
Aspectual Predesign: Extending KCPM to Map
Non-Functional Requirements

Vladimir A. Shekhovtsov, Arkady V. Kostanyan

National Technical University
“Kharkiv Polytechnical Institute”

21 Frunze Str., 61002, Kharkiv, Ukraine

shekvl@kpi.kharkov.ua

Abstract: This paper presents an extension of the Klagenfurt Conceptual Predes-
ign Model (KCPM) allowing taking into account the non-functional requirements
to the system. These requirements are treated as crosscutting concerns. This proc-
ess could be also seen as an addition to the AOSD paradigm that brings the gap be-
tween the Aspect-Oriented Requirement Engineering and Aspect-Oriented Model-
ing. The extensions of the KCPM schema and the new mapping rules are intro-
duced for the case of asymmetric AOSD approach.

Key words: non-functional requirements, crosscutting concerns, conceptual pre-
design, KCPM, AOSD, mapping rules

1 Introduction

Non-functional requirements deal with issues such as performance, reliability, effi-
ciency, usability, portability, testability, understandability and modifiability of the sys-
tem. Together with functional and inverse requirements, they form an important part of
the system requirements set. The problem of elicitating and engineering of these re-
quirements is, however, quite complicated. Some papers [Chu00, Myl92] were devoted
to this task, but until recently, there were no integrated approach for all the steps of the
modeling process starting from such requirements. The situation was changed when the
research on Aspect-Oriented Software Development (AOSD) started to appear. This
approach specifically addresses crosscutting concerns of the system (that corresponds to
the non-functional requirements).

Our paper presents the results of the research which goal is to allow non-functional re-
quirements to be converted into an intermediate model residing between requirement
analysis and conceptual design and to map this model into the conceptual model. The
method achieving this goal will be outlined and discussed.

The remainder of this work is organized as follows. Section 2 gives brief background
information. Sections 3 and 4 describe our approach. Section 5 includes the recommen-
dations for future research. Related work is reviewed in Section 6. In Section 7, our con-
clusions are presented.

216

2 Background

In this subsection, we will briefly describe the approaches that serve as the foundation of
our method. After that, we will be able to see the open issues of these approaches and
formulate the statement of the problem investigated in this paper.

2.1 Aspect-Oriented Software Development (AOSD)

The starting concept for AOSD methodology is the separation of concerns [Dij76]. Con-
cern represents the goal or principle that is implemented in the system component. Typi-
cal program system is the complex implementation of the several core and system con-
cerns. Core concerns represent main goals of the system components. System concerns
represent goals related to interaction of the component with other system components.
For example, core concerns set for the sales management system could include product
line management and order processing. The system concerns set in this case could in-
clude logging, data integrity management, and data persistence management.

Separation of concerns means that different kinds of concerns should be identified and
separated for the given problem to cope with complexity of the system. This separation
could be performed for different stages of the software development: requirement analy-
sis, design and implementation. The best idea is to keep this separation through all the
stages – from requirement analysis to the implementation.

Crosscutting Concerns
Sometimes we have system behavior that is presented in different (unrelated) parts of the
system (for example, every account operation must be logged). The logging must be
presented in all operations (in the same way), but it is not the main goal of the compo-
nent and has nothing to do with account operations domain logic. Such behavior is called
crosscutting behavior. Concerns that are related to the crosscutting behavior are called
crosscutting concerns or aspects. Conventionally, the aspects are implemented in several
unrelated system modules (e.g. in the methods of several system classes). Examples of
such concerns are logging, security, persistence, load balancing, performance monitor-
ing, caching, and thread management.

Implementation Problems
Crosscutting concerns are difficult to implement using conventional methods (including
OO approach). The first problem is code tangling. Every operation (method) implemen-
tation contains the code implementing several unrelated concerns. As a result, the code
becomes less maintainable and more complicated. The second problem is code scatter-
ing. It is not possible to extract the module that contains all the code for the aspect – this
code is scattered among several modules of the system.

The methodology of solving such problems is called Aspect-Oriented Software Devel-
opment (AOSD). The main goal of AOSD is the implementation of the tools for system-
atic identification, separation, presentation, and composition of crosscutting concerns.
AOSD could be implemented on different stages of software development lifecycle.

