On the Relationship of Ontologies and Models
Colin Atkinson, Matthias Gutheil and Kilian Kiko

Chair of Software Technology
University of Mannheim
A5, 6
68161 Mannheim
atkinson@informatik.uni-mannheim.de
gutheil@informatik.uni-mannheim.de
kilian.kiko@gmx.net

Abstract: As models and ontologies assume an increasingly central role in
enterprise systems engineering the question of how they compare and can be used
together assumes growing importance. On the one hand, the semantic web
community is starting to propose a central role for “ontologies” in software
engineering, while on the other hand the software engineering community has over
the last few years been enthusiastically embracing “models™ as the core artefact in
software development. Superficially, however, ontologies and models are very
similar, and in fact are sometimes visualized using the same language (e.g. UML).
This has given rise to a variety of different interpretations of the roles of the two
technologies, and had generated a certain degree of confusion about the
relationship between them. So what exactly is the difference between ontologies
and models and why are both concepts needed? Are they basically the same thing
viewed from different angles or is there some fundamental difference between
them beyond the idiosyncrasies of current tools and languages? This paper
discusses this question. After considering common informal distinctions between
ontologies and models, and analyzing their fundamental definitions, we propose
how they might usefully be distinguished in the future.

1 Introduction

For many years the disciplines of software engineering and artificial intelligence have
been polite neighbors, occasionally exchanging high level ideas and techniques, but
retaining distinctly disjoint communities, languages and foci. However, with the trend
towards embedding intelligent devices in almost all parts of our environment (i.e.
ubiquitous computing) and increasing interconnection across the enterprise and the
Internet, this separation is rapidly disappearing. As evidenced by the growing number of
papers and workshops dealing with the overlap of the two disciplines (e.g. SEKE
[SE05], VORTE [VOO05], MDSW [MDO04], SWESE [SWO05], ONTOSE [ONO5],
WoMM [Wo05]), the integration of software engineering and artificial intelligence
technologies has already generated considerable academic interest, and developers are
starting to face the question of how to use these technologies together in practical
software engineering projects.

47

The central question is how to represent information. Traditionally, software engineers
have taken a very pragmatic approach to data representation, encoding only the
information needed to solve the problem in hand, usually in the form of language data
structures or database tables. However, over the last ten to fifteen years, the notion of
“modeling” has risen to prominence in software engineering practice, and the
representation of “meta” information and metamodels has become an increasingly
important technique for creating flexible and adaptive applications. These ideas are
today wrapped up in the notions of Model Driven Development (MDD) or Model Driven
Architecture (MDA).

Artificial Intelligence, on the other hand, has traditionally focused on the representation
of “knowledge” to support “intelligent” behavior and the discovery of new information
using various kinds of inference techniques. Over the last ten to fifteen years the notion
of “ontology” has risen to prominence in Artificial Intelligence research, and the
representation of type hierarchies and taxonomies has become an increasingly important
technique for influencing the behavior of applications. These ideas are closely
intertwined with the notion of the Semantic Web.

In the literature dealing with the integration or co-use of these two technologies the
accepted wisdom seems to be that “models” and “ontologies” are fundamentally
“different”, and must somehow be jointly accommodated in modern software
engineering practices. This is most strikingly evidenced by some of the recent initiatives
of major standards definition bodies in the software and web domains. For example, the
OMG recently released a proposal to standardize an Ontology Definition Metamodel
(ODM) as a “bridge” between the semantic web and MDA “technology spaces” while
the W3C released a vision document on software engineering [W3C06] that proposes an
“Ontology Driven Architecture” as a “supplement” to MDA. Also a paper [FHK04] by a
team of MDA and semantic web experts proposes the notion of the “Model Driven
Semantic Web”. Without the assumption that modeling and ontology development are
different technologies, there would be no need for any of these proposals.

Our goal in this paper is to explore the underlying reasons for this accepted wisdom and
to clarify the relationship between models and ontologies. Ultimately we aim to propose
practical criteria for classifying information representations as ontologies or models.
There is a need for this as several approaches currently use the terms interchangeably. In
the next section we start by reviewing some of the main informal distinctions currently
found explicitly or implicitly in the literature. Then, in section 3 we go back to first
principles and compare models and ontologies based on their fundamental definitions.
Section 4 presents our proposal for a useful distinction between ontologies and models in
the future. Finally, section 5 concludes with a summary of the lessons learned from the
exercise.

48

2 Common Informal Distinctions

Although formal definitions for ontologies and models are available (see section 3),
several informal distinctions have taken hold and have become “accepted wisdom” in
certain communities. Generally reflecting the different histories and foci of different
communities, these fall into two groups - those distinctions focusing on the purpose of a
model/ontology and those based on the properties of a model/ontology. In order to
discuss them and avoid writing “model/ontology” whenever we wish to be unspecific
about whether the subject is a model or an ontology, we will use the neutral term
“information representation”, abbreviated IR. The referenced articles do not necessarily
state (all of) the mentioned assumptions explicitly, but they can be easily inferred by
“reading between the lines”

2.1 Purpose-based Distinctions

Purpose-based distinctions explain or motivate the need for a distinction between
ontologies and models based on the goal that they are trying to achieve or the role they
are trying to fulfill.

IF1. Models focus on Realization (Ontologies do not)

One of the first papers that articulated a difference between modelling and ontology
development was the highly influential paper by Noy and McGuinness that proposed a
method for developing ontologies [NMO1]. The basic argument is that models focus on
realization issues while ontologies focus on capturing abstract domain concepts and their
relationships. Their viewpoint is concisely expressed in the following paragraph from
section 1 of their paper:

“Some ontology-design ideas in this guide originated from the literature on object-
oriented design (Rumbaugh et al. 1991; Booch et al. 1997). However, ontology
development is different from designing classes and relations in object-oriented
programming. Object-oriented programming centers primarily around methods on
classesl] a programmer makes design decisions based on the operational properties of a
class, whereas an ontology designer makes these decisions based on the structural
properties of a class. As a result, a class structure and relations among classes in an
ontology are different from the structure for a similar domain in an object-oriented

»

program.

49

Issues: While the last statement is correct it suggests that all object-oriented models are
focused on realization. This is because it mixes object-oriented programming (OOP)
with object-oriented design (OOD) and omits object-oriented analysis (OOA). In fact,
there is a long and successful tradition of using models at all levels of abstraction in
software engineering [La01], and the “modeling” works cited by Noy and McGuiness
emphasize that object-orientation can be used seamlessly across all development phases.
The first [Ru91] actually focuses much more on analysis level “domain” modelling than
program modelling, and it is mainly the object-oriented analysis techniques from this
book which were adopted by Noy and McGuiness in their guide. In the intervening
years, the UML and MDA literature has become even more explicit about the fact that
models can exist at all levels of abstraction and can be used exclusively for describing
domains. The Computation Independent Model (CIM) in the MDA paradigm plays
exactly this role.

IF 2. Ontologies are for run-time Knowledge Exploitation (Models are not)

One of the common roles assigned to ontologies in software engineering is realize
“intelligent databases” that can offer various kinds of reasoning services on data at run-
time. This is the essential idea behind the “Ontology Driven Architecture” proposal in
the W3C’s software engineering vision document [W3CO06] describing software
engineering uses for ontologies. However, the notion that it is necessary to have
ontologies or ontology based systems to build such applications is based on the
assumption that “model-based” IRs are not intended to contain instance data or be
accessible at run-time. For example, the W3C’s paper [W3C06] states that

“[...], currently MDA has not been applied for run-time relevant
characteristics of component management, such as which version of an
application interface requires which versions of libraries. MDA requires a
compilation step preventing changes at runtime which are characteristic for
component management. Besides, an MDA itself cannot be queried [...].
Hence, there is no way to ask the system whether some configuration is valid or
whether further elements are needed.”

Issues: Since UML style modeling originally evolved to support the creation of
applications in traditional technologies, it is true that instance data (instances of classes)
has traditionally not been stored at run-time in a UML-based (i.e. model-based) form.
Instead, instance data has traditionally been stored and manipulated either in databases
or as objects in a programming language such as C++ or Java. However, this does not
mean that models are somehow incompatible with or incapable of storing instance data
at run-time. On the contrary, recent developments in MDA technology have been
designed to do just this. MOF repositories are designed to provide run-time access to all
forms of model data [HS04], [MHMO5].

50

IF 3. Ontologies are for Representing Web Based Information (Models are not)

Because of the recent association of ontologies and high profile ontology representation
languages with the web, there is an inference by some that ontologies are mainly for
representing web based data while models, being intended for software engineering, are
not. This is why some people have suggested enriching the semantic web with “models”
and model based technologies [FHK04].

Issues: The semantic web standards focus on web-related issues in their language
definitions. However, this is not an aspect of ontologies per se. There are numerous
examples of ontologies based on languages like FLogic [KLW95] that are not "web-
related".

2.2 Property-based Distinctions

Property-based distinctions explain or motivate the need for a distinction between
ontologies and models based on the fundamental characteristics of an IP.

IF 4. Ontologies are Formal (Models are not)

An often cited shortcoming of the UML from the perspective of its ability to support the
description of ontologies is its lack of formal semantics. “Formal” in this context in
contrast to section 3 does not mean machine-readable but “explicit and precise”, and by
extension, subject to mathematical or logical reasoning. Many papers [Dr05, Br04, Ba02,
Ha04] therefore distinguish “ontologies” from “models” because they expect the former
to be represented with well defined semantics in a language like OWL, and the latter to
be represented in a less precise manner in a language like the UML.

Issues: Although the UML 2.0 standard [OMGO03b, OMGO04] still lacks a precise (i.e.,
model-theoretic [Ta56]) semantics definition, the concepts specified in the UML are
described and used so clearly and explicitly in a common standard way that they can
easily be mapped into a language like OWL [Ha04, Br04], DAML [Ba02], DLR [Ca02]
or FOL [AKO06]. In addition, the axiom language OCL has a precise semantics [Ri01]
that makes OCL-enhanced UML models just as formal as OWL ontologies [AKO06].
Note, that formality does not imply expressiveness. Because of their different “world-
views” the expressiveness of both languages is hard to be compared [AKO06].

IF 4. Ontologies can support Reasoning (Models can not)

Following on from the previous two reasons, a common argument is that ontologies
support “reasoning” while models cannot (or do not).

51

Issues: Although the UML was not initially devised for reasoning, there is nothing to
stop reasoning steps from being applied to UML models as demonstrated by Cali et al.
[Cali et al.]. They investigated the expressiveness of the class diagram subset of UML in
comparison with a description logic. As long as models are given enough precision
(using e.g. OCL) they can support the same reasoning algorithms as ontologies.
However, it is not possible to use the algorithms used on OWL (e.g. subsumption) on
UML models as the two languages have different semantics (UML has closed world
semantics, while OWL has open-world semantics). A common corollary of this
assumption is that models are exclusively intended for transformation (i.e. for serving as
the source and target of transformations) while ontologies are not. This again is a
reflection of their respective histories rather than their inherent properties.

IF S. Models use the Close World Assumption (Ontologies use the Open World
Assumption)

Another grounds for distinction, which is only really of interest to people with detailed
knowledge of modelling and ontology representation languages is that models use the
close world assumption while ontologies use the open world assumption. The different
assumptions have an impact on the interpretation of IR concepts. This means that
concepts that are apparently the same have slightly different denotations if viewed from
different perspectives.

Issues: This distinction is correct for UML models and OWL ontologies. However, it is
not possible to generalize from this to other types of ontologies (e.g. those in the
language Prolog) since they can be explicitly based on a closed-world assumption. That
all types of UML models are perceived as having closed-world semantics is historical
rather than inherent. OOA models and CIMs have no relation to the realization of the
system they describe and could easily be written from an open-world perspective.

2.3 Consequences of the Diversity of Criteria

Since there is no widely accepted definition of what distinguishes a model from an
ontology (i.e. when an IR deserves to be called an ontology and when it deserves to be
called a model), none of these distinguishing criteria is wrong per se. They are simply
more or less widely held reasons for labeling IRs as ontologies and/or models depending
on the specific context in which they are being used. We also recognize that different
members of the software engineering and Al communities will take issue with some of
these distinctions and that the strength and influence of each is subject to debate.
However, the overriding (and we believe undeniable point), is that the shear number and
diversity of these criteria causes great confusion in academia and industry and is an
increasing hindrance to their effective co-usage and integration.

52

This problem is exacerbated by differing definitions of the notions of models and
ontologies within sub communities of the respective communities (for example, different
sub communities have different definitions for ontology) and confusion about the
relationship of the abstract notion (of model and ontology) to the de facto standard
languages in each community (UML and OWL respectively). Both the software
engineering and the semantic web/Al communities have a powerful flagship language
which is widely used for the respective purpose of modeling and ontology
representation. However, the strength of these languages blurs the boundary between the
idiosyncrasies of the respective language and underlying notion.

The consequences of this lack of consensus, and the pitfalls of trying to define new
technologies within this vast array of possible assumptions and interpretations is
highlighted by recent high profile attempts to bring the two worlds together. Moreover,
these questions are not just academic. Because of the current separation of the
technologies for modeling and ontology representation, companies have to make
decisions about whether their particular IR needs should be represented as one or the
other. This decision usually has to be taken early (because modeling at least is usually
done early in a project lifecycle) and once taken is difficult to change. Worse still, if a
company wishes to do model-like things with their IR at some stages in the lifecycle and
ontology-like things at other stages they have no option but to duplicate their IRs, even
though the concepts used in each have a very high overlap.

3 Towards a Precise Characterization of Models and Ontologies

Having outlined some of the commonly found informal distinctions in this section we try
to shed light on the relationship between ontologies and models based on their
fundamental definition. From these we try to identify more precise and explicit
distinctions between the two.

31 Models

The term model has a long history of use in other disciplines (e.g. engineering), but it is
used for a variety of different purposes and is defined in a variety of different ways. In
software engineering you can find several different types of models, each possessing its
own distinct definition and interpretation. Models can be classified (inter alia) according
to the development phase they are used in (e.g. analysis models, design models), the
purpose they are used for (problem domain, solution domain) the degree of abstraction
they represent (e.g. platform independent models, platform specific models), the system
aspect they describe (e.g. data models, behavioural models) or the language they are
written in (e.g. UML models, CWM models). However, all of these models share a
common core purpose, definition and interpretation that is also true for models in other
disciplines. A general and generic definition adapted from Herbert Stachowiak’s general
model theory of 1973 [Wi66] is the following:

53

DMI. “A model is a homomorphic (or isomorphic) mapping of a subject matter into
a system of symbols.”

The MDA guide offers the following definition [OMGO03a]:

DM2. “A model of a system is a description or specification of that system and its
environment for some certain purpose”

The core ideas are the mapping of a universe of discourse, the abstraction of detail and
the pragmatic usage for a certain purpose. Usually these models are linguistic models,
i.e., they are linguistically verbalized. The system of symbols (vocabulary) is then
viewed as a language.

3.2 Ontologies
The most famous definition for ontologies is given by Gruber [Gr93]:
DO1. "An Ontology is an explicit specification of a conceptualization."

Because this is a very broad definition, the ontology community generally uses it to
highlight the different character of an ontology with respect to other kinds of information
representations. Studer and colleagues [SBF98] extended it as follows:

DO2. "An ontology is a formal, explicit specification of a shared conceptualization.
Conceptualization refers to an abstract model of some phenomenon in the
world by having identified the relevant concepts of that phenomenon.
Explicit means that the type of concepts used, and the constraints on their use
are explicitly defined. Formal refers to the fact that the ontology should be
machine-readable. Shared reflects the notion that an ontology captures
consensual knowledge, that is, it is not private of some individual, but
accepted by a group."

This definition introduces the aspects of formality and commitment. A representation
that is not formal is useless for machine to machine communication and reasoning. This
definition also regards ontologies as referring to consensual knowledge, so that the effect
of ambiguity is minimized. These two aspects are at the core of many applications of
knowledge representations (e.g. the Semantic Web).

A recent, implementation oriented definition [Ma02] describes the current use of the
term in ontology engineering using further technical terms:

DO3. "[...] an ontology refers to an engineering artefact, constituted by a specific
vocabulary used to describe a certain reality, plus a set of explicit
assumptions regarding the intended meaning of the vocabulary. Usually a
form of first-order-logic theory is used to represent these assumptions,
vocabulary appear as unary and binary predicates, called concepts and
relations, respectively."

54

This last definition subdivides the notion of ontology into a vocabulary, which
concretizes the abstract model from the second definition, and a set of statements
referring to the meaning of the vocabulary.

3.3 Observations
From these definitions we can make the following important observations

Ol. Any IR that fulfils the conditions DO1, DO2 and DO3 for being an ontology
also fulfils the requirements DM1 and DM2 for being a model. It follows
from their core definitions, therefore, that all ontologies are models, but not
all models are ontologies.

02. None of the purpose-oriented characteristics identified in section 2, are
mentioned in the core definitions. Support for reasoning, intelligent databases
and the description of web accessible information are not therefore required
for conformance to DO1, DO2 and DO3.

03. Of the property-oriented characteristics identified in section 2, only IF4,
formality, is mentioned in the core definition DO3. There is no requirement
for open or closed word interpretations for either models or ontologies.

O4. There is no mention of the intended scope of a model in either of the core
definitions DM1 and DM2 (i.e. there is no reference to whether models are or
are not intended for representing shared information). However, there is no
requirement that models are restricted to the representation of private (i.e.
non shared) data.

05. When supported by OCL, IRs in the MOF/UML can be created that satisfy
DOI1, DO2 and DO3 and thus can be considered ontologies based on these
core definitions.

06. IRs created with OWL that have no shared understanding contradict DO2. It
is therefore possible to create IRs in OWL that are no ontologies.

4 Proposed Criteria

From the above discussion we can conclude that in fact none of the informal distinctions
given in section 2 is actually justified based on the core definitions of ontologies and
models in section 3. Moreover, we can also conclude that all IRs are in fact to be
regarded as models. The critical question, therefore, is whether it is possible and useful
to distinguish ontology models from non-ontology models in some way, and on what
characteristics should such a distinction be based? To try to answer the question we start
with five characteristics that can be found in the definitions in section 3.

55

1. Conceptualization

2. Explicit

3. Machine Readable

4. Based on First-order Logic
5. Shared

Since they are in the definitions we can safely say that these are necessary characteristics
of an ontology. This means that any model that does not possess all of these properties is
not an ontology. However, are they sufficient?

Of course we could define them to be so, but this would force us to accept certain kinds
of models routinely used in software engineering today as ontologies. These are the so
called “domain models” or “computation independent models” as they are known in
MDA, which are usually the starting point for software engineering projects. Their main
purpose is to explicitly and clearly describe the concepts in a particular domain of
interest, and thus represent a conceptualization of the domain. All computer generated
models (e.g. UML models) are machine readable and if supported by OCL can make
precise statements in first order logic. They are also definitely intended to support the
sharing of information, at least amongst the development team, but more usually among
all stakeholders.

If the above characteristics were regarded as sufficient, therefore, one would be forced to
regard software engineering domain models and indeed any other precise (i.e. OCL
enhanced) model which is intended to be shared as an ontology. However, since almost
all models are intended to be shared this would exclude few models from the subset of
ontologies and thus would not be a very helpful distinction,

Neither the informal characteristics in section 2 nor the core definitions in section 3
provide a basis for a useful way of distinguishing ontologies from normal models. We
therefore believe that the most practical approach is to revert back to the original
meaning of “ontology” from philosophy and other domains of research and to adopt a
purpose-based distinction which captures the fact that a model is intended to have
universal scope. More specifically, we propose to use the term ‘“ontology” to
characterize models which are intended to capture some standard or universally
applicable information of the kind that might be found in an encyclopaedia or widely
accepted authority. Denying the label ontology to a model would thus indicate that it was
of limited scope of interest to, or sanctioned by, a limited group of people. Examples of
IRs that deserve the term “ontology” according to this definition are the so called
“general ontologies” [VH97] like the Mereology Ontology [Bo97], “upper-level” or “top-
level ontologies” [vH97] like the Suggested Upper Merged Ontology [NPO1] and
“domain ontologies” [VH97] that represent a standardized model of the respective
domain.

56

5 Conclusion

In this paper we have attempted to bring together and summarize the various informal
criteria (both implicit and explicit) that are used in different sub communities of the Al
and software engineering disciplines to distinguish between models and ontologies, and
by referring to widely accepted core definitions of these concepts, we have attempted to
filter out which of these criteria are justified and useful in practical engineering projects.
From this exercise we learned three main things.

Firstly, and perhaps not surprisingly, we learned that from the core definitions of models
and ontologies, the latter are to be regarded as a subset of the former. In other words, all
ontologies satisfy the criteria for being models and thus should be regarded as such.

Secondly, and perhaps more surprisingly, we learned that only one of the currently used
informal criteria is actually justifiable from the core definitions of models and ontologies
widely accepted in the IT literature. The most surprising aspect of this is that the features
which are usually used to motivate the use of OWL (the flagship ontology language)
instead of UML (the flagship modelling language) are not actually required in the core
definitions. This includes features such as the use of the open world rather than closed
word assumptions and the associated support for the discovery of new knowledge based
on such reasoning processes as subsumption.

Thirdly, if one views the five characteristics that are given in the core definitions of
ontologies as being sufficient as well as necessary conditions, then almost all (OCL-
enhanced) models used in modern software engineering qualify as ontologies. The one
debatable characteristic is the criteria that the representing information be shared, but
since they are usually intended to support communication almost all models arguably
satisfy this criterion. Certainly the subset of models known as domain or computation
independent models satisfy this criterion since their prime goal is to facilitate
communication between all stakeholders in a software development process.

These lessons have some important consequences when it comes to the future integration
and co-use of the two technology spaces. One important consequence is that most of the
recently proposed visions for the integration or joint use of the two technologies, such as
the Ontology Driven Architectures, Ontology Definition Metamodel and Model Driven
Semantic Web ideas are left with little of meaning or value. For example, if ontologies
are already models, what does an ontology driven architecture add to the notion of
Model Driven Architecture. If most models are ontologies, why do we need a general
Ontology Definition Metamodel? Isn’t the UML metamodel not already an Ontology
Definition Metamodel and if so would not language specific metamodel, such as an
OWL metamodel, therefore not be sufficient to accommodate other representation
formats with the MOF framework? And if ontologies are already models, what is the
meaning of a model-driven semantic web? We do of course understand and see the value
in the ideas that the authors of these proposals are trying to convey. What we are
questioning here is the uses of the labels "ontology driven", "model driven" etc to
characterize these ideas.

57

Another important consequence is that without changes to the currently used ways of
distinguishing between models and ontologies the confusion highlighted in this paper
will only grow and become more widespread, at least in the short term, with non trivial
consequences for industrial users of these technologies. Under such circumstances, in the
long term it can only be hoped that one of the communities grows to accept the
terminology of the other group, so that either the Al community starts to refer to their
IRs as models or the software engineering community starts to refer to their IRs as
ontologies. But this will be a long and painful process.

The only other approach is for both communities to unite around a single unified
definition of what criteria are sufficient for a model to be regarded as ontology along the
lines of the proposal that we have suggested in this paper. This will not only reduce the
level of confusion but will significantly smooth and accelerate the integration of the two
technology spaces.

References

[AKO6] Atkinson, C. and Kiko, K.: A Detailed Comparison of UML and OWL, submitted to
Transaction on Software Engineering, 2006.

[Atk04] Colin Atkinson: Unifying MDA and Knowledge Representation Technologies, The
Model-Driven Semantic Web Workshop (MDSW 2004), September, Monterey CA
2004.

[Ba02] Baclawski, K, Kokar, MM, Kogut P., Hart, L., Smith, JE, Letkowski, J. and Emery, P.:
Extending the Unified Modeling Language for ontology development, Software and
System Modeling, vol. 1, pages 142-156, 2002.

[BHMOS]Butler, J., Hubbly, R. and Melo, W., An MOF-based Repository for Enterprise
Architecture Models, IBM developerWorks Document, March 2005

[Bo97] Borst, WN: Construction of Engineering Ontologies, PhD thesis, Centre for Telematica
and Information Technology, University of Tweenty. Enschede, 1997.

[Br04] Brockmans, S., Volz, R., Eberhart, A. and Loffler, P.: Visual Modeling of OWL DL
Ontologies Using UML, Int'l Semantic Web Conference, 2004, pp. 198-213.

[Ca02] Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini, M.: A
Formal Framework for Reasoning on UML Class Diagrams, Lecture Notes in Computer
Science, Vol. 2366, p. 503-512, 2002.

[CP99] Stephen Cranefield and Martin Purvis: UML as an Ontology Modelling Language, in
Proceedings of the IJCAI-99 Workshop on Intelligent Information Integration, held on
July 31, 1999 in conjunction with the Sixteenth International Joint Conference on
Artificial Intelligence City Conference Center, Stockholm, Sweden, 1999.

[Dr05] Djuric, D., Gasevic, D. and Devedzic, V.: Ontology Modeling and MDA, Journal of
Object Technology, vol. 4, no. 1, pages 109-128, 2005.

[FHKO04] Dave Frankel, Pat Hayes, Elisa Kendall and Deborah McGuinness: The Model Driven
Semantic Web, The Model-Driven Semantic Web Workshop (MDSW 2004), September,
Monterey CA 2004.

[Go01] Gove PM: Webster's Third New International Dictionary. Of the Englisch Language.
Unabridged, Kénemann, 2001.

[Gr93] Thomas R. Gruber: A Translation Approach to Portable Ontology Specifications,
Knowledge Acquisitation, 5(2) pages 199-220, 1993.

[Ha04] Hart, L., Emery, P., Comb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye, Y.,
Kendall, E., Dutra, M.: OWL Full and UML 2.0 Compared, OMG TFC Report, 2004.

58

[HSO4] Hoessler, J., and Soden, M., OCL Support in MOF Repositories, First European
Workshop on Model Driven Architecture with Emphasis on Industrial Application,
Enschede, The Netherlands. March, 2004

[Ke02] Kendall EF, Dutra ME, McGuiness DL: Towards A Commercial Ontology Development
Environment (poster), In: Horrocks I, Hendler JA (eds) First International Semantic Web
Conference (ISWC 2002), Sardinia, Italy, June 2002.

[KLW95]Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object Oriented and Frame Based
Languages, Journal of the Association for Computing Machinery, May 1995.

[Kn04] Holger Knublauch: Ontology-Driven Software Development in the Context of the
Semantic Web: An Example Scenario with Protégé/OWL, International Workshop on
the Model-Driven Semantic Web, Monterey, Canada, September 2004.

