
Software in the City: Visual Guidance Through Large Scale

Software Projects

Marc Schreiber Stefan Hirtbach

FH Aachen

University of Applied Sciences

Microsoft

Advanced Technology Labs Europe

marc.schreiber@fh-aachen.de stefah@microsoft.com

Bodo Kraft Andreas Steinmetzler

FH Aachen

University of Applied Sciences

Microsoft

Office:mac

kraft@fh-aachen.de andreast@microsoft.com

Abstract: The size of software projects at Microsoft are constantly increasing. This
leads to the problem that developers and managers at Microsoft have trouble to com-
prehend and overview their own projects in detail. Regarding that there are some
research projects at Microsoft with the goal to facilitate analyses on software projects.
Those projects provide databases with metadata of the development process which de-
velopers, managers, and researchers can use. As an example, the data can be used for
recommendation systems and bug analyses.

In the research field of visualization software there are a lot of approaches that try
to visualize large software projects. One approach which seems to reach that goal is
the visualization of software with real life metaphors. This paper combines existing re-
search projects at Microsoft with a visualization approach that uses the city metaphor.
The goal is to guide managers and developers in their day to day development deci-
sions and to improve the comprehension of their software projects.

1 Introduction

Microsoft’s software projects are generating a vast amount of data during their develop-

ment process. Their Source Code Control Systems (SCCSs) alone are several terabyte

large, in addition information is stored in bug repositories, drop shares, etc. With respect

to that it is nearly impossible to keep a clear overview of the software project in various

ways.

The pure size of the SCCSs makes it difficult for the single developer to understand the

coherence of the source files, classes, functions, and other software components. Another

example is that it is hard to tell which components (libraries and executables) rely on each

other due to countless number of components inside of each Microsoft project. Those

projects contain legacy code as well, which makes it harder to understand the code base,

especially when the original author of legacy code left the company.

213



Within Microsoft Research there are several projects trying to help developers to manage

the large scale projects. An example is the defect predictor of [NZZ+10] which predicts

code defects inside of Windows. The predictor identifies defects by certain consecutive

changes on code in the SCCS history. The predictor claims to be the best with precision

and recall above 90%.

Codebook is a social network based approach of [BKZ10] which helps Microsoft devel-

opers to orientate in large scale software projects. It is a platform which models the rela-

tionships among people, bugs, code, tests, builds, and specifications.

Those examples have in common that they rely on the data of the SCCS—there are more

examples which also depend on other data like bugs: [AJL+09], [BN12], [ZWDZ04], etc.

The common set of requirements from those projects motivated the creation of a new data

warehouse inside of Microsoft facilitating analyses on top of development processes. This

data warehouse consists of multiple databases:

Core Database (CDB) Contains raw meta data information of SCCSs like Changelists,

Filechanges, differences between files, etc.

Derived Database (DDB) Stores heuristic data which is generated on top of CDB data.

Binary Database (BDB) Saves information about binaries (types, functions, etc.).

Task Database (TDB) Includes data about workitems, bugs, and their states.

With the available metadata of the development process the Product Groups (PGs) at Mi-

crosoft started to generate visualizations of their software. These visualizations are simple

and provide only hints on what is happening during the development. At first glance the

simplification of the visualizations seems to confirms the hypothesis of [Bro87]; the author

argues that software can not be visualized because large software projects are too complex.

But [KM99] contradicted [Bro87] and showed that “Visualization is Possible” if metaphors

of the real life are considered. Many software visualizations are successful when city

metaphors are used. Their advantages will be described briefly in Section 2 by demon-

strating some existing approaches for visualizing software with the city metaphor.

Inspired by the existing visualizations, Section 3 will introduce the concepts of a new

visualization tool named CodeMine City Tool (CMCT). This tool visualizes large software

projects on top of the data warehouse with the goal to guide developers and managers in

their day to day decisions and to make the comprehension of the software projects better.