217

Early Aspects
This is the general term for the separation of concerns on the early stages of software
development (requirement analysis and design) [Ras02]. Now the research in this area is
mostly at research stage.

At the requirement analysis phase, aspects correspond to the non-functional require-
ments to the system [Sou04]. They could be general (found in many applications) and
specific to particular application only.

Some aspects could be brought to the design phase from the requirement analysis phase
(this is the best way), some – identified during the design. Use cases could also be identi-
fied as aspects [Jac03]. They mostly crosscut the system components. There are several
approaches of representing crosscutting behavior and aspects in UML [SHU02] (mostly
using stereotypes), we will describe them in this paper in more detail.

Implementation Approaches
There are two main classes of AOSD implementation approaches: asymmetric and
symmetric. Asymmetric approaches separate core and crosscutting concerns, implement-
ing them differently. Composition rules are defined in the implementation of the cross-
cutting concerns. The core concern implementations are oblivious to the crosscutting
concerns (this is the obliviousness principle [FF00]). The programmer that works on the
core class knows nothing about the aspects that crosscut its code. Best-known example
of asymmetric approach is Aspect-Oriented Programming (AOP).

In the symmetric approaches, all the concerns are treated equally, the composition rules
are defined separately of concern implementation, and all the concern implementations
are oblivious to each other. The best-known example of symmetric approach is Multidi-
mensional Separation of Concerns (MDSOC) [Tar99]. We will not consider these ap-
proaches in our paper.

Aspect-Oriented Programming (AOP)
This approach (first presented in [Kic97]) implements clear separation between core
classes and aspects. Core classes are represented by plain Java classes. Core classes and
aspects are weaved together to form the final application. Here we will briefly describe
five basic AOP constructs that will be used in our paper.

1. Aspects are modules that encapsulate crosscutting behavior. All of them are developed
separately. Before running the entire application aspect composition (aspect weaving) is
performed.
2. Join points are precisely defined places in the core classes code, e.g. method call,
property access, scope of the particular class. Join points model defines the set of places
where execution of base classes could be intercepted to run the crosscutting code.
3. Pointcuts are the rules that define the set of join points. They define the places where
the aspect code crosscuts the base classes (for example, all the calls of the methods of
class Account).
4. The crosscutting aspect code that runs at the join points defined by pointcut is called
an advice. An example of the advice is the logging code that runs before all the calls of

218

the methods of class Account. At the weaving stage, the code of advice is injected into
the code of the base classes at the places defined by pointcut.
5. The static counterpart of the advice is an introduction. Introductions describe mem-
bers of the crosscutting aspect (its methods or fields) that are inserted into the core
classes at the join points defined by pointcut. An example of introduction is the field
containing the name of the log file.

The most widely known implementation of AOP is the AspectJ programming language
[Asp04]. This is an extension of Java defining the set of language constructs representing
crosscutting behavior.

2.2 Klagenfurt Conceptual Predesign Model (KCPM)

The traditional AOD software development process includes requirement analysis and
conceptual modeling stages without any intermediate step between them. It is assumed
that the domain knowledge could be easily transferred from requirement specification
directly into the conceptual model. In practice, this is not always the case. Sometimes
building the conceptual model directly from the requirement specification becomes diffi-
cult and error-prone task. The reason is the mismatch between the requirement specifica-
tion and conceptual model. One of approaches devoted to resolving this mismatch is
Klagenfurt Conceptual Predesign [MK02]. The main goal of this approach is to imple-
ment requirement gathering that could be controlled and verified by the end-user.

This goal is achieved with the help of KCPM (Klagenfurt Conceptual Predesign Model)
– intermediate semantic model that resides between the requirement specification and
the conceptual model. This model consists of semantic concepts that are more general
than conceptual modeling concepts and could be more easily understood and verified by
the end user. These concepts are thing-type (generalization of entity/class and attribute),
connection-type (representing all kinds of relationships among the concepts), operation
(generalization of the method), and event.

KCPM could be presented in tabular form (as glossaries) and as the semantic network. In
this paper, we will consider only the former approach. After verification, this model
could be mapped into the conceptual model. This mapping is performed according to
some precisely defined rules (mapping rules). We will build some glossaries and map-
ping rules further in this paper.

The KCPM must be built from the requirement specifications (traditional approach al-
lows only functional requirements to be used). This could be done manually by an ana-
lyst. Another approach is to extract it directly from the specifications with the help of
NLP (Natural Language Processing) software. Actually, it is possible to eventually trans-
fer the domain knowledge from the requirement specification to the conceptual model.
This is the purpose of the project NIBA [Nib02] (KCPM is the part of this project).

3 The Problem Statement

Investigating the current state of affairs, we can see two open problems.

219

1. KCPM initially implemented the mapping for the functional requirements only
[KM02]. Non-functional requirements have yet to be considered so the gap between
their analysis and conceptual modeling remains open. One could hope that implementing
their processing becomes an important step on the way to achieving the completeness of
KCPM as a technique for gathering and mapping requirements.
2. AOSD process initially did not include the step that was similar in purpose to the
conceptual predesign. As mentioned in [Sou04], “there is not a solid process for AOSD
that covers the software development from requirements to design activities”. One could
hope that this step brings the advantages to AOSD comparable to the advantages brought
to OOD by KCPM.

The purpose of this paper is to make a first step to implementing the technique that ad-
dresses both these problems.

4 Aspectual Predesign

In this paper, we will take a first look at the problem of representing and mapping non-
functional requirements with the help of KCPM. To deal with these requirements, we
will follow the AOSD approach, which states that they represent the crosscutting con-
cerns (aspects) of the system (actually, in AOSD terms they are called aspectual re-
quirements [RMA02]). To emphasize the nature of the requirements we are going to deal
with, we call our extended predesign technique “aspectual predesign”.

This approach could be seen from two different angles corresponding to two problems
considered above:
a) as an extension to KCPM that allows mapping the aspectual (non-functional) re-
quirements and gather information about crosscutting concerns of the system;
b) as an intermediate step of the AOSD process residing between aspect-oriented re-
quirements engineering and aspect-oriented modeling.

Before we start to describe how the aspectual predesign extends the KCPM framework
to allow dealing with non-functional requirements, several preliminary issues should be
mentioned:

1. It is necessary to perform the elicitation of the non-functional requirements to ob-
tain the natural language requirements specifications before starting the predesign. We
will not deal with this issue in this paper (it is implied that these specifications have been
already obtained via interviews, brain maps or other techniques).
2. It could be possible to capture the artifacts of these requirements directly from the
requirements specifications via NLP methods (according to the NIBA workflow
[Nib02]). This complicated problem needs investigation (see “Future research” below).

Following [MK02], we will take a closer look at two other steps of the predesign:
a) user-assisted collecting the requirements into entries of generalized KCPM schema
(in the form of glossaries or semantic networks);

220

b) performing the mapping from the entries of this schema to the conceptual model
(expressed in UML).

To be able to deal with non-functional requirements, both these steps require corrections
that will be outlined below.

4.1 Extending the KCPM schema

The main problem of the aspectual predesign is related to the fact that it is necessary to
define semantic concepts that adequately represent the crosscutting concerns of the sys-
tem while remaining understandable for the end-user.

Meeting both these requirements (adequate implementation and understandability) at the
same time is difficult. The main reason of this difficulty is AOSD terminology. This
terminology, especially one that is established in AOP community (aspects, join points,
advices, pointcuts, introductions) appears almost impossible to understand for the aver-
age user. This could be expected taking into account that:
a) AOP/AspectJ terminology was created by professional programmers whose prob-
lems are quite different from the end user problems;
b) the whole crosscutting concept is not easy to grasp even by experienced software
developers and architects.

This terminological “impedance mismatch” is not limited to the end users, analysts suf-
fer from it as well. For example, as mentioned in [SHR04], to be able to model join
points via UML it was necessary to change the AspectJ-based definition of join points as
“principal points in the execution of a program” [Asp04] to more general definition
“hooks where enhancements may be added” (according to [Elr01]).

This paper makes only first step on the way to resolve this issue. Our approach is simpli-
fied (for example, complicated pointcut definitions were not considered). More real-life
investigations involving end users are necessary in the future.

Before starting, it is necessary to have an example requirements specification. This
specification will be further used in all this paper. It is very simple:

“The banking system deals with accounts and customers. All the operations with account
must be logged into the file. When the customers attempt to withdraw the money from
their accounts, it is necessary for them to supply a password.”