[Ko02] Kogout P., Cranefield S., Hart L., Dutra M., Baclwaski K., Kokar M. Smith J.: UML for
Ontology Development, The Knowledge Engineering Review 17(1), pages 61-64, 2002.

[La01] Larman C.: Applying UML and Patterns, Prentice Hall, 2001.

[Ma02] Maedche, A: Ontology Learning for the Semantic Web, Kluwer Academic Publishers,
Boston, Massachusetts, 2002.

[MD04] The Model-Driven Semantic Web Workshop (MDSW 2004), Monterey, Canada,
September 2004.

[NMO1] Natalya F. Noy and Deborah L. McGuinness, Ontology Development 101: A Guide to
Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical
Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880,
March 2001.

[NPO1] Niles, I., and Pease, A. 2001. Towards a Standard Upper Ontology. In Proceedings of
the 2nd International Conference on Formal Ontology in Information Systems (FOIS-
2001), Chris Welty and Barry Smith, eds, Ogunquit, Maine, October 17-19, 2001.

[OMGO03a] Object Management Group: MDA Guide V1.0 .1, OMG Specification, June 2003.

[OMGO03b] Object Management Group: UML 2.0 Infrastructure Final Adopted Specification,
OMG Specification, Dec. 2003.

[OMGO03c] Object Management Group: Meta Object Facility 2.0 Core Final Adopted
Specification, OMG Specification, Oct. 2003.

[OMGO03d] Object Management Group: Ontology Definition Metamodel Request for Proposal
2003.

[OMGO04] Object Management Group: UML 2.0 Superstructure Revised Final Adopted
Specification, OMG Specification, Oct. 2004.

[OMGO05a] Object Management Group: OCL 2.0 Specification, OMG Specification, June 2005.

[OMGO05b] Object Management Group, DSTC, IBM, Sandpiper Software Inc.: Ontology
Definition Metamodel Second Revised Submission, OMG Specification, May 2005.

[OMGO06] Object Management Group: MOF to RDF Mapping, Request for Proposal, June, 2006.

[ONO5] Workshop on Ontology, Conceptualizations and Epistemology of Software and Systems
Engineering (ONTOSE 2005), Alcall] Spain, June 2005.

[Ri01] Richters, M.: A Precise Approach to Validating UML Models and OCL Constraints,
Logos Verlag Berlin, 2001.

[Ru91] Rumbaugh et al.: Object-oriented Modeling and Design, Prentice Hall, 1991.

[SBF98] Studer, R., Benjamins, VR., Fensel, D.: Knowledge Engineering: Principles and
Methods. IEEE Transactions on Data and Knowledge Engineering 25(1-2):161-197,
1998.

[SEOS5] International Conference on Software Engineering (SEKE 2005), Taipei, Taiwan, July
2005.

[SWO05] Workshop on Semantic Web Enabled Software Engineering (SWESE 2005), Galway,
Ireland, November 2005.

[Ta56] Tarski, A.: Logic, Semantics, Mathematics: Papers from 1923 to 1938, Oxford
University Press, 1956.

59

[VH97] van Heijst, G., Schreiber, A., Wielinga, BJ.: Using explicit ontologies in KBS
development. International Journal of Human-Computer Studies 45:183-292, 1997.

[VOO0S5] International Workshop on Vocabularies, Ontologies and Rules for The Enterprise
(VORTE 2005), Enschede, Netherlands, September 2005.

[Wi66] Wild, J.: Grundlagen und Probleme der betriebswirtschaftlichen Organisationslehre,
1966.

[WKO03] Warmer, J., Kleppe, A.: The Object Constraint Language, Second Edition. Getting your
Model ready for MDA, Addison Wesley, 2003.

[Wo05] Workshop on Meta-Modeling and Corresponding Tools (WoMM 2005), Essen,
Germany, March 2005.

[W3C06] Ontology Driven Architectures and Potential Uses of the Semantic Web in Systems and
Software Engineering, http://www.w3.0org/2001/sw/BestPractices/SE/ODA/060211.

60