Section 4 will show some results of visualized Microsoft projects. Following this Section

5 will describe some future prospects of the CMCT and Section 6 will give a conclusion

talking about lessons learned and takeaways for developers.

2 State of the Art

In the research field of software visualization the consideration of the city metaphor claims

to be successful—examples are the work of [KM00], [BNDL04], [WL07], and [SL10].

214



They are all using metaphors of the real life; [KM00], [WL07], and [SL10] use the city

metaphor and [BNDL04] uses the landscape metaphor. Their visualizations are using sim-

ilar concepts, for example, they are all using buildings to represent elements of software.

In [KM00] the authors developed a tool called Software World which visualizes Java code

with the city metaphor. The tool was a result of their previous paper [KM99] where they

showed that the visualization of software can be meaningful even when the size of software

projects prevents a two-dimensional visualization (graphs, UML, etc).

Software World displays a whole software system with multiple cities where each city

represents one source file. The cities are subdivided into districts representing classes

of the source files and the buildings in the districts visualize the methods of the classes.

The building height is defined by the number of source code lines and the building color

indicates if the access is public or private.

The paper [WL07] introduced a similar concept to [KM00] for Java software visualization:

A city represents a whole Java project, the districts represent Java packages, and the build-

ings represent Java classes. The dimensions of the buildings (area, height) are determined

by the number of attributes respectively number of methods of each class.

An innovation of [WL07] is the introduction of the district topology which displays the

Java package hierarchy. Each district is located on a level according to its nesting in the

package hierarchy. A subdistrict of a district is placed one level higher. This topology

creates a hilly landscape which helps to realize the package structure.

The authors of [BNDL04] focused on the structure of software projects. In contrast to

[KM00] and [WL07] buildings are used to symbolize the existence of attributes and meth-

ods distinct by different shapes. Another difference is that no districts are used to group

classes. Instead the authors used nested spheres to symbolize the package structure. So

inside of a sphere there are other spheres (the subpackages of a package) or cities where

each city represents one class and the buildings inside the attributes and methods of that

class.

An important aspect of [BNDL04] is to display the dependencies among attributes and/or

methods. Rather then using straight lines for direct connections, which could cause oc-

clusions and overlappings, the authors propose the Hierarchical Net. This solution routes

the connections between depending attributes/methods according to the hierarchy levels

of software elements.

[SL10]1 uses the city metaphor as well by focusing on visualizing the development history.

Like the other introduced papers [SL10] takes advantage of the hierarchical structure of

software represented by a hierarchical system of streets. For visualizing the history of soft-

ware they use a layout algorithm which places components along the streets but keeps their

initial positions: New components are attached to the end of a street, growing components

cause to shift other elements, and the space of removed component stay empty.

A second approach for visualizing the history is the introduction of a topology to the

system. An important aspect of the development history is the age of components which

is represented by the level of each component. “The older an element is, the more its

1[LS09] presents the approach as well.

215



representation will be elevated in the visualization.” 2 For a better age comparison of

different heights in the topology they also used contour lines. This concept makes it is for

the user to tell how old components of the software are.

3 Concept of CodeMine City

The basic idea of the CMCT is to provide managers and developers of software projects

with a visualization which guides them in their development decisions. Another purpose

of the tool is to help managers and developers to comprehend their software better, e. g.

by visualizing library dependencies.

As seen in Section 2 three dimensional visualizations which use a metaphor of the real

world—especially city metaphors—can help to gather the vast amount of data of software

projects. So to guide users of CMCT in their decisions and to help them comprehending

their software better the tool will visualize data in a city metaphor, like in [WL07, page 2].

But the tool will have three main differences:

(A) Instead of visualizing classes as buildings the CMCT will visualize binaries as build-

ings.

(B) The CMCT will characterize its cityspace by the dependency graph of the binaries.

(C) The user can decide which metrics will determine the dimensions of the buildings like

area or height.

The reason for visualizing binaries as buildings (point A) is the scale of projects in Mi-

crosoft. If classes would from the basis for buildings the cityspace would explode. The

number of buildings in this approach would cause quite a bit of confusion.

Small scale project Large scale project

Binaries 6× 10
1

3.6× 10
2

Source Files 5.2× 10
2

5.7× 10
4

Classes 8.2× 10
2

9.6× 10
4

Table 1: Compare Buildings Count of Microsoft Products on the Basis of Binaries, Source Files, and
Classes

As Table 1 shows the amount of buildings for a large scale project would be about 160

times bigger if the cityspace would be based on the source files. Even in a small scale

project the city would be about ten times bigger. If the buildings were based on classes, it

would be even worse. This indicates that the traditional approaches as seen in Section 2

will lead to confusing cityspaces.

Those approaches could also not be applied if a project is based on C code alone because

the buildings must be based on functions. But what would happen when a project is based

2Source: [SL10]

216



on C and C++? Those arguments underline the decision for point A because it is generic

approach for software projects in general.

The main argument for point B is that the user can test applied changes to a binary to

understand the affect on other binaries in the system. This point is very important in

large scale software projects because inter binary dependencies are often non-obvious. For

example: A new developer in a team does not know the structure of the software project.

If he has to fix bugs he can determine with the tool if that fix could harm other binaries

and he can ask his team mates for advice.

A second reason for point B is that on the basis of the cityspace it is also possible to identify

the role of a binary: Binaries at the center (core binaries) of the city are referenced more

often within the software project, whereas peripheral binaries are referenced less because

they make use of the core binaries.

The visualizations in [WL07] and [KM00] do not let the user choose between different

metrics3. That is a disadvantage because decisions are rarely based on a single metric like

lines of code which supports point C. The CMCT allows to select different metrics4 which

makes it possible to detect binaries with the help of their shape or color. Section 3.2 will

explain the details of that argument why point C is important and how shape and color can

help.

3.1 Setting of CMCT Cityspace

The cityspace of the CMCT consists of

Figure 1: Elements of CMCT

four different elements (see Figure 1). As

seen at the beginning of Section 3 bina-

ries will be visualized by buildings and

the dimensions are determined by metrics

which the user is able to choose. If no

metrics could be applied to a binary, be-

cause no source files are available for the

binary (external binary), then the binary

will be symbolized by a tree. This makes

it easy for the user to distinguish between

internal and external binaries.

The binaries are organized in districts sur-

rounded by a roundabout traffic and each

district contains the binaries of one direc-

tory. In the district the buildings are ar-

ranged on a grid structure. If a districts

contains n buildings and n is not a square

number, then some carets are empty. From the bird’s eye view it is hard to differentiate if

a caret is really empty or if it contains a building with a very small area. Meadows filling

empty spaces and help to differentiate these cases.

3In [BNDL04] there is not even one metric displayed.
4The metrics work the data warehouse which mean that they are using data from CDB, DDB, BDB, and TDB.

217



One concept of the CMCT is to visualize the dependencies among the districts. This is

supported by streets connecting dependent districts with each other. Single binary depen-

dencies can be resolved through the selection feature of CMCT: The selected binary will

be highlighted with blue color, all binaries which reference the selected one will be high-

lighted with orange color, and all binaries which are referenced by the selected one will be

highlighted with green color. In addition the CMCT will show the dependency route with

orange or green lines on the connecting streets.

The arrangement of the cityspace or more precisely of the districts happens through two

algorithms: At first the districts are arranged by the algorithm described in [KK89] and

afterwards overlappings of the districts are removed with the algorithm of [DMS05].

A property of the algorithm in [KK89] is that it produces a relative small number of edge

and node crossings. However crossings are not eliminated and because of this fact the

CMCT has to avoid that districts are crossed by streets5—streets can be crossed by other

streets—which is supported by tunnels passing underneath the districts.

The tunnels help the user to identify the dependencies in an easier way. If the crossing

of district would be avoided by the usage of the roundabout traffic (crossing streets enters

the roundabout traffic on one side and leaves it on the opposite side), it could create the

assumption that two districts depend on each other even if they do not.

3.2 User Stories

Clean and Organize Code in Projects Over time the source code of projects grows and

grows. Often code will be refactored or functions become obsolete resulting in dead code.

To help developers cleaning up the code base the CMCT can display a texture with cracks

for each building. The more cracks are visible the more dead code the building contains.

The CMCT can also help to organize libraries. If there are a lot of functions which are

only called by one or a few other libraries, it makes no sense to provide those functions

in the core library. A better solution is to make those functions part of a new library or to

move them into existing ones. Therefor the CMCT can display, with a pie chart texture,

how much code is used by none, few, or many other binaries.

What Depends on a Library/Source File? A new developer at the team was told to

implement a new feature. For that he has to work on code which he has never touched and

so far he does not know which other binaries could be impacted by his changes.

With the CMCT he can search for the file which he will modify and the CMCT will directly

show all binaries depending on it. If no dependencies exists, he can go on implementing

the feature. Otherwise he can investigate who is working on dependent binaries and coor-

dinate the work

5Crossing of districts would cause occlusions and overlappings, see [BNDL04].

218



What Files Are Easy To Edit and Which Are Not According to [SZZ05] it is possible

to calculate how difficult it is to edit source files in a software project. This metric is

interesting for managers of software projects because they can assign work to rookies or

the experienced developers with respect to the difficulty of source files.

Combination of Metrics A wide variety of combinations of metrics for the different di-

mensions are conceivable. Here is one example: For the building area the user can choose

the number of code lines and for the building height the number of methods. Buildings

which appear as flat slices indicate that there is are lot of long methods in it—it is bad

smell, see [Fow99].

3.3 Status of Implementation

The basic concepts of the CMCT are fully implemented and the tool is ready to use. The

tool is configurable so that it can be used for all Microsoft projects whose data is available

in the data warehouse. The CMCT provides a set of metrics to the user and the implemen-

tation is open to be extended with more metrics. The CMCT is implemented with C# and

the rendering of the cityspace is done by WPF 3D (see [Pet07] as reference).

The CMCT is an internal project and will not be available outside of Microsoft. Part of the

reason for this is its dependency on the internal data warehouse (CDB, DDB, etc.) tailored

to Microsoft specific requirements.

4 Cityspaces of Microsoft Projects

Finally this section shows some cityspaces of software projects in Microsoft. The first

example in Figure 2 is a large scale project showing a structured cityspace. In spite of the

large number of binaries the cityspace is well-arranged. (1) The core district, on which a

lot of binaries of the software project depend, is located at the center. Furthermore there

is also a second core district near the center of the city. This district contains only one

external binary on which almost every binary depends.

The districts which surround the core districts depend on them. (2) At the edge of the city

there are some smaller groups of districts with interdependencies. All of those districts are

co-located.

The highlighting of the dependencies works very well too. Through the selection it is

possible to detect interrelated buildings immediately. Figure 2 also illustrates that the

highlighting confirms the role of the district at the center as a core district.

All trees and meadows contribute to a good overview for the user, even from a far distance.

By looking at Figure 2 it is very clear which carets of the districts are empty and which

binaries are external to the project. It is also clear that most binaries are implemented by

the project itself given the lack of trees in the city.

219



Figure 2: Cityspace of Large Scale Project

(3) From the distance it also possible to see if a district is passed by a tunnel. This and the

fact that the route of a dependency between two districts never turns off the road makes it

easy for the user to recognize if two districts depends on each other.

Figure 3 presents the cityspace of a small scale project. The cityspace of the project is

well-arranged and it has one core district. There is a second core district but it is only

referenced by the other core district, so they are forming the city center—the second core

district looks like a park because it contains only external binaries and an open area.

The last example shows a cityspace of a medium scale project of Microsoft (see Figure 4).

The city contains only of a few districts, where two of them contain 87% of all buildings.

The remaining districts contain only a few buildings. Figure 4 shows that a lot of the

binaries are external binaries symbolized by trees—an ecologically beneficial city.

The large district at the center contains 71 binaries. Its location and the amount of buildings

in it create the impression that this district is the city center, but appearances are deceiving.

The district contains an external binary on which almost all internal binaries depend. There

is only one binary referenced outside of the district. The real city center is the district on

left side of the big district. But that situation was quickly revealed with a few clicks and

shows the power of CMCT.

5 Future Prospects

There are some aspects of the CMCT which can be improved. For example: As Figure 2

shows there are a lot of streets which connect districts at the edge with one district at the

center. Reducing the number of streets would lead to a more clear cityspace. This could

220



Figure 3: Cityspace of Small Scale Project

be reached with highways. The streets starting in the same area and ending at the same

district would form a highway and this highway connects the districts.

A feature for comparing branches of software projects could be implemented for the

CMCT. Two or more cities would be displayed side by side (maybe separated by a river) so

that the user is able to compare the activities among multiple branches. Code integration

from one branch to another could be symbolized with traffic.

6 Conclusion

As this paper shows—and especially Section 4—the conceived concept elements of Sec-

tion 3 are helpful to comprehend software projects better. It is easy to spot dependencies

by the CMCT and it provides a well-arranged cityspace to the user independent of the

project size.

During the development of the CMCT we discovered some oddities in the cityspace of the

data warehouse project—the cityspace did not match the expected cityspace. By inspect-

ing why the cityspace did not look like expected we discovered that some build files of the

project were configured incorrectly. This shows again the power of the CMCT. Developers

who have a good knowledge of a software project are able to detect issues they were not

aware of.

Finally we summarize the lessons learned from our project: The approach of using the

binaries as basic element for visualizing the structure of large scale software projects is

221



Figure 4: Cityspace of Medium Scale Project

appropriate. Especially for large scale projects this approach reduces the number of visual

elements in the city space (see Table 1).

Another advantage of this approach is the independence of a specific technology like in the

approaches of [WL07], [SL10], or [KM00] which are limited to Java applications. Inside

Microsoft software projects depend on many different technologies (e. g. C, C++, .NET

Framework, scripts languages, etc.). For these heterogeneous projects it is hard to find a

common element for the visualization (like classes or functions) and if such an element

exists for one software project, it is not guaranteed to be the common element in other

projects as well.

A major takeaway of the CMCT for software engineers is that the CMCT creates a men-

tal image—[SL10, page 1] shows that a mental image of software is important for the

communication among developers. Such images help software engineers to improve their

communication inside of software projects. For example, the CMCT was used to explain

the structure of the small scale project (see Figure 3) to new developers in the team. Im-

mediately new developers knew the coherence of the single modules and they were able to

put their work into the context of the projects architecture.

The CMCT makes refactoring hints available to the engineers as well. As seen in Section

3.2 combinations of different metrics provide those hints (e. g. bad smells). Other com-

bination could point to AntiPatterns (see [BMSMM98])—The Blob could be identified by

a combination of lines of code and number of attributes. It is also possible to extends the

collection of metrics with new ones which would forebode to other AntiPatterns as well.

Addressing other specific software engineering problems with new metrics is possible as

well.

Considering the user story “Clean and Organize Code in Projects” software engineers are

able to evaluate and comprehend the architecture of their projects. How important compre-

hension of software is showed a Principal Development Lead at Microsoft by approving

222



the value of CMCT: “There’s value in enabling faster code understanding.” In his first

job at Microsoft he had to understand 200k lines of code. The CMCT could have helped

him to understand all the code in a faster way.

Acknowledgments

We would like to acknowledge to the following persons who have made the completion of

this paper possible:

The team (Rich Hanbidge, Olivier Nano) we worked with at the Microsoft Advanced Tech-

nology Labs Europe in Aachen, for the support during our research and for making it

possible to use the development data of some Microsoft PGs.

Jacek Czerwonka, for providing us with an early development version of the BDB which

helped us to develop the CMCT.

References

[AJL+09] B. Ashok, Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and
Vipindeep Vangala. DebugAdvisor: A Recommender System for Debugging. In
Proceedings of the 7th joint meeting of the European Software Engineering Confer-
ence and the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE ’09, pages 373 – 382. ACM, 2009.

[BKZ10] Andrew Begel, Yit Phang Khoo, and Thomas Zimmermann. Codebook: Discovering
and Exploiting Relationships in Software Repositories. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE ’10,
pages 125 – 134. ACM, 2010.

[BMSMM98] William J. Brown, Raphael C. Malveau, Hays W. ”Skip” McCormick, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley, 1 edition, April 1998.

[BN12] Christian Bird and Nachiappan Nagappan. Who? What? Where? Examining Dis-
tributed Development in Two Large Open Source Projects. In Proceedings of the
Working Conference on Mining Software Repositories, pages 237 – 246, 2012.

[BNDL04] Michael Balzer, Andreas Noack, Oliver Deussen, and Claus Lewerentz. Software
Landscapes: Visualizing the Structure of Large Software Systems. In Proceedings of
the Joint Eurographics – IEEE TCVG Symposium on Visualization, pages 261 – 266,
2004.

[Bro87] Frederick P. Brooks, Jr. No Silver Bullet Essence and Accidents of Software Engi-
neering. Computer, 20(4):10 – 19, April 1987.

[DMS05] Tim Dwyer, Kim Marriott, and Peter J. Stuckey. Fast Node Overlap Removal. In
Graph Drawing, pages 153 – 164. Springer, 2005.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999.

223



[KK89] T. Kamada and S. Kawai. An Algorithm for Drawing General Undirected Graphs.
Inf. Process. Lett., 31(1):7 – 15, April 1989.

[KM99] Claire Knight and Malcolm Munroe. Visualizing Software - A Key Research Area. In
Proceedings of the IEEE International Conference on Software Maintenance, ICSM
’99, Washington, DC, USA, 1999. IEEE Computer Society.

[KM00] Claire Knight and Malcolm Munro. Virtual but Visible Software. In Proceedings of
the International Conference on Information Visualisation, pages 198 – 205, Wash-
ington, DC, USA, 2000. IEEE Computer Society.

[LS09] Claus Lewerentz and Frank Steinbrückner. SoftUrbs: Visualizing Software Systems
as Urban Structures. Technical report, BTU Cottbus, February 2009.

[NZZ+10] Nachiappan Nagappan, Andreas Zeller, Thomas Zimmermann, Kim Herzig, and
Brendan Murphy. Change Bursts as Defect Predictors. In Proceedings of the 21st
IEEE International Symposium on Software Reliability Engineering, pages 309 –
318, November 2010.

[Pet07] Charles Petzold. 3D Programming For Windows. Microsoft Press, Redmond, WA,
USA, 2007.

[SL10] Frank Steinbrückner and Claus Lewerentz. Representing Development History in
Software Cities. In Proceedings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, pages 193–202, 2010.

[SZZ05] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. HATARI: Raising Risk
Awareness (Research Demonstration). In Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, pages 107 – 110. ACM, September
2005.

[WL07] Richard Wettel and Michele Lanza, editors. Visualizing Software Systems as Cities,
2007.

[ZWDZ04] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller. Min-
ing Version Histories to Guide Software Changes. In Proceedings of the 26th In-
ternational Conference on Software Engineering, pages 563 – 572. IEEE Computer
Society, May 2004.

224