Concern modeling
First, we state that the semantic concept for the concern is the thing-type. To distinguish
such aspectual thing-types in a glossary, the classification column for them will contain
the value “concern”. The designer is responsible for supplying this value.

Fig.1 contains the fragment of thing-type glossary corresponding to our example do-
main. The concerns represent the characteristics of the system (security and logging).

221

Advice modeling
Advice roughly corresponds to the operation but is different in the way it is called (indi-
rectly on join points it is connected with via the pointcut). In our model, we defined that:
a) the thing-type it references must map into an aspect;
b) the type column for such operation must contain the value “auto-called” (this value
is preliminary, more descriptive name could be found).

UOD-area: banking
id# name classifi-

cation
… req.

source

D001 Security concern S3
D002 Logging concern S2
D003 Account thing-type S1,S2,

S3
D004 Customer thing-type S1,S3
…

Fig.1. Part of thing-type glossary modeling the concerns

To allow indirect calls of an advice, additional information must be supplied. This in-
formation actually belongs to the pointcut so it will be described with it.

Fig.2 contains the fragment of operation glossary corresponding to our example domain.
On this figure, operations O002 and O003 correspond to the advices (“executing thing-
type” columns for them refer to concerns), O001 – to the regular method.

UOD-area: banking
o-id# Name type ... executing

thing-type
…

O001 Withdraw manual D004
O002 ask for password auto-called D001
O003 Log auto-called D002

Fig.2. Part of operation glossary modeling the advices

Introduction modeling
There are two kinds of introductions: method introductions and field introductions. Their
semantic counterparts are, respectively, operations and thing-types. The only difference
between method introduction and advice operations is that for method introduction the
type column will contain the value “auto-added” (also preliminary). Thing-types repre-
senting the introductory fields must be connected with the concern thing-type.

To allow indirect introductions, additional information also must be supplied via point-
cut. This information is the same as was described for advices.

Join points modeling

222

In practice, most join points that are identifiable in the requirements fall within two cate-
gories: invoking the particular operation (in AOP, call of the particular method), and
access to the particular thing-type. The latter category in AOP could have two different
implementations: access to the particular field of the class and calls of all the methods of
the particular class. So, for most cases join point could be represented by either the op-
eration or the thing-type. Below we will see how this representation could be used.

Pointcut modeling
Pointcut is actually a connection between advice and join point so it could be represented
by the connection-type. To be able to represent pointcuts, it was necessary to change the
schema for the connection-type semantic concept allowing “involving thing-type” col-
umn to reference operations (advices) in addition to thing-types. To meet this goal, it
was necessary to split this column into two columns: “involved type-id#” (containing the
id-number of the referenced type) and “involved type” (containing either “operation” or
“thing-type”). No further correction was performed.

Fig.3 contains the fragment of connection-type glossary corresponding to our example
domain. Pointcut C001connects password-asking advice to the call of withdrawal opera-
tion, pointcut C002 connects the logging advice to all the operations of the Account
thing-type.

UOD-area: banking
Perspective c-id# name …

perspective# involved
type-id#

involved
type

name

req.
source

p001a O002 operation ask for
password

C001 password
for one
operation p001b O001 operation withdraw

S3

p002a O003 operation logC002 logging
for all
operations

p002b D003 thing-
type

Account
thing-
type

S2

…

Fig.3. Part of connection-type glossary modeling the pointcuts

4.2 Extending the mapping process

To describe the mapping process we need to set the modeling notation to perform the
mapping into. As for KCPM, this notation will be the UML. Last years, much work has
been done in order to develop UML extensions (mostly using stereotypes) that allow
modeling the crosscutting behavior of the system. The logical outcome of all this work
would be establishing the official UML profile for AOSD. The proposition of such pro-
file that takes into account several existing modeling notations is given in [ABE03]. In
this paper we will consider mapping into more specific stereotype-based notation - As-
pect-Oriented Design Model [SHU02] which contains specifications targeting AOP, and,
in particular, AspectJ language.

223

The AODM notation includes the notion to represent aspects, advices, pointcuts, join
points, and introductions. Following [MK02], let us define the rules to describe the map-
ping into AODM. We call them aspectual mapping rules. There are ten such rules; all of
them will be presented in this paper.

Aspect rule (Law)
A thing-type T is mapped into an aspect AT, if T is specified as “concern” by the de-
signer in the classification column.

After executing this rule, all the operation referencing this thing-type (i.e. belonging to
the corresponding concern) will be mapped into either advices or introduction methods
according to the rules described below. All the thing-types connected with this thing-
type will be mapped into introduction fields.

Advice rule (Law)
An operation O is mapped into an advice ADO if O references the thing-type, which has
been previously mapped into an aspect, and O is specified as “auto-called” in the type
column.

Introduction method rule (Law)
An operation O is mapped into introduction method IMO if O references the thing-type,
which has been previously mapped into an aspect, and O is specified as “auto-added” in
the type column.

Introduction field rule (Law)
A thing-type T is mapped into introduction field IFT if T is involved in a connection-type
and other involved thing-type has already been mapped into an aspect.

Pointcut rule 1 (Law)
A connection-type C is mapped into pointcut PC if C references the operation that has
already been mapped into an advice.

Pointcut rule 2 (Law)
A connection-type C is mapped into pointcut PC if C references the operation that has
already been mapped into an introduction method.

Pointcut rule 3 (Law)
A connection-type C is mapped into pointcut PC if C it is connected by connection type
to a thing-type that has already been mapped into an introduction field.

After executing any pointcut rule, other side of the connection will be mapped into the
join point via one of the join point rules.

Join point rule 1 (Law)
An operation O is mapped into the join point JO if O has been previously mapped into
the method MO and is involved in a connection-type, which has been previously mapped

224

into a pointcut. In this case, JO represents a call to the method MO.

Join point rule 2 (Law)
A thing-type T is mapped into the join point JT if T has been previously mapped into the
value type VT and is involved in a connection-type which has been previously mapped
into a pointcut. In this case, JT represents an access to this value type (an attribute).

Join point rule 3 (Law)
A thing-type T is mapped into the join point JT if T has been previously mapped into
class C and is involved in a connection-type, which has been previously mapped into a
pointcut. In this case, JT represents a call to any method of C.

To map our example, it is necessary to execute the following aspectual mapping rules:
1. Aspect rule to map Security (D001) and Logging (D002) thing-types into aspects.
2. Advice rule to map ask for password (O002) and log (O003) operations into advices.
3. Pointcut rule to map C001 and C002 connection-types into pointcuts.
4. Join point rule to map withdraw operation (O001) and Account thing-type (D003) into
join points.

Our simple requirement specification does not need introductions so no introduction
rules were executed.

5 Related research

The most elaborated AOSD technique that covers all the stages of software development
is presented in [Sou04]. This technique adapts the use-case driven approach for this pur-
pose treating use cases as crosscutting concerns (earlier ideas by Ivar Jacobson were
presented in [Jac03]). Another technique aimed at this goal is presented in [Myl92].

6 Conclusions and future work

While designing the aspectual predesign schema, our goal was to keep it as close to
KCPM model as possible. As was shown, this goal was achieved quite successfully. Ac-
tually, we added no new semantic concepts, and the changes to existing concepts were
not numerous (actually, only one structural change was necessary). This work could also
be seen as a “stress test” for the flexibility and extensibility of the original KCPM ap-
proach. It is clear that the approach passed this test.

This paper attempts to establish the framework for future research. As mentioned before,
all ideas presented here need extended practical validation involving real-life projects
and users. Both the structure of the schema and the mapping rules are subject to change
as a result of such validation. One more specific research direction is described below.

The steps of aspectual predesign that were presented in this paper could be extended to
the requirement analysis phase. Actually, the whole NIBA workflow could be adjusted
to take into account crosscutting concerns of the system. The ultimate goal of the whole

225

process is to separate concerns based on natural language requirements specification. It
is necessary to discover the rules of expressing crosscutting in requirements descriptions,
for example, “the X functionality must be implemented for every Y”. The possibility to
efficiently capture these rules from natural language descriptions could be the target of
future research.

Bibliography

[ABE03] Aldawud, O.; Bader, A.; Elrad, T.: UML Profile for Aspect-Oriented Software Devel-
opment. In: AOSD Workshop on Aspect-Oriented Modeling with UML, March 2003.

[Asp04] AspectJ Team: The AspectJ Programming Guide, 2004. URL: http://aspectj.org/doc/dist
/progguide/index.html

[Chu00] Chung, L; Nixon, B.; Yu, E.; Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Boston: Kluwer Academic Publishers, 2000.

[Dij76] Dijkstra, E.: Discipline of Programming. Prentice-Hall, 1976.
[Elr01] Elrad, T.; Aksit, M.; Kiczales, G.; Lieberherr, K.; Ossher, H.: Discussing Aspects of

Aspect-Oriented Programming. In: Communications of the ACM, Vol. 44(10), Oct.
2001, pp. 33-38.

[FF00] Filman, R.E.; Friedman, D.P.: Aspect-Oriented Programming is Quantification and
Obliviousness. Proc. Workshop on Advanced Separation of Concerns, OOPSLA 2000.

[FGR03] France, R.; Georg, G.; Ray, I.: Supporting Multi-Dimensional Separation of Design
Concerns. In: AOSD Workshop on Aspect-Oriented Modeling with UML, March 2003.

[FKM03] Fliedl, G.; Kop, Ch.; Mayr, H.C.: From Scenarios to KCPM Dynamic Schemas: Aspects
of Automatic Mapping. In: (Düsterhöft, A.; Thalheim, B. Eds.): Natural Language Proc-
essing and Information Systems - NLDB'2003. Lecture Notes in Informatics P-29, GI-
Edition, 2003, pp. 91-105.

[Jac03] Jacobson, I.: Use Cases and Aspects – Working Seamlessly Together. Journal of Object
Technology. Vol. 2, No. 4, 2003. pp. 7-28.

[Kic97] Kiczales, G.; Lamping, J.; Mendhekar, A. et al: Aspect-Oriented Programming. In: Pro-
ceedings of the European Conf. on Object-Oriented Programming (ECOOP), 1997.

[KM02] Kop, Ch.; Mayr, H.C.: Mapping Functional Requirements: From Natural Language to
Conceptual Schemata. In: Proc. International Conference SEA 2002, Cambridge, USA,
Nov. 4-6, 2002, pp. 82-87.

[MK02] Mayr, H.C.; Kop, Ch.: A User Centered Approach to Requirements Modeling. In:
M.Glinz, G. Müller-Luschnat (eds.): Proc. Modellierung 2002. Lecture Notes in Infor-
matics P-12 (LNI), GI-Edition, 2002, pp.75-86.

[Myl92] Mylopoulos, J.; Chung, L.; Nixon, B.: Representing and Using Non-Functional Re-
quirements: A Process-Oriented Approach. In: IEEE Transactions on Software Engi-
neering, Vol. 18, No. 6, June, pp. 483-497.

[Nib02] Niba, L.C.: The NIBA workflow: From textual requirements specifications to UML-
schemata. In: Proc. ICSSEA'2002, Paris, December 2002.

[RMA02] Rashid, A.; Moreira, A.; Araujo, J.: Modularization and composition of aspectual re-
quirements. In: Proc. AOSD '02 (Enschede, The Netherlands, Apr. 2002), pp. 11-20.

[Ras02] Rashid, A.; Sawyer P.; Moreira A.; Araujo J.: Early Aspects: A Model for Aspect-
Oriented Requirements Engineering. Proc. IEEE Joint Intl. Conf. on Requirements En-
gineering. IEEE CS Press. 2002. pp 199-202.

[SHU02] Stein, D.; Hanenberg, S.; Unland, R.: An UML-based Aspect-Oriented Design Notation
for AspectJ. In: Proceedings of AOSD 2002 International Conference, pp. 106-112.

[SHU04] Stein, D.; Hanenberg, S.; Unland, R.: Modeling Pointcuts. In: Early Aspects 2004:
Workshop at International Conference on Aspect-Oriented Software Development
(AOSD 2004), Lancaster, 2004. pp. 107-113.

[Sou04] Sousa, G.; Soares, S.; Borba P.; Castro J.: Separation of Crosscutting Concerns from
Requirements to Design: Adapting an Use Case Driven Approach. In: Early Aspects
2004: Workshop at AOSD 2004 International Conference, Lancaster, 2004. pp. 97-106.

[Tar99] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. Proc. ICSE'99 Intl. Conference, May, 1999.

226

