

Integrating UML Statechart and Collaboration Diagrams
Using Hierarchical Predicate Transition Nets

Zhijiang Dong, Xudong He

School of Computer Science
Florida International University

Miami, FL 33199, U.S.A.

Abstract: UML has become the standard object-oriented analysis and design language
in software industry. However UML lacks a precise semantics that hinders error
detection in the early stages of system development. Even worse, there is no clear
definition of consistency criteria among various UML notations, and there are few
examples of illustrating the use of various notations together. In this paper, we present
an approach of using Hierarchical Predicate Transition Nets (HPrTNs) to define and
integrate UML statechart diagrams and collaboration diagrams. Our approach
establishes a basis for relating various UML models together and for carrying out
formal analysis.

1 Introduction

UML [BRJ99], developed by a group of leading experts in object-oriented anaylsis and
design, has become the standard object-oriented development methodology in software
industry. Its usefulness and impact on software development will be extremely profound in
the coming years. However, many graphical notations in UML only have informal English
definitions [UML99] and thus are error-prone and cannot be formally analyzed.
Furthermore, there is no clear definition of consistency criteria among various UML
diagrams. As a result, it is difficult to know how to use different UML diagrams together
to model a system.

With the goal to better understand UML and to reveal potential problems in the current
definition of UML and to eventually formally analyze UML specifications and designs,
many researchers are currently trying to formally define the meanings of UML notations.
Our research shares the same goals of other researchers. Although there are many existing
works on integrating different formal methods with object-oriented methods, research
work on applying formal methods to UML specific notations is still rare. Of course one of
the major reasons is that the UML specification documents of the OMG (Object
Management Group) are still under constant revisions.

The chosen formalism of our study is hierarchical predicate transition nets (HPrTNs),
which are a class of hierarchical high-level Petri nets developed in [He96]. HPrTNs are
graphical and executable and are especially suited for specifying and analyzing concurrent
and distributed systems. Due to their graphical and executable nature, HPrTNs can be used
to formally define many other UML notations dealing with behavior models. We have
developed a general approach to define object-oriented concepts using HPrTNs [HD01].
We have applied HPrTNs in defining UML class diagrams [He00a,b] and use case
diagrams [He00c].

99

This paper extends our earlier results in formalizing UML diagrams. In this paper, we
present an approach to derive and synthesize HPrTNs from a system description modeled
by statechart diagrams and collaboration diagrams. More specifically, we provide (1) a
method to derive a state Petri net model (SPNM) from a statechart diagram, and (2) a
method to synthesize derived SPNMs according to collaboration diagrams. Our results
establish the foundation for formally analyzing the dynamic behavior and properties of
UML diagrams and provide a way for checking the consistencies between several UML
diagrams.

2 Related Work

In recent years, there have been considerable research activities in the area of defining
more precise semantics of UML notations. There is a worldwide pUML (precise UML -
http://www.cs.york.ac.uk/puml/) research group and there is an annual UML conference,
initiated in 1998.

Researchers have attempted to define formal semantics for class diagrams ([SF97],
[Eva98], [FEL98], [LB98], [KC99], [He00a], [He00b]), use-case diagrams ([OP98],
[BPP99], [He00c]), and interaction diagrams ([Kna99], [SS00]). A more comprehensive
overview of recent results can be found at http://ctp.di.fct.unl.pt/~amm/wrk14.html, for the
Workshop on Defining Precise Semantics of UML in the European Conference on Object-
Oriented Programming 2000. The chosen formal methods used in the above works
include:

(1) variants of Z [Spi92]: [SF97], [Eva98], [KC99];
(2) variants of logic: [OP98], [Kna99];
(3) refinement calculus: [BPP99];
(4) variants of Petri nets: [He00a], [He00b], [He00c], [SS00].

It can be seen that there is no a widely accepted formalism for defining UML and there is
no a unified formalization for multiple UML notations, which is important for practical
problems. Among the various formal methods used, variants of Petri nets have been
applied to defining class diagrams ([He00a], [He00b]), use case diagrams [He00c], and
startcharts and collaboration diagrams [SS00]. In addition, a recent volume (2001) of
lecture notes in computer science [ADR01] contains a variety of approaches in using Petri
nets to model OO concepts.

The work most closely related to ours is [SS00]. [SS00] used object Petri nets [Lak01] in
modeling UML statecharts and collaboration diagrams. Their work provided some useful
ideas on handling events in translating statechart diagrams; however, there are several
major differences between their work and ours. First, we translate a statechart diagram
directly into an HPrTN that maintains the hierarchical structural information of the original
statechart diagram while the statecharts had to be flattened before they could be translated
in [SS00]. Maintaining structural information not only help pinpoint to the possible defects
in the UML specification but also facilitates potential code generation and maintenance.
Second, our approach supports both synchronous and asynchronous integrations of derived
Petri net models according to the collaboration diagrams while only synchronous
integration was considered in [SS00]. Furthermore, we provide much more detailed
translation rules than [SS00].

100

http://www.cs.york.ac.uk/puml/
http://ctp.di.fct.unl.pt/~amm/wrk14.html

3 Hierarchical Predicate Transition Nets

A hierarchical predicate transition net (HPrTN) is a predicate transition net [Mur89] with
hierarchies for system structure modeling [He96]. An HPrTN N consists of (1) a finite
hierarchical net structure (P, T, F, ρ), (2) an algebraic specification SPEC, and (3) a net
inscription (ϕ, L, R, M0).

(P, T, F) is the essential net structure, where P ∪ T is the set of nodes satisfying the
condition P ∩ T = ∅. P is called the set of places and T is called the set of transitions.
There are two kinds of nodes for both places and transitions - elementary nodes
(represented by solid circles or boxes) and super nodes (represented by dotted circles or
boxes). Elementary nodes have the traditional meaning in flat Petri net models. Super
nodes are introduced to abstract and refine data and processing in HPrTNs [HL91]. F is a
set of arcs denoting flow relationships. An arc in an HPrTN may represent a cluster of
flows due to the use of super nodes. ρ: P ∪ T → ℘(P ∪ T) is a hierarchical mapping that
defines the hierarchical relationships among the nodes in P and T. The underlying
specification SPEC is a meta-language to define the tokens, labels, and constraints of an
HPrTN. Arc labels can contain label constructor + for non-deterministic flows and × for
concurrent flows. The net inscription (ϕ, L, R, M0) associates each graphical symbol of

the net structure (P, T, F, ϕ) with an entity in the underlying SPEC, and thus defines the
static semantics of an HPrTN. The dynamic semantics of an HPrTN is defined in terms of
its flattened PrTN. Due to the space limit, the details of HPrTN are omitted in this paper
and can be found in [He96].

4 An Approach to Integrate Statechart and Collaboration Diagrams in
HPrTNs

In this section, we present our translation approach, which consists of

(1) a method to derive a state Petri net model (SPNM) from a statechart diagram, and
(2) a method to obtain a system model (SM) by integrating derived SPNMs according to

collaboration diagrams.

4.1 Generating State Petri Net Model (SPNM)

In UML, a statechart diagram is used to define the dynamic behaviors of the objects of a
class by showing state changes responding to events [OMG00].

In the following sections, we show how to formally define UML statechart diagram using
HPrTNs incrementally. To simplify the discussion, only necessary net components and
thus incomplete HPrTNs are used to illustrate relevant features.

4.1.1 Representing States

A state is a condition during the life of an object or an interaction during which it satisfies
some condition, performs some action or waits for some event. There are two kinds of
states: simple states and composite states.

A simple state may be subdivided into multiple compartments separated from each other.
They are name compartment and internal transition compartment. Each internal transition

101

compartment can hold a list of internal actions or activities that are performed while the
element is in the state. There are two reserved action labels – entry and exit.

An event is a noteworthy occurrence while a message is a specification of stimulus
[OMG00], which is a communication between two objects that conveys information with
the expectation that some action will ensue. Both of the above concepts can be denoted by
tokens in HPrTNs.

Rule 1 – Event Rule: In SPNM, each event is represented using a token of the type:
<Sender, Receiver, Return_transition, Event_type, Event_name, Event_signature>.

Sender and Receiver denoting the source and target of an event respectively are of type
OBJ_ID, which is the type of object identifications in the SPNM. Receiver can be null,
which means every object that is interested in the event can receive this event.
Return_transition, used for synchronization, is the name of a transition that requires the
reply of this event as an input. Return_transition can be null, which means Receiver does
not need to reply this event. Event_type indicates the type of the event. Without an event
type, there can be some problems. For example, if all objects of class B is interested in
event E generated by an object of A, we may have several different situations: (1) If one
object of class B consumes E, then other objects cannot get E; (2) if none of the objects of
class B consumes E, then E will stay forever in the “System Event Center” to be discussed
later. In order to solve these problems, we define the following event types:

• FOREVER: A copy of the event stays in System Event Center forever.
• INSTANT: Whenever an object receives the event from “System Event Center”,

“System Event Center” cannot keep the event at the same time. This means the event
is consumed.

• MESSAGE: The event is a type of message and a corresponding operation is invoked.
It is reserved for future use.

• NOTIFY (obj_id.Event_name): the “System Event Center” keeps a copy of the event
until the specified event is generated by the designated obj_id. Obj_id can be a class
name, which means if “System Event Center” receives the specified event from any
object of the class, the current event in “System Event Center” is consumed at the
same time.

• REPLY: The event is a reply for some event. In this case, the Return_transition cannot
be null and Receiver cannot be null or be a class name.

• TIMES (n): whenever a object receives the event from “System Event Center”, the
event count in “System Event Center” becomes TIMES(n-1). If n-1 is equal to 0, the
“System Event Center” consumes the copy.

Event_name and Event_signature contain information of the event, the latter indicates the
event parameter type and value information.

Rule 2 – Simple State Rule: A simple state is represented by a super place, consisting of
the following components:

• An EntryPoint place, denoting the entry of the current state;
• An EntryAction transition, sending corresponding event to OutEvent to invoke the

entry actions when fired;
• A KernelState place, denoting the current state without entry and exit actions;

102

• An ExitAction transition, sending corresponding event to OutEvent to invoke the exit
actions when fired;

• An ExitPoint place, denoting the exit of the current state;
• An ActionMSG place, used to store the messages that should be invoked when entry

or exit the state.

Fig. 1 An HPrTN Definition of A Simple State

If a state does not have the Entry/Exit actions, then EntryPoint/ExitPoint, EntryAction/
ExitAction and OutEvent are not needed. In this situation, KernelState is enough to
represent the state.

A composite state is decomposed into concurrent substates or mutually exclusive disjoint
substates. A given state may only be refined in one of these two ways. Naturally, any
substate of a composite can also be a composite state of either type.

Rule 3 – Disjoint Composite State Rule: A composite state with disjoint sub states is
represented by a super place, consisting of following components:

• EntryPoint place, the same as these in Rule 2;
• EntryAction transition, the same as these in Rule 2;
• ExitPoint place, the same as these in Rule 2;
• ExitAction transition, the same as these in Rule 2;
• OutