
Update Relevance under the Multiset Semantics of RDBMS

Hagen Höpfner
hoepfner@acm.org

International University in Germany
School of Information Technology

Campus 3, 76646 Bruchsal, Germany

Abstract: In order to reduce transmission costs and response time, mobile clients
typically cache data locally. But, avoiding the usage of outdated data and maintaining
the consistency of the global database, require the propagation of update information.
In this paper we consider the problem of checking the relevance of server side updates
for cached data. Therefore, we use test queries performed on a statefull server. At
this, the paper discusses issues that especially result from the usage of the multiset
semantics of the relational data model.

1 Introduction and Motivation

One major issue of mobile information systems is the price users have to pay for wireless
data transmission. Wireless channels are, compared to wired networks, expensive and
slow. Therefore, techniques like caching, hoarding or replication are used in order to
reduce the costs and, at the same time, to increase the response time of the system. All
these techniques create redundant data on the mobile client and “hope” to be able to reuse
the local information later on. Redundancy potentially leads to consistency problems. If
the local copy of a data item is modified the original has to be updated, too, and vise versa.
But, if there are more copies of this data item on other mobile clients, they also have to
be updated. Synchronizing updates from one mobile client on a server is a well known
and in the literature circumstantially discussed problem. We will not focus this aspect in
our paper but discuss a question regarding the other direction. The first issue, one has to
consider while trying to update all copies of a data object in a information system with
mobile clients, is to determine these mobile clients affected by the update. In other words,
the problem is to check the relevance of an update. In [Hö05a] we showed, in the context of
a relational database system with mobile clients, that it is not possible to decide about this
relevance on the mobile clients themselves if we do not want to restrict the expressiveness
of the used query language too much. So we have to use a stateful server. Beside this
we showed in [Hö05a], that semantic techniques which try to compare the “update query”
to the semantic description of clients contents, underly similar restrictions. To overcome
these restrictions we introduced a new approach that uses the data in the database. The
semantic description of clients caches is represented in form of a query tree that uses,
similar to a Trie [Fr59, Fr60], the syntax of queries. So, queries that use a common prefix
of predicates are represented in the same path of the tree. For checking the relevance of an

33

database update we traverse the tree and compute and execute test queries. Based on the
results we decide whether it is necessary to look at the child nodes of the current node. An
update is relevant for a client if there is at least one query (path in the tree) that indicates
the relevance. In the initial work we considered the relational database system to follow
the original, formal definition of relational databases. So, relations were considered to be
sets of tuples. However, most (nearly all) relational database management systems support
relations under a multiset semantics. That means, that relations may contain duplicates. In
this paper we discuss the impacts of this semantics on the test queries and formally deduce
these test queries from the relational algebra.

The remainder of the paper is structured as follows. In Section 2 we give a brief overview
about related work. Section 3 describes the query representation as well as the format of
the allowed update operations. Our approach for checking the relevance of updates under
a multiset semantics is included in Section 4. In Section 5 we discuss performance issues
by comparing the relevance tests under set semantics to those under multiset semantics.
The paper ends with a summary, conclusions and an outlook in Section 6.

2 Related Work

Beside caching, hoarding and replication in mobile information systems, finding irrele-
vant updates is a task that has to be handled with in the theory of incremental view updates
[BCL89]. In fact, a mobile client’s data can be considered to be a view over a global
database. So far, algorithms were developed that test the relevance or irrelevance by com-
paring the queries (views) to a query that would result in the updated tuples on a semantic
level. There are two major problems with these approaches.

Restrictions to the query language: The algorithms are based on the query containment
problem (QCP) [CM77] and suffer from its restrictions. In [So79] it was shown that the
QCP is undecidable for arbitrary calculus queries as well as for arbitrary queries in the
relational algebra. It is also undecidable for logical query languages [Sh87]1. But [CM77]
includes the proof, that QCP is decidable but NP-complete for conjunctive queries. A lot
of subsets of these conjunctive queries were researched and there are subsets with better
QCP complexity but these approaches lead to stricter restrictions to the query language.

The empty set problem [Hö05a]: QCP is defined on the result sets. That means a query
Q2 contains a query Q1 if, for each database state, the result of Q1 is a subset of the result
of Q2. From the set theory we know, that the empty set is a subset of every set. The
problem here is, if for example a delete would not delete anything (e.g. the tuples that
should be deleted are not in the relation), then the result would be an empty set and we
would have a containment. We would notify the client about an update that did not change
anything.

There are different approaches for handling the incremental view update problem. [MU83]
consider inserts and deletes in combination with horizontal database fragments. Therefore,

1based on [Pa85]

34

they do not allow projections. Inserts, deletes and modifications are considered in [BCL89,
BCL98]. Here, the restriction is that only equal-joins are supported and self-joins are
forbidden. Approaches that use logical query languages typically forbid negations [El90].

Obviously, our approach is also related to cache maintenance, cache invalidation, ad-hoc-
replication, and information dissemination in mobile information systems. Because of the
given space limitations we do not discuss all these research areas here.

3 Query and Update Representation

The usage of most mobile devices suffer from the limited ergonomics of their input in-
terfaces. Applications on such small and lightweight hardware have to encapsulate the
functions for querying the database. Therefore, it is not necessary to support descriptive
query languages like SQL. The formal definition of our predicate sequence queries (PSQ)
was introduced in [Hö05a]. It is based on the common definition of the relational data
model as presented e.g. in [Ma83] which is compatible to Codd’s original relational data
model [Co69, Co70] but allows to rearrange columns in the result. One problem with both
definitions is, that they do not define the name of a relation. We assume - as it is common
in database systems - that a relation r over an relation scheme R can be identified by its
name and write such a relation as r(Rname). PSQ refers to the relational algebra as well as
to some calculus aspects [Co72]. A multiset compatible definition of the relational alge-
bra can be found in [DGK82]. Using the operators of this relational algebra is equivalent
to the usage of the original operators. Moreover, existing database management systems
internally identify each tuple by using row-ids. So, they can internally use set semantics.
However, querying the database is mostly done in multiset semantics2 because eliminating
duplicates is an expensive operation.

PSQ supports conjunctive queries with inequalities and relation renaming. Therefore, self-
joins are supported, too. We support three types of predicates:

Selection predicates correspond to the selection operator σ of the relational algebra. Let
σsc(r(Rname)) be a selection with the conjunctive selection condition sc which consists
of sub-conditions of the form s = A γ k or s = A γ B (γ ∈ {≤, <, =, �=, >,≥}, A, B ∈
Rname, k ∈ dom(A)). In PSQ this selection can be written as {[name.s1], . . . , [name.sn]}
with n ∈ N, n = |sc| and ∀si|1 ≤ i ≤ n → si ∈ sc. SP is the set of all selection
predicates.

Join predicates correspond to the θ-join operator of relational algebra. Let r(Rname1
) ��jc

r(Rname2
) be a θ-join with the conjunctive join condition jc that consists of sub-conditions

of the form j = A θ B (θ ∈ {≤, <, =, �=, >,≥}, A ∈ Rname1
, B ∈ Rname2

). In PSQ
this join can be written as [name1,name2, (j

�
1, . . . , j

�
n)] with n ∈ N and 1 ≤ n ≤ |jc|.

Furthermore, we demand a lexicographical order of the relation names within the join
predicate. A sub-condition ji = A θ B with θ ∈ {≤, <, =, �=, >,≥}, A ∈ Rname1

and
B ∈ Rname2

is written as j�i = name1.A θ name2.B. V P is the set3 of all join predicates.

2With SQL the user can force the DBMS to answer with a set by using SELECT DISTINCT.
3In order to be consistent with our previous works we use V P instead of JP here.

35

Projection predicates correspond to the projection operator π of the relational algebra.
A projection πX(r(Rname)) with X ⊆ Rname is written as [name(x1, . . . , xn)] with
n ∈ N, 1 ≤ n ≤ |X |, and {x1, . . . , xn} = X . Projections that base on join results
πX1,X2,...,Xi

(r(Rname1
) ��θ1

r(Rname2
) ��θ2

· · · ��θi−1
r(Rnamei

)) with i, j ∈ N, 1 ≤

j ≤ i and Xj ⊆ Rnamej
, 1 ≤ nj ≤ |Xj |, {x

j
1, . . . , x

j
nj
} = Xj are written in PSQ as

[name1(x
1
1, . . . , x

1
n1

),name2(x
2
1, . . . , x

2
n2

), . . . ,namei(x
i
1, . . . , x

i
ni

)]. PP is the set of
all projection predicates.

With V ⊆ V P , pp ∈ PP ∪ {ε}, S ⊆ SP , and V ∪ {pp} ∪ S �= ∅ we are now able to
formulate a conjunctive query Q =

�
vp∈V vp ∧

�
sp∈S sp ∧ pp as a predicate sequence

query Q� = �vp1 . . . vpn sp1 . . . spo pp� at which

• ∀i, k ∈ N, 1 ≤ i < k ≤ n; vpi, vpk ∈ V ∪ {ε} ⇒ vpi % vpk, and

• ∀i, k ∈ N, 1 ≤ i < k ≤ o; spi, spk ∈ S ∪ {ε} ⇒ spi % spk

must hold. Here, % means lexicographically smaller. We have discussed more require-
ments that guarantee the correctness of PSQ-queries in [Hö05a]. However, it is possible to
translate PSQ to SQL in order to perform the query. As mentioned above, we also support
the renaming of relations which is an essential issue for self-joins. Therefore, the name of
a relation is transformed into name@alias. This corresponds to the TABLE NAME-AS-
ALIAS-construct of SQL.

In contrast to the queries posted via mobile devices, we assume that update operations
on the server are formulated in SQL. Therefore, we have to differ between three possible
update operations:

Inserting a tuple: In order to insert a tuple into a relation one can use the follow-
ing construct: INSERT [INTO] [[database name.]owner.] {table name
| view name} [(column list)] {[DEFAULT] VALUES | VALUES (value
[,...]) | SELECT statement} . We use a simplified notation: INSERT INTO
name (column list) VALUES (value [,...]). Furthermore, we assume that
column list includes all attributes of the relation. Inserting more than one tuple per
query, as it is allowed in the standard, is not allowed here. But, one can execute more
inserts to realize this issue.

Deleting tuples: Similar to the insertion of tuples we use a simplified SQL statement
here: DELETE FROM name WHERE clause. We assume that the selection condition
clause includes only conditions of the form A φ constant with the attribute name A

and φ ∈ {<, <=, ! =, =, >=, >}.

Modifying tuples: Since we use the word “update” in a general manner, we have to use the
word “modification” here, even if the corresponding SQL statement begins with UPDATE.
The simplified notation of a modification is UPDATE name SET column name =
expression [,...n] WHERE condition.

Last but not least, we ignore integrity constraints in the following. This means that we
assume a posted update to be performed really.

36

4 Relevance Tests

As described in Section 1 queries are stored on the server in form of a query tree, and the
relevance of an update is checked by traversing the tree. We here ignore the storage struc-
ture but deduce a predicate based relevance check. The idea is, that first join predicates are
checked. If this test shows the irrelevance, we can stop. Otherwise we have to check the
selection predicates and, if necessary, the projection predicate. Of course, an update can
only be relevant for the client that posted a query if the update operation affects a relation
that is used in the query. If this condition that can be easily checked without accessing the
database does not hold, then we can stop. Otherwise we have to start with the relevance
tests which are performed before the update is performed at all.

4.1 Testing the relevance of inserts

Let r(Rname) be the relation that is used for inserting the tuple ti. Furthermore, A =
(ai

1, . . . , a
i
n) are the attributes of this relation (and also the attributes of the inserted tuple;

from (column list)), and X = (xi
1, . . . , x

i
n) are the corresponding attribute values

(from (value [,...])).

Inserting a tuple affects the join result if there is no join condition that removes the tuple
from the result. With the knowledge of name, A, X , and the formal definition of the rela-
tional algebra we can create a join-test by substituting r(Rname) for {ti} in the join predi-
cates. Thus, we create a virtual relation {ti} and perform the join. The insert can not be rel-
evant for this query if the result TJ of the performed (modified) join is empty. Of course,
if a query contains more than one join predicate,we can check all of them together. Let
us assume that the tuple will be inserted into relation r(R1). Let us furthermore assume,
that we have the following “join-chain”: r(R1) ��jc1

r(R2) ��jc2
· · · ��jcn

r(Rn). There-
fore, the insert can only be relevant if TJ = {ti} ��jc1

r(R2) ��jc2
· · · ��jcn

r(Rn) �= ∅
holds. However, this formula is only correct if the query does not include a self-join
(∀Ri, Rj |1 ≤ i < j ≤ n ∧ r(Ri) �= r(Rj)). Having a self-join of the relation r(R1) we
have to consider all possible substitutions4 of {ti} for r(R1). In this case one can write
the join-chain as:

r(R1
1) ��jcS1

r(R2
1) ��jcS2

· · · ��jcSm
r(Rm+1

1)� �� �
self-join

��jc1
r(R2) ��jc2 · · · ��jcn

r(Rn)

Obviously, the inserted tuple would affect all relations r(R1
1), r(R2

1), until r(Rm+1
1). May

vp = [name@alias1,name@alias2, (Θ)] be a join predicate representing a self-
join only. An inserted tuple can only be relevant for a query containing vp if TJ =
(r(Ralias1

name) ��Θ {ti}) ∪ ({ti} ��Θ r(Ralias2
name)) ∪ ({ti} ��Θ {ti}) �= ∅ holds.

If TJ �= ∅ and the query does not include selection predicates, then the update is relevant
because it changes the cardinality of the result, and such an effect can not be reverted

4For an m-fold self-join (meaning the relation appears m+1 times) we have to consider 2m+1
−1 alternative

substitutions.

37

 0

 100

 200

 300

 400

 500

 600

 700

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of queries

S
ec

on
ds

Set Semantics
emulated Multiset Semantics

Figure 5: Testing the relevance of an insert under emulated multiset semantics and set semantics

Obviously, the execution of relevance tests under multiset semantics has to be more high-
performance than tests under set semantics.

6 Summary, Conclusions and Outlook

In this paper we presented our approach for checking the relevance of server side inserts,
deletes and modifications for the caches on mobile database clients. We showed, that com-
parable approaches suffer from strict restrictions. Furthermore, we deduced the required
relevance tests that benefit from the usage of the multiset semantics of relation database
systems. To conclude the paper we can point out that the usage of multiset semantics re-
duces the number of test queries that have to be performed on the database and therefore,
increases the performance of our approach.

The next step now is to evaluate the multiset based relevance check in more detail and
to combine it with available dissemination approaches. Furthermore, we are working on
completing the relational completeness of the supported query language which requires
also the set operations union, difference and intersection. The global vision behind our
work is to create a context aware information system with mobile clients on the basis of
standard database technologies. The first steps are done but now we have to combine the
relevance issues with our context model (see [Hö05b] for the first results).

References

[BCL89] Blakeley, J. A., Coburn, N., and Larson, P.-A.: Updating derived relations: Detecting ir-
relevant and autonomously computable updates. ACM Transactions on Database Systems
(TODS). 14(3):369–400. September 1989. ebenfalls publiziert als [BCL98].

[BCL98] Blakeley, J. A., Coburn, N., and Larson, P.-A.: Updating derived relations: Detecting

43

irrelevant and autonomously computable updates. In: Gupta, A. and Mumick, I. S. (Eds.),
Materialized Views. chapter 21, pp. 295–322. MIT Press. London, England. 1998.

[CM77] Chandra, A. K. and Merlin, P. M.: Optimal implementation of conjunctive queries in rela-
tional data bases. In: Proc. of the ninth annual ACM symposium on Theory of computing.
pp. 77–90. New York, NY, USA. 1977.

[Co69] Codd, E. F.: Derivability, Redundancy and Consistency of Relations Stored in Large Data
Banks. IBM Research Report, San Jose, California. RJ599. 1969.

[Co70] Codd, E. F.: A Relational Model of Data for Large Shared Data Banks. Communications
of the ACM (CACM). 13(6):377–387. 1970.

[Co72] Codd, E. F.: Relational Completeness of Data Base Sublanguages. In: Rustin, R. J. (Ed.),
Data Base Systems (Proceedings of the 6th Courant Computer Science Symposium, May
24-25, 1971, New York, N.Y.). Automatic Computation. pp. 65–98. Englewood Cliffs,
New Jersey. 1972. Prentice-Hall.

[DGK82] Dayal, U., Goodman, N., and Katz, R. H.: An extended relational algebra with control
over duplicate elimination. In: Ullman, J. D. and Aho, A. V. (Eds.), Proc. of the 1st ACM
SIGACT-SIGMOD symposium on Principles of database systems. pp. 117–123. New
York, NY, USA. 1982. ACM Press.

[El90] Elkan, C.: Independence of logic database queries and update. In: Rosenkrantz, D. J.
and Sagiv, Y. (Eds.), Proc. of the ninth ACM SIGACT-SIGMOD-SIGART symposium on
Principles of database systems. pp. 154–160. New York, NY, USA. 1990. ACM Press.

[Fr59] Fredkin, E.: Trie memory. Information Memorandum, Bolt Beranek and NewMan Inc.
Cambridge, MA. 1959.

[Fr60] Fredkin, E.: Trie memory. Communications of the ACM. 3(9):490–499. August 1960.

[Hö05a] Höpfner, H.: Relevanz von Änderungen für Datenbestände mobiler Clients. Dissertation.
Department of Computer Science, University of Magdeburg. January 2005. in German.

[Hö05b] Höpfner, H.: Towards Update Relevance Checks in a Context Aware Mobile Information
System. In: INFORMATIK 2005 - Informatik LIVE! (Band 2). volume P-68 of LNI. pp.
553–557. Bonn, Germany. 2005. Köllen Druck+Verlag GmbH.

[HSS04] Höpfner, H., Schosser, S., and Sattler, K.-U.: An Indexing Scheme for Update Notifi-
cation in Large Mobile Information Systems. In: Lindner, W., Mesiti, M., Türker, C.,
Tzikzikas, Y., and Vakali, A. (Eds.), Current Trends in Database Technology. volume
3268 of LNCS. pp. 345–354. Berlin. November 2004. Springer-Verlag.

[Ma83] Maier, D.: The Theory of Relational Databases. Computer Science Press, Inc. Rockville,
Maryland. 1983.

[MU83] Maier, D. and Ullman, J. D.: Fragments of relations. In: Stonebraker, M. (Ed.), Proc. of
the 1983 ACM SIGMOD international conference on Management of data. New York,
NY, USA. 1983. ACM Press.

[Pa85] Papadimitriou, C.: A note on the expressive power of prolog. Bulletin of the EATCS.
26:21–23. June 1985.

[Sh87] Shmueli, O.: Decidability and expressiveness aspects of logic queries. In: Vardi, M. Y.
(Ed.), Proc. of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems. pp. 237–249. New York, NY, USA. 1987. ACM Press.

[So79] Solomon, M. K.: Some properties of relational expressions. In: Proc. of the 17th annual
Southeast Regional Conference. pp. 111–116. New York, NY, USA. 1979. ACM Press.

44

