B. Konig-Ries et al. (Hrsg.): BTW 2023,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2023 221

Detection of Generated Text Reviews by Leveraging Methods
from Authorship Attribution: Predictive Performance vs.
Resourcefulness

Manfred Moosleitner! Giinther Specht! Eva Zangerle!

Abstract: Textual reviews are an integral part of online shopping, provided the reviews are authentic.
To this end, pre-trained large language models have been shown to generate convincing text reviews
at scale. Therefore, a critical task is the automatic detection of reviews not composed by humans.
State-of-the-art approaches to detect generated texts use pre-trained large language models, which
exhibit hefty hardware requirements to run and fine-tune. Previous work has shown that texts generated
by the same language model show a coherent writing style. We propose to leverage this property
to identify whether a text was indeed automatically generated. In this paper, we investigate the
performance of features prominently used for authorship attribution, using classifiers with substantially
lower computational resource requirements. We show that features and methods from authorship
attribution can be successfully applied for the task of detecting generated text reviews, leveraging the
consistent writing style exhibited by large language models like GPT-2. We argue that our approach
achieves similar performance as state-of-the-art approaches while providing shorter training times
and lower hardware requirements, necessary for, e.g., ad-hoc detection tasks.

Keywords: Text Classification, Stylometric Text Features, Generated Text Detection

1 Introduction

User-created reviews are often available on online e-commerce platforms. Such reviews
allow users to express their satisfaction or disappointment with products or services in the
form of numeric ratings or written text reviews. While user ratings provide a quantitative
view of user experiences, text reviews allow for providing a more detailed report about
the perceived quality of the product or service. Such reviews may inform other users in
the process of comparing products, finding viable alternatives, or eventually, purchasing a
product. However, this assumes that reviews are authentic and not fictitious and therefore,
fake. Fake reviews can be a threat to businesses [Lal2, LSV16, LZ16], regardless of whether
a counterfeit review is written by a human or generated with the help of an algorithm.

Recently, machine learning approaches like pre-trained large language models (LLM), such
as BERT [Del8] or GPT-2 [Ral9], are prevalent in many natural language processing
and text generation tasks. To this end, GPT-2 was used to generate convincing text
reviews [Ip20, Sa22], substantiating that we need to find ways to differentiate between human-
written and algorithmically generated texts. Ott et al. [Ot11] investigated differentiating

! Universitit Innsbruck, Department of Computer Science, Austria; firstname.lastname @uibk.ac.at

©®O® doi:10.18420/BTW2023-11


mailto:firstname.lastname@uibk.ac.at
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/BTW2023-11

222 Manfred Moosleitner, Giinther Specht, Eva Zangerle

between genuine and fabricated human-written reviews based on psycho-linguistic, lexical
and n-gram features. They used these features and trained a Naive Bayes and a linear Support
Vector Machine as classifiers. Notably, in their evaluation, they also show that automated
classification achieves better results than human judges. Ippolito et al. [Ip20] show that a large
BERT model, fine-tuned for classification, can classify texts as either machine-generated or
written by a human with an accuracy of up to 0.88, but also note less diversity for words
used, due to preferably choosing words with a higher likelihood from the prevailing word
distribution. Shahid et al. [Sh17] argue that if texts are generated by the same algorithm,
these texts share the same author. Along these lines, we propose formulating the task of fake
review detection as an authorship attribution task. Therefore, we leverage stylometric text
features prominently used in the field of authorship attribution [Z118, St21, TMS19, MS22]
to detect text reviews that are generated by an LLM. Our contributions can be summarized
as follows: (1) We propose modeling the task of detecting generated text reviews as an
authorship attribution task. (2) We investigate and compare the performance of different
stylometric text features and state-of-the-art authorship attribution approaches. (3) We show
that Support Vector Machines and Decision Trees achieve predictive performance (Fi,
precision, recall) comparable to those of LLM-based classifiers while having much lower
requirements in terms of training time and hardware requirements. Particularly given the
recent trend towards greener IT and more energy-efficient computing [Mu08], we argue
that this is a pivotal dimension that needs to be considered when evaluating and comparing
potential approaches. (4) To ensure reproducibility, we publish the code of our experiments
and analysis at https://git.uibk.ac.at/c7031305/btw23_textreviewdetection.

2 Related Work

Ott et al. [Ot11] used part-of-speech (POS) tags, psycholinguistic and statistical text features,
and n-grams to differentiate if human written reviews are genuine or fictive. They used 400
genuine reviews from Tripadvisor and 400 fabricated reviews, created by crowd workers.
The authors used classifiers based on Naive Bayes, and on Support Vector Machines
(SVM). Shahid et al. [Sh17] aim to separate Wikipedia articles and texts generated by
content-spinning tools, using said articles as seed documents, by using an SVM-based
classifier. They employed an assortment of stylometric features like n-grams, vocabulary
richness, readability, and others. Salminen et al. [Sa22] evaluated the predictive performance
of a RoBERTa [Li19] based model, a GPT-2 based model?, and an SVM based classifier.
They created a balanced data set, consisting of approximately 40,000 text reviews, based on
the Amazon Customer Review data set3. From the ten most occurring product categories in
this data set, they sampled customer reviews to fine-tune an LLM to generate approximately
20,000 artificial text reviews. The authors additionally drew roughly 20,000 reviews from
the Amazon data set as reviews written by humans.

2 https://github.com/openai/gpt-2-output-dataset/blob/master/detection.md
3 https://s3.amazonaws.com/amazon-reviews-pds/readme.html


https://git.uibk.ac.at/c7031305/btw23_textreviewdetection
https://github.com/openai/gpt-2-output-data set/blob/master/detection.md
https://s3.amazonaws.com/amazon-reviews-pds/readme.html

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 223

Shahid et al. [Sh17] note that the seed documents and the generated texts differ in the way
the texts are composed (i.e., their grammatical structure). Therefore, methods and features
from the field of authorship attribution and plagiarism detection should be able to catch these
differences. Zlatkova et al. [Z118] proposed to use various frequencies on word and sentence
level, lexical richness, readability metrics, and other features. They reached first place in the
multi-author analysis shared challenge at the PAN# workshop in 2018. Strgm [St21] used a
similar configuration for this challenge in 2021, reaching high performance in this authorship
attribution task. Murauer et al. [MS22] proposed Dependency Tree-grams (DT-grams) for
the task of authorship attribution. DT-grams capture the writing style of authors by using
the grammatical structure of sentences. Substructures, extracted from the dependency trees,
are used to represent the grammatical style of the text and author.

In this work, we put our focus on identifying whether a review was written by a human, or was
generated by an LLM. Along the lines of Shahid et al. [Sh17], we argue that texts originating
from the same language model share the same author, which in turn should exhibit a similar
writing style across all generated texts. Therefore, contrary to previous works, we model
the task of detecting whether a review was manually written or automatically generated as
an authorship attribution problem. We particularly investigate the use of state-of-the-art
authorship attribution models to the task and particularly investigate the feature sets by
Zlatkova [Z118]/Strgm [St21], and Murauer et al. [MS22].

3 Methodology

In the following, we first detail the different features employed and subsequently, describe
the experimental setup used for the evaluation.

3.1 Features

The main goal of this work is to investigate generated review detection by leveraging features
and models from the field of authorship attribution. Therefore, we rely on features that have
been shown to capture the writing style of authors well for authorship attribution tasks,
specifically in the sub-tasks of style change detection [Z118, St21], intrinsic plagiarism
detection [TMS19], and cross-language authorship attribution [MS22], leveraging the
consistent writing style exhibited by texts generated by LLMs [Sh17, Ip20]. As baselines, we
rely on word and character n-grams for comparison, along the lines of previous work [JLOS,
Otl1, Sh17]. We propose three types of features to represent reviews: (1) textfeatures
(frequencies on word, phrase, and sentence level, and readability metrics); (2) dtgrams
(substructures extracted from dependency trees); and (3) ngrams (word and character
n-grams of varying lengths).

