a 2-qubit gate operation. Also, the

degree of association of any qubit is 2 or 3. Referring to Fig. 1b, the qubit 𝑞4 has the

connections 𝑞4 → 𝑞3, 𝑞4 → 𝑞5, and 𝑞4 → 𝑞11, and hence the degree of association is

𝑑𝑒𝑔(𝑞4) = 3. Considering a quantum circuit, the degree of association is represented by

connections between the logical qubits in the qubit interaction graph, QIB = (𝑉, 𝐸), where

the vertices 𝑄𝑘 ∈ 𝑉 indicate logical qubits, and the weight (𝑤𝑘𝑟 ) of an edge (𝑄𝑘 , 𝑄𝑟 ) ∈ 𝐸

denotes the number of 2-qubit gate operations between 𝑄𝑘 and 𝑄𝑟 .

The following steps are used to map a quantum circuit to the IBM Q65 architecture. The

process of mapping to the QX5 architecture is similar, with special care taken for the

directional constraints in the coupling map.

(i) For every pair of physical qubits (𝑞𝑖 , 𝑞 𝑗 ), 𝑑𝑖 𝑗 denotes their distance as per the coupling

map. If the qubits are adjacent, we set 𝑑𝑖 𝑗 = 0. If they are non-adjacent, the distance

is initially set to inőnity (∞). To őnd the shortest distance between all pairs of

non-adjacent qubits, we use Floyd-Warshall algorithm, which has an overall runtime

of 𝑂 (𝑛3) for 𝑛 physical qubits. This process needs to be performed only once for

an architecture and the computed distance measure (𝑑𝑖 𝑗 ) can be kept in a persistent

storage to speed up the mapping process.

(ii) A greedy approach is used to select the 𝑛 physical qubits to map a 𝑛-qubit quantum

circuit. The objective is two-fold: (i) to minimize the number of CNOT operations on

uncoupled physical qubits in the mapped quantum circuit, and (ii) to reduce the search

time for selecting a good set of 𝑛 among 𝑚 physical qubits for mapping. In the őrst

step of qubit mapping, the logical qubit (𝑄𝑘) having highest degree of association is

mapped to a physical qubit (𝑞𝑖) that also has highest degree of association. In case of

a tie, one of the qubits involved in the tie is chosen randomly. This process is repeated

for all the remaining logical qubits, in descending orders of degree of association. At

every step, the next physical qubit is selected based on the shortest distance from the

already assigned qubits. For mapping 𝑛 physical qubits, the average running time of

this step is 𝑂 (𝑛2).

(iii) During the mapping of a quantum circuit to a physical qubit architecture, the selection

of physical qubits and also the initial permutation of the logical qubits (𝑄0, . . . , 𝑄𝑛−1)

play an important roles in reducing the number of Swap gates and also the circuit

depth. In general, őnding the optimal initial permutation for 𝑛 logical qubits is

computationally hard, with a complexity of 𝑂 (𝑛!). In this work we have used an

evolutionary algorithm to őnd the initial permutation of logical qubits, some of the

parameters for which are as follows.
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• The number of Swap gates required for NN-compliance is used as the fitness

function consistent with the edge weights of the corresponding QIG.

• The initial population size is taken as 30, crossover rate 70%, and mutation

rate 17%. The algorithm is run over 500 generations, at the end of which the

best solution gives the initial permutation.

• While generating the chromosomes for the next generation, the best 4 permuta-

tions from the current generation are copied. For crossover operation, a pair of

permutations (𝑃𝑐
𝑖
, 𝑃𝑐

𝑗
) from the current generation are picked out using roulette

wheel selection method [Go89]. Using a randomly selected crossover point,

őrst parts of this selected pair are copied to a new pair (𝑃𝑛
1
, 𝑃𝑛

2
) for the next

generation. To prevent redundant qubit mapping, the remaining missing qubits

of the new pair (𝑃𝑛
𝑖
, 𝑃𝑛

𝑗
) are őlled up by reordering their appearance in the pair

(𝑃𝑐
𝑖
, 𝑃𝑐

𝑗
). During mutation, one of the operations like swapping positions of

two randomly selected qubits, moving a randomly selected qubit to a vacant

adjacent position or moving a qubit to a randomly selected vacant position is

conducted randomly on permutations from the current generation before being

copied in next generation.

(iv) After the initial placement of the logical qubits, some of the 2-qubit gate operations

may not satisfy the coupling constraints, for which Swap gates are inserted. A

Swap gate exchanges the states of a pair of qubits, which in turn changes the qubit

permutation. Starting with the initial mapping, we traverse the quantum circuit from

left to right, and use a 𝑘-gate lookahead approach to insert Swap gates before each

2-qubit gate operating on non-coupled qubits. The objective is to make the gate

operation NN-compliant. Among the various possibilities that may exist, we select

the one that minimizes the cost of mapping the 𝑘 subsequent gates in the circuit.

For a given quantum circuit, the mapping tool tries to carry out a good logical to physical

qubit mapping, and report the overhead for NN-compliance in terms of the number of Swap

gates required.

3.2 Mapping Quantum Circuits to Hexagonal Architecture

We now discuss the problem of mapping a quantum circuit to the hexagonal qubit architecture.

Fig. 2 depicts the coupling map of 30 qubits arranged in a 6 × 5 hexagonal array, with a

maximum qubit coupling of 6. As a matter of convention, we number the qubits in row-major

order, from left to right and then from top to bottom. If 𝑊 and 𝐻 denote the width and

height respectively in the 𝑊 × 𝐻 arrangement of qubits, the total number of qubits will be

𝑊.𝐻. The Cartesian co-ordinates of the 𝑖𝑡ℎ qubit (i.e., 𝑞𝑖) can be calculated as

𝑥𝑖 = (1 − (𝑦𝑖 % 2)) + 2 (𝑖 % 𝑊)

𝑦𝑖 = 𝑖 ÷𝑊
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where % and ÷ respectively denote modulus and integer division. This coordinate system

guarantees that the Manhattan Distance (MD) between any two neighboring qubits is 2. The

MD measure can be used to obtain the distance 𝑑𝑖 𝑗 between physical qubits 𝑞𝑖 and 𝑞 𝑗 as:

𝑑𝑖 𝑗 = 𝑚𝑎𝑥

(

|𝑦𝑖 − 𝑦 𝑗 |,
𝑀𝐷 (𝑞𝑖 , 𝑞 𝑗 )

2

)

− 1 (1)

where the coordinates of the qubits 𝑞𝑖 and 𝑞 𝑗 are (𝑥𝑖 , 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗 ) respectively.

The mapping approach is similar to the previously outlined approach for IBMQ architecture

with minor changes. The following steps are followed to map the logical qubits of a quantum

circuit to the hexagonal architecture:

(i) We create a weighted qubit interaction graph (QIG) from the given quantum circuit,

in which every node 𝑄𝑘 denotes a logical qubit and an edge (𝑄𝑘 , 𝑄𝑟 ) denotes the

presence of 2-qubit gate(s) between 𝑄𝑘 and 𝑄𝑟 . The weight of the edge 𝑤𝑘𝑟 indicates

the number of 2-qubit gates between the pair of qubits.

(ii) We use an evolutionary algorithm to őnd the best initial mapping of the qubits. The

earlier deőned cost function (viz., the total number of Swap operation for obtaining

NN-compliance) is used for optimization keeping population size, crossover rate,

mutation rate and number of generations unchanged.

(iii) With the obtained initial mapping, the quantum circuit from left to right is traversed

using the same 𝑘-gate lookahead approach, and Swap gates are inserted before

each 2-qubit gate operating on non-coupled qubits for NN-compliance. Different

possibilities are explored and the lowest cost alternative is selected for mapping the 𝑘

subsequent gates in the circuit.

4 Experimental Results

In this section we present the results of mapping various quantum benchmark circuits to

the selected IBM and hexagonal qubit architectures using the approaches outlined in the

previous section. Initially, the RevLib benchmarks [Wi08] available in reversible form are

transpiled using Qiskit 0.19.0 [An21] with Python 3.16.12 setting the Qiskit parameters

basis_gates and optimiyation_levels as (CX, U3) and 0, respectively before being used in

our experiments. The qubit mapping algorithms are implemented using C++ and run on an

Intel(R) Xeon(R) Gold 6132 processor with 96GB memory running CentOS 7.0 operating

system.

We have shown two sets of experimental results. In Table 1, we show the mapping results

for IBM QX5 and IBM Q65. The őrst three columns show the benchmark names, number

of qubits (𝑛), and number of CNOT gates in the original netlist. The next three columns

1115



show the number of extra CNOT gates required to make the circuit NN-compliant, the

number of 𝐻-gates (speciőcally required to conduct CNOT operation consistent with the

coupling direction), circuit depth and run-time for IBM QX5. The next three columns show

the number of extra CNOT gates required, circuit depth and run-time for IBM Q65. The

last three columns show the better architecture, % improvements in number of gates, and

difference in run-times. We have chosen 51 benchmarks with 3 ≤ 𝑛 ≤ 14, out of which 21

benchmarks show better results for QX5, and 30 show better results for Q65. Out of the total

21 benchmarks for which QX5 gives better results, 11 of them have 𝑛 ≥ 10. But out of 30

benchmarks for which Q65 provides better results, most of them have 3 ≤ 𝑛 ≤ 7. It may be

noted that in the QX5 architecture, the degree of association is 2 for only 4 qubits, and 3 for

the remaining 12 qubits. In contrast for Q65, considering the őrst 16 qubits, 3 of them have

degree of association as 3, while the rest have a value of 2. However, the Q65 architecture

has better error resiliency and can map larger quantum circuits as compared to QX5.

Table 2 shows the mapping results for 8 × 8 hexagonal and IBM Q65 architectures. The őrst

three columns show the benchmark names, number of qubits (𝑛) and number of CNOT gates.

The next six columns show the number of extra CNOT gates required for NN-compliance,

circuit depth and run-time for the hexagonal and Q65 architectures respectively. The last

two columns show the % improvement in CNOT gates and difference in run-time of the

hexagonal architecture over Q65. It is evident from the results that the hexagonal architecture

provides lower mapping overheads as compared to Q65, which is a result of the extended

qubit coupling in the hexagonal architecture. However, it may be noted that the hexagonal

architecture is not practically feasible in the present NISQ era; however, it can be a potential

candidate in the future during the post-NISQ era.

5 Conclusion

In this paper we have analyzed the overheads of quantum circuit mapping on two IBM’s

quantum computer architectures, viz. 16-qubit Rueschlikon (QX5) and 65-qubit Humming-

bird (QX65), and a 2-D hexagonal architecture. Both QX5 and Q65 architectures have a

maximum qubit neighborhood of 3, with directional constraints existing between pair of

coupled qubits in QX5 and no directional constraints in Q65. In fact, in the QX5 the qubits

are laid out uniformly in a 2-D grid, while a heavy-hex lattice structure is used to connect the

qubits in Q65. In contrast, the hexagonal architecture has a maximum qubit neighborhood

of 6. Experimental results reveal that the hexagonal architecture incurs less gate overhead

for mapping various benchmarks compared to QX5 and Q65, which is mainly because of

the extended connectivity among qubits. Between QX5 and Q65, since the qubit interaction

patterns are different, we see mixed results for the mapping of benchmark circuits. It may

be noted that although hexagonal architecture provides better mapping, cloud based devices

based on such extended neighborhood architectures are yet not available. In comparison,

the IBM series of quantum computers in spite of their limitations have been physically

fabricated and widely used by users from all over the globe. Hexagonal and other strongly

connected architectures may emerge in the future during the post-NISQ era.
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Tab. 1: Comparison of NN-mapping on IBM QX5 and Q65 architectures.

Benchmark Circuits QX5 Q65 Improvement

Name 𝑛 #CNOT #CNOT #H #Depth t(s) #CNOT #Depth t(s) Arch. Δ𝑔 (%) Δ𝑡 (𝑠)

3_17_14 3 15 15 24 57 0.05 9 39 0.27 Q65 40.00 −0.22

4_49_17 4 35 21 72 122 0.08 27 92 0.42 QX5 −28.57 −0.34

4gt10-v1_81 5 49 39 156 167 0.09 36 113 0.55 Q65 7.69 −0.46

4gt12-v0_86 5 81 66 228 282 0.10 54 167 0.52 Q65 18.18 −0.42

4gt13_90 5 43 33 112 156 0.11 30 98 0.57 Q65 9.09 −0.46

4gt13_91 5 39 30 104 145 0.10 27 91 0.56 Q65 10.00 −0.46

4gt4-v0_73 5 127 102 348 408 0.11 90 269 0.54 Q65 11.76 −0.44

4gt5_77 5 42 30 128 135 0.10 12 84 0.54 Q65 60.00 −0.44

4mod5-bdd_287 7 27 27 52 89 0.15 30 68 0.78 QX5 −11.11 −0.64

4mod5-v1_23 5 28 27 60 93 0.10 27 73 0.54 Q65 0.00 −0.45

4mod7-v0_94 5 54 27 76 154 0.10 30 126 0.56 QX5 −11.11 −0.46

aj-e11_165 4 56 36 144 175 0.07 39 139 0.38 QX5 −8.33 −0.30

aj-e11_168 4 38 24 80 102 0.08 24 86 0.42 Q65 0.00 −0.34

alu-bdd_288 7 33 30 52 94 0.14 24 74 0.71 Q65 20.00 −0.58

alu-v2_30 5 160 126 432 528 0.10 120 363 0.55 Q65 4.76 −0.45

alu-v2_31 5 146 108 364 486 0.12 96 326 0.57 Q65 11.11 −0.45

alu-v4_36 5 40 42 92 131 0.10 39 112 0.5 Q65 7.14 −0.40

C17_204 7 156 132 292 463 0.14 189 355 0.71 QX5 −43.18 −0.58

cm42a_207 14 593 588 1420 1890 0.32 660 1286 1.27 QX5 −12.24 −0.96

dc1_221 11 642 633 1520 2110 0.30 696 1485 1.19 QX5 −9.95 −0.89

decod24-enable_126 6 116 111 328 430 0.13 108 283 0.66 Q65 2.70 −0.53

decod24-v1_41 4 29 24 72 91 0.08 12 60 0.41 Q65 50.00 −0.33

decod24-v3_45 4 47 36 132 154 0.08 18 103 0.4 Q65 50.00 −0.33

ex3_229 6 114 102 340 412 0.13 90 251 0.67 Q65 11.76 −0.54

ham7_104 7 114 108 296 387 0.13 102 261 0.64 Q65 5.56 −0.51

hwb4_49 4 85 54 204 260 0.07 45 197 0.36 Q65 16.67 −0.29

hwb5_55 5 141 141 416 505 0.11 126 325 0.6 Q65 10.64 −0.48

hwb6_58 6 183 201 512 670 0.13 198 452 0.66 Q65 1.49 −0.53

hwb7_61 7 6252 5718 14 516 19 706 4.43 5628 13 518 1.43 Q65 1.57 3.00

hwb7_62 7 4142 3828 9840 12 847 2.07 3864 8736 1.17 QX5 −0.94 0.90

mini_alu_305 10 67 84 148 180 0.20 63 134 1.03 Q65 25.00 −0.83

mod5adder_127 6 165 165 476 562 0.12 150 398 0.61 Q65 9.09 −0.49

mod5adder_128 6 110 87 276 404 0.12 93 261 0.65 QX5 −6.90 −0.52

mod8-10_177 5 133 129 324 482 0.11 96 298 0.57 Q65 25.58 −0.46

mod8-10_178 5 99 78 288 319 0.11 78 235 0.56 Q65 0.00 −0.45

one-two-three-v0_97 5 98 87 276 354 0.10 81 243 0.54 Q65 6.90 −0.43

one-two-three-v1_99 5 47 48 152 173 0.10 45 123 0.52 Q65 6.25 −0.42

pm1_249 14 593 588 1348 1857 0.32 618 1356 1.29 QX5 −5.10 −0.97

rd32_273 5 160 93 372 472 0.11 138 361 0.5 QX5 −48.39 −0.39

rd53_131 7 160 135 252 422 0.12 141 361 0.63 QX5 −4.44 −0.50

rd53_135 7 108 99 216 329 0.14 114 256 0.75 QX5 −15.15 −0.60

rd73_140 10 90 90 212 270 0.20 87 193 1.02 Q65 3.33 −0.82

rd73_252 10 2380 2094 4588 6635 0.89 2730 5041 1.4 QX5 −30.37 −0.51

sqn_258 10 4726 4191 8760 12 173 2.32 5172 10 672 1.66 QX5 −23.41 0.67

sqrt8_260 12 1711 1512 3032 4444 0.58 1785 3676 1.42 QX5 −18.06 −0.84

sym6_145 7 1302 1188 3056 4037 0.36 1023 2708 0.75 Q65 13.89 −0.38

sym6_316 14 107 138 280 326 0.24 210 300 1.2 QX5 −52.17 −0.96

sym9_146 12 128 69 308 306 0.23 138 257 1.22 QX5 −100.00 −0.99

sym9_148 10 7224 6273 16 560 22 996 6.40 6711 15 670 2 QX5 −6.98 4.41

wim_266 11 326 324 828 1067 0.21 354 788 0.94 QX5 −9.26 −0.73

z4ml_269 11 1248 1131 2636 3589 0.43 1533 2827 1.2 QX5 −35.54 −0.77
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Tab. 2: Comparison of NN-mapping on hexagonal 64-qubit and IBM Q65 architectures.

Benchmark Circuits Hexagonal (8 × 8) IBM Q65 Improvement

Name 𝑛 #CNOT #CNOT #Depth t(s) #CNOT #Depth t(s) Δ𝑔 (%) Δ𝑡 (𝑠)

4_49_16 4 78 12 140 0.34 51 189 0.41 76.47 0.07

4gt12-v0_86 5 81 24 159 0.49 54 167 0.52 55.56 0.03

4mod5-v0_20 5 9 0 13 0.00 6 19 0.44 100.00 0.44

4mod5-v1_22 5 10 0 13 0.00 6 19 0.45 100.00 0.45

4mod5-v1_23 5 28 6 53 0.41 27 73 0.54 77.78 0.13

5xp1_194 17 4777 1494 8448 3.09 5649 10 214 2.79 73.55 −0.30

add6_196 19 24 745 7266 44 041 8.32 32 499 54 162 12.21 77.64 3.89

alu-v2_30 5 160 57 309 0.51 120 363 0.53 52.50 0.02

alu-v2_31 5 146 27 270 0.49 96 326 0.56 71.88 0.07

alu1_198 20 324 180 454 2.54 438 541 1.39 58.90 −1.15

alu3_200 18 17 787 4032 30 709 5.32 20 376 37 210 7.46 80.21 2.14

C7552_205 21 3301 1212 6011 5.03 4458 7529 3.69 72.81 −1.34

cm150a_210 22 3653 954 6558 5.59 3735 8071 3.45 74.46 −2.14

cm163a_213 29 4911 1110 8722 7.23 5802 10 427 7.54 80.87 0.31

cu_219 25 16 396 3381 28 280 9.73 21 339 38 623 16.14 84.16 6.41

cycle10_293 39 222 327 463 6.33 693 586 4.10 52.81 −2.23

decod_217 21 3301 1284 6019 4.84 4185 7187 3.66 69.32 −1.18

dk17_224 21 13 154 3096 23 029 7.45 19 125 30 663 10.10 83.81 2.65

dk27_225 17 725 297 1281 2.86 1146 1849 2.03 74.08 −0.83

ham15_298 45 313 573 598 9.09 40 722 40 234 5.56 98.59 −3.53

ham7_299 21 151 126 294 2.93 318 427 1.73 60.38 −1.20

hwb6_301 46 589 804 1026 12.50 1863 1529 6.72 56.84 −5.78

hwb7_59 7 8423 1815 15 466 1.32 7260 18 500 1.79 75.00 0.47

hwb8_116 8 12 245 3843 22 708 1.97 13 101 26 210 2.70 70.67 0.73

inc_237 16 5582 1845 9923 3.19 360 666 366 212 5.12 99.49 1.93

life_238 10 19 936 3831 35 063 2.91 20 799 43 599 4.14 81.58 1.23

max46_240 10 22 924 4230 40 067 3.07 22 815 48 798 4.56 81.46 1.49

mod5adder_306 32 337 333 564 6.64 867 815 3.19 61.59 −3.45

mux_246 22 3652 1074 6585 6.39 3747 7598 3.45 71.34 −2.94

parity_247 17 16 36 28 1.07 87 59 1.39 58.62 0.32

pcler8_248 21 956 345 1597 3.84 1284 2063 2.13 73.13 −1.71

plus127mod8192_308 25 91 78 168 2.72 237 242 1.93 67.09 −0.79

plus63mod4096_309 23 82 66 160 2.53 177 220 1.77 62.71 −0.76

plus63mod8192_310 25 89 75 170 2.19 276 275 1.65 72.83 −0.54

rd73_312 25 246 207 487 4.35 522 651 2.11 60.34 −2.24

rd84_253 12 9677 2769 17 209 3.25 10 338 21 784 3.32 73.22 0.07

rd84_313 34 343 333 504 6.69 777 859 3.59 57.14 −3.10

sqr6_259 17 2292 828 4064 3.46 3114 5086 2.51 73.41 −0.95

sym9_193 10 39 296 7131 68 170 3.92 42 186 81 443 7.46 83.10 3.54

sym9_317 27 240 225 414 4.39 555 593 2.41 59.46 −1.98

t481_263 17 376 141 741 2.24 510 859 1.22 72.35 −1.02

urf1_278 9 24 916 14 307 46 644 5.06 40 344 60 383 7.23 64.54 2.17

urf2_152 8 30 180 18 735 65 365 4.87 39 120 86 416 6.45 52.11 1.58

urf3_279 10 66 435 31 281 121 272 11.01 102 738 160 603 18.21 69.55 7.20

x2_267 17 1990 780 3607 2.96 2439 4632 1.81 68.02 −1.15
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