4 https://pan.webis.de/shared-tasks.html


https://pan.webis.de/shared-tasks.html

224 Manfred Moosleitner, Giinther Specht, Eva Zangerle

As textfeatures, we use the same collection of features as Zlatkova et al. [Z118] and
Strgm [St21] to represent the writing styles of the corresponding authors. Our implementation
is based on the work by Strgm?, in which the following five feature sets are extracted from
the text reviews: (1) count metrics (for instance, number of sentences and words, count of
English POS tags, capitalized words, and others); (2) number of occurrences of function
words and function phrases; (3) the number of uses of digits (0, 1, ..., 9) and their alphabetical
counterpart (zero, one,..., nine), use of UK English (e.g., colour) and US English words (e.g.,
color), and the use of contractions and non-contractions; (4) the frequency of punctuation
marks and other special characters; and (5) nine readability metrics (e.g., Flesch reading
ease [F148]). This provides us with a total number of 487 features. For the dtgrams features,
we rely on dependency-tree-based features, aiming to find texts that are composed with a
similar grammatical style, therefore, attributing it to the generating LLM as the single author.
In the following, we briefly introduce DT-grams. At first, we create the dependency tree for
a given sentence (cf. Figure 1 for an example tree of the sentence “The quick brown fox
jumped over the lazy dog.”). In the resulting tree, each node holds the English POS tag for
the corresponding word. Next, specific substructures of the tree are grouped together, where
the substructures can be of different shapes. For our work, we used the shape of pg-grams
with p = 2 and g = 3, which means that we use the parent-child relation of two nodes
(“jumped” and “dog” as one example from Figure 1) and three sibling nodes (“over”, “the”,
and “lazy” as one example from Figure 1). In the next step, the DT-grams are constructed
using a sliding window, similar to n-grams. Here the grouped substructures are traversed
(from parent to child, and siblings from left to right) and their corresponding POS tags are
concatenated using the underscore as delimiter and the asterisk for when nodes are absent in
the sliding window. The sentence in the given example results in a total of 18 strings, with
“VBD_NN_IN_DT_JJ” being an example with no absent node and “VBD_NN_*_*_IN”
being an example with absent nodes.

Fig. 1: Tree representation for the given sentence, based on the dependency tree. In each node, we
display the word and its corresponding POS tags. Highlighted in blue is the parent-child relationship
between jumped and dog, and marked in red is the sibling relationship between over, the, and lazy.
Here, “VBD_NN_IN_DT _JJ” and “VBD_NN_*_* IN” are two examples of the 18 dtgrams.

For the calculation of the dt-grams, we used two Python libraries from Murauer et al. [MS22]:

5 https://github.com/eivistr/pan21-style-change-detection-stacking-ensemble



Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 225

tuhlbox® parses the texts and calculates the dependency trees using the Python library
Stanza [Qi20] from the Stanford NLP group, and treegrams 7, is used to extract the dt-grams
from these dependency trees. For the n-grams feature set and as a baseline, we employ word
and character n-gram TF-IDF vectors, using the scikit-learn library3. We utilized similar
parameters for the vectorization as [Z118, St21], further details are given in Section 3.2.

3.2 Experimental Setup

We evaluated the classification performance of the proposed approach in multiple experi-
ments. Specifically, we employed stratified ten-fold cross-validation and used Fj, precision,
and recall, as evaluation metrics. For the binary classification, the generated reviews were
used as the positive class. Furthermore, we also measured classification runtimes and
memory usage to compare the efficiency and required resources for each of the feature sets
and classifiers. Memory usage was recorded using the Python library memory-profiler; the
experiments were executed on a general-purpose processor.

3.2.1 Dataset

We relied on the data set provided by Salminen et al. [Sa22] for the evaluations. The data set is
balanced in the amount of original and generated text reviews, featuring approximately 20,000
text reviews per class. We computed all features proposed and normalized them by removing
the mean and scaling the values to unit variance (using scikit-learn’s StandardScaler).

rating ‘ class ‘ text

1 ‘ CG ‘ Editor was too busy watching “Duck Dynasty” and not paying attention to his work!!!

S‘CG

I loved this book. The characters were believable and the plot was interesting.
I really enjoyed this book

1 ‘ OR ‘ Just a bit strange and different for me. Probably excellent for others.

5 ‘ OR ‘ A truly riveting page turner. All three in the series were fantastic.

Tab. 1: Example reviews from the category Book_5 for the classes Computer Generated (CG) and
Original Review (OR), one with the highest and lowest rating each.

3.2.2 Classification Algorithms and Evaluation Strategy

For the classification, we rely on five established classifiers: Support Vector Machine (SVM)
with linear kernel, SVM with Radial Basis Function kernel, k-Nearest Neighbor (kNN),

6 https://pypi.org/project/tuhlbox/
7 https://pypi.org/project/treegrams/
8 https://scikit-learn.org/


https://pypi.org/project/tuhlbox/
https://pypi.org/project/treegrams/
https://scikit-learn.org/

226 Manfred Moosleitner, Giinther Specht, Eva Zangerle

Gradient Boosting Decision Tree (gbdt), and Random Forest (1f). For the two SVM-based
and the kNN-based classifiers, we used the corresponding scikit-learn implementations.
For the tree-based classifiers, we utilized the gradient boosting framework LightGBM?®.
Following the example of Strgm[St21], we also used the hyperparameter optimization
framework Optuna© to efficiently tune the hyperparameters for gbdt. The hyperparameters
for the SVM-based classifiers were optimized using a grid-search approach.

This optimized hyperparameters'! were then used for the final set of experiments, where all
the necessary data and results were collected. Since we used the data set from Salminen et
al. [Sa22], we reproduced their setup using a basic ROBERTa [Li19] model and added it
as a state-of-the-art baseline to our experiments. As a more lightweight LLM, we added a
DistilBERT [Sal19] model to the list of classifiers.

Furthermore, we tested the values for Fy, precision, and recall, per ten-fold cross-validation,
for normal distribution by performing a Shapiro-Wilk [SW65] test. This showed p > .05
for all cases, therefore, we assume that the determined results all stem from a normal
distribution. This allowed us to perform statistical significance tests using paired t-tests,
where the pairs were built within feature set and also within classifier.

3.2.3 Preliminary Experiments

In preliminary experiments, we conducted a coarse grid search for the classifiers. Regarding
the feature set ngrams, the texts were used as input without any further pre-processing. The
following parameters were supplied with the stated values: maximum number of n-grams
(5,000, 25,000, no limit), word and character n-grams, range of n-grams (uni- to six-grams).
The classifier hyperparameters used for the grid search are shown in Table 2.

linear SVM ‘ C: 0.1, 1.0, 10; dual: False; tol: 0.001
rbf SVM ‘ C: 0.1, 1.0, 10; kernel: rbf; tol: 0.001
kNN ‘ n_neighbors: 5, 40, 100

gbdt & rf | objective: binary
learning_rate: 0.1, 0.01, 0.001, 0.0001, 0.00001
bagging_freq: 40; bagging_fraction: 0.85

Tab. 2: Hyperparameters used for the initial grid search.

These experiments showed that the linear SVM, the SVM with a radial basis function
kernel, and the Gradient-boosted decision tree constantly outperformed kNN and Random
Forest classifiers. Therefore, we excluded kNN and Random Forest classifiers from further
experiments.

9 https://github.com/microsoft/LightGBM
10 https://optuna.org/
11 Details can be found at https://git.uibk.ac.at/c7031305/btw23_textreviewdetection


https://github.com/microsoft/LightGBM
https://optuna.org/
https://git.uibk.ac.at/c7031305/btw23_textreviewdetection

Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 227

Likewise, we also experimented with different ranges for n-grams, using word and/or
character n-grams, and the maximum number of features. Again, we performed a grid-
search approach to get the individual F-scores for word and character uni- to six-grams,
varying values of 5,000, 25,000, 50,000, and unlimited number of maximum features.
The results have shown that character four-, five-, and six-grams performed best with all
three classifiers. Regarding the maximum number of features, the SVM with radial basis
function kernel performed best with a limit of 25,000 features, while the linear SVM and
the Gradient-boosted decision tree performed best without limiting the number of features.

Based on the findings of these preliminary experiments, we performed a final optimization
of the hyperparameters for the classification algorithms. Both SVM variants were tuned
again using a grid-search approach, to find the best-performing value for the regularization
parameter. For the SVM with radial basis function kernel, a value of 10 showed the best
performance across the three feature sets. Regarding the linear SVM, a value 0.1 performed
best for the feature set dtgrams, and 0.001 for the feature sets textfeatures and ngrams.

4 Experimental Results

Based on the collected predictions and measurements from our experiments, we compared
the performance of the combinations of the feature sets with classifiers, in terms of prediction,
runtime, and memory consumption.

4.1 Predictive Performance

We present the average Fy, precision, and recall from the stratified ten-fold cross-validations
per feature set for the three classification algorithms and the two LLMs in Table 3.

For the textfeatures feature set, the gradient-boosted decision tree achieved the highest
performance with an F;-score of 90.83%, followed by the SVM with radial basis function
kernel and the linear SVM with a slightly lower performance (89.46% and 89.04%,
respectively). The best performance for the feature set dtgrams was achieved by the SVM
with radial basis function kernel with an F;-score of 91.86%. Here, the F;-score of the linear
SVM achieved a 1.85% and the Gradient-boosted decision tree a 2.82% lower F;-score. For
the ngrams feature set, the SVM with radial basis function kernel obtained an F;-score of
95.45%. This outperformed the F;-scores of the other two classifiers, with the linear SVM
achieving a 1.35% and the gradient-boosted decision tree a 2.16% lower F;-score.

The results of the paired t-tests within the evaluated feature sets and classifiers showed
p < .05 for all pairs. The paired t-test with the results of ROBERTa and DistilBERT also
showed p < .05. We also compared the results of the best non-LLM model with the
RoBERTa model in a paired t-test, which also showed significant differences (p < .05).



228 Manfred Moosleitner, Giinther Specht, Eva Zangerle

linear SVM SVM rbf GBDT
u o u o u o
textfeatures  0.8904 0.0037 0.8946 0.0044 0.9083 0.0027
dtgrams 0.9028 0.0036 09186 0.0042 0.8904 0.0046
£ ngrams 0.9410 0.0039 0.9545 0.0019 0.9329 0.0039

RoBERTa 0.9794  0.0027
DistilBERT  0.9670  0.0035

textfeatures  0.9011  0.0050 0.8910 0.0056 0.9078  0.0053

E dtgrams 0.8765 0.0044 0.8998 0.0054 0.8832 0.0060
8 ngrams 0.9639 0.0034 0.9446 0.0020 0.9244  0.0050
E‘J RoBERTa 0.9946  0.0015
A DistilBERT 0.9882  0.0022

textfeatures  0.8799  0.0053 0.8982 0.0053 0.9089  0.0037
j dtgrams 0.9308 0.0066 0.9384 0.0052 0.8977 0.0091
6 ngrams 0.9193  0.0078 0.9646 0.0039 0.9415 0.0054
§ RoBERTa 0.9647  0.0055

DistilBERT ~ 0.9466  0.0065

Tab. 3: Mean and standard deviation for Fy, precision, and recall over the values from the ten-fold
cross-validation. Results are reported per classifier per feature set. The best results for the non-LLM
and LLM approaches are marked in boldface.

From these results, we conclude that RoOBERTa, as expected, achieves the best F;-scores
regarding the predictive performance. The proposed text features, on the other hand, achieve
only slightly lower F;-scores, with the best classifier achieving a less than 2% lower F;-score.
However, we argue that the differences are subtle and, as we will show in the following
experiments, the non-LLLM approaches are able to outperform RoBERTa w.r.t. resource
consumption and runtime.

4.2 Runtime Performance

Given the ever-increasing need for more energy-efficient computation, another important
aspect is the runtime performance of the different approaches. We analyzed the time needed
to fit the algorithms on average for the ten-fold cross-validation. All the experiments
regarding runtime were conducted on the same virtual machine (Debian GNU/Linux 10
(buster) OS with 12 cores and 128GiB of memory). We utilize the grid-search functionality
of scikit-learn. We present the average time to fit a classifier and the corresponding standard
deviation in Table 4. The reported runtimes for ngrams, ROBERTa, and DistilBERT, include
the time to convert the text reviews into their respective representations. The feature sets
textfeatures and dtgrams were pre-computed, with a runtime of ~ 380 seconds for the former
and 73439.468 seconds for the latter.

The time to fit the models increases with the number of features, with the exception of the
linear SVM when trained with ngrams. This constellation was about 2.4 times faster than



Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:
Predictive Performance vs. Resourcefulness 229

linear SVM SVM rbf GBDT

u o u o u o
textfeatures 357.69s 54.09s 1,259.42s  107.04s 54.59s 2.17s
dtgrams 490.26s 52.40s 4,020.95s 145.32s  2,135.30s  145.16s
ngrams 146.29s 26.00s 17,605.94s 439.07s 9,695.23s  137.98s

RoBERTa 28149.44s  243.10s
DistilBERT 8293,96s  104.49s

Tab. 4: Average (1) and standard deviation (o) of the measured runtimes in seconds per classifier per
feature set over the ten-fold cross-validation. The best values per feature set are marked in boldface.

when paired with textfeatures, and about 3.3 times faster when using dtgrams. Most notable
are the runtimes for the gradient-boosting decision tree with textfeatures, the SVM with
radial basis function kernel and ngrams, and RoOBERTa. The first two displayed the shortest
and the longest mean time to fit, respectively, from the non-LLM models, and RoOBERTa
the overall longest average time to fit. These experiments showed that the proposed simple
approaches clearly outperform RoBERTa.

4.3 Memory Usage

Besides runtime, a second important cornerstone when evaluating and comparing these
methods is their memory usage and hence, resource consumption. Particularly with LLMs, the
amount of memory required has increased substantially. Therefore, we are also interested in
comparing memory usage among the proposed approaches. One run of the final experiments
was used to measure the amount of memory that was allocated during the execution of the
cross-validation (cf. 4). We present the results of these analyses in Table 5. As expected, the
memory profiler reported memory usage numbers for the non-LLM classifiers that are only
a fraction of the memory needed by the ROBERTa model. Particularly, the recorded memory
requirements of ROBERTa are in the range of 245.62 to 778.79 times higher compared to
the non-LLM models with the lowest memory consumption.

SVM linear SVM rbf GBDT
textfeatures 42516 MiB  17.027 MiB  19.520 MiB
dtgrams 17.301 MiB 16961 MiB  14.152 MiB
ngrams 13.312MiB 19543 MiB  13.910 MiB

RoBERTa 10,364.988 MiB
DistilBERT 4,880.535 MiB

Tab. 5: Memory usage was acquired with cross-validation using the memory profiler.



230 Manfred Moosleitner, Giinther Specht, Eva Zangerle

4.4 Discussion

RoBERTa achieved the highest F-scores, followed by ngrams with rbfsvm, and ngrams
with linsvm. When comparing these three, the highest F-score comes at the price of 1.6
and 192.2 times longer training times, for a difference of 1.8% and 3.15% in F;-score,
respectively. In terms of memory requirements, ROBERTa’s memory usage is about 530
and 778 times higher when compared to rbfsvm with ngrams and linsvm with ngrams.
In comparison, textfeatures with gbdt showed the shortest training time. Compared to
RoBERTA, training times of ngrams with rbfsvm, ngrams with linsvm, and textfeatures with
gbdt, were around 515, 322, and 3 times faster, and with a difference in F;-scores of 6.42%,
4.62%, and 3.27%, respectively. The lowest memory requirement was recorded for ngrams
with linsvm, which was 779 and 1.47 times lower than RoOBERTa and ngrams with rbfsvc,
with a difference in Fi-score of 3.15% and 1.35%.

Our experiments show it is possible to train classifiers quicker or with lower hardware
requirements while sacrificing at most 6.42% of F;-score, which is still higher than the
performance of human raters [Ot11, Sa22]. Therefore, we argue that the proposed features
borrowed from authorship attribution tasks are a valid option for the task of generated text
detection.

5 Conclusion

We proposed using text features borrowed from the field of authorship attribution for the task
of detecting generated product reviews. Related work suggests that generated texts differ in
writing style, grammatical structure, and the diversity of words used from their input texts.
Therefore, we used statistical textfeatures, features based on dependency-tree-grams, and
n-grams to train a linear Support Vector Machine, a Support Vector Machine with radial
basis function kernel, and a gradient-boosting decision tree as classifiers. We utilized a
balanced dataset to evaluate their predictive performance using F;-score, investigated their
runtimes and memory requirements, also in comparison with a state-of-the-art RoOBERTa
LLM model. Our results show that classification algorithms like Support Vector Machines
and Decision Trees can be trained using different stylometric features and achieve F;-scores
that come close to the performance of a basic ROBERTa model. While these non-LLM
models show slightly lower performance, they can reach up to 515 faster training time and
need up to 779 times less memory—two factors that become more and more central when
choosing an approach.

In future work, we aim to investigate the importance and impact of individual features and
extend the experiments to further datasets and text domains.



Detection of Generated Text Reviews by Leveraging Methods from Authorship Attribution:

Predictive Performance vs. Resourcefulness 231

Bibliography

[Del8]

[F148]

[1p20]

[JLO8]

[Lal2]

[Li19]

[LSV16]

[LZ16]

[MS22]

[Mu08]

[Ot11]

[Qi20]

[Ral9]

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina: BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805, 2018.

Flesch, Rudolph: A new readability yardstick. Journal of applied psychology, 32(3):221,
1948.

Ippolito, Daphne; Duckworth, Daniel; Callison-Burch, Chris; Eck, Douglas: Automatic
Detection of Generated Text is Easiest when Humans are Fooled. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Online, pp. 1808—1822, July 2020.

Jindal, Nitin; Liu, Bing: Opinion Spam and Analysis. In: Proceedings of the 2008
International Conference on Web Search and Data Mining. WSDM 08, Association for
Computing Machinery, New York, NY, USA, p. 219-230, 2008.

Lappas, Theodoros: Fake Reviews: The Malicious Perspective. In (Bouma, Gosse; Ittoo,
Ashwin; Métais, Elisabeth; Wortmann, Hans, eds): Natural Language Processing and
Information Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23-34, 2012.

Liu, Yinhan; Ott, Myle; Goyal, Naman; Du, Jingfei; Joshi, Mandar; Chen, Dangqi; Levy,
Omer; Lewis, Mike; Zettlemoyer, Luke; Stoyanov, Veselin: RoBERTa: A Robustly Opti-
mized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692, 2019.

Lappas, Theodoros; Sabnis, Gaurav; Valkanas, Georgios: The Impact of Fake Reviews on
Online Visibility: A Vulnerability Assessment of the Hotel Industry. Information Systems
Research, 27(4):940-961, 2016.

Luca, Michael; Zervas, Georgios: Fake It Till You Make It: Reputation, Competition, and
Yelp Review Fraud. Management Science, 62(12):3412-3427, 2016.

Murauer, Benjamin; Specht, Gilinther: DT-grams: Structured Dependency Grammar Stylom-
etry for Cross-Language Authorship Attribution. In: Proceedings of the 32nd GI-Workshop
Grundlagen von Datenbanksysteme (GvDB’21). CEUR-WS.org, Aachen, 2022.

Murugesan, San: Harnessing green IT: Principles and practices. IT professional, 10(1):24—
33, 2008.

Ott, Myle; Choi, Yejin; Cardie, Claire; Hancock, Jeffrey T.: Finding Deceptive Opinion
Spam by Any Stretch of the Imagination. In: Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies - Volume
1. HLT ’11, Association for Computational Linguistics, USA, p. 309-319, 2011.

Qi, Peng; Zhang, Yuhao; Zhang, Yuhui; Bolton, Jason; Manning, Christopher D.: Stanza: A
Python Natural Language Processing Toolkit for Many Human Languages. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. 2020.

Radford, Alec; Wu, Jeftrey; Child, Rewon; Luan, David; Amodei, Dario; Sutskever, Ilya:
Language Models are Unsupervised Multitask Learners. OpenAl blog, 1(8):9, 2019.



232 Manfred Moosleitner, Giinther Specht, Eva Zangerle

[Sal9]

[Sa22]

[Sh17]

[St21]

[SW65]

[TMS19]

(Z118]

Sanh, Victor; Debut, Lysandre; Chaumond, Julien; Wolf, Thomas: DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108,
2019.

Salminen, Joni; Kandpal, Chandrashekhar; Kamel, Ahmed Mohamed; gyo Jung, Soon;
Jansen, Bernard J.: Creating and Detecting Fake Reviews of Online Products. Journal of
Retailing and Consumer Services, 64:102771, 2022.

Shahid, Usman; Farooqi, Shehroze; Ahmad, Raza; Shafiq, Zubair; Srinivasan, Padmini;
Zaffar, Fareed: Accurate Detection of Automatically Spun Content via Stylometric Analysis.
In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 425-434,
2017.

Strgm, Eivind: Multi-label Style Change Detection by Solving a Binary Classification
Problem—Notebook for PAN at CLEF 2021. In (Faggioli, Guglielmo; Ferro, Nicola; Joly,
Alexis; Maistro, Maria; Piroi, Florina, eds): CLEF 2021 Labs and Workshops, Notebook
Papers. CEUR-WS.org, Aachen, pp. 2146-2157, 9 2021.

Shaphiro, S; Wilk, MBJB: An analysis of variance test for normality. Biometrika,
52(3):591-611, 1965.

Tschuggnall, Michael; Murauer, Benjamin; Specht, Giinther: Reduce & Attribute: Two-Step
Authorship Attribution for Large-Scale Problems. In: Proceedings of the 23rd Conference
on Computational Natural Language Learning (CoNLL). Association for Computational
Linguistics, Hong Kong, China, pp. 951-960, November 2019.

Zlatkova, Dimitrina; Kopev, Daniel; Mitov, Kristiyan; Atanasov, Atanas; Hardalov, Momchil;
Koychev, Ivan; Nakov, Preslav: An Ensemble-Rich Multi-Aspect Approach for Robust
Style Change Detection. In (Cappellato, Linda; Ferro, Nicola; Nie, Jian-Yun; Soulier,
Laure, eds): Working Notes of CLEF 2018 - Conference and Labs of the Evaluation Forum.
CEUR-WS.org, Aachen, 9 2018.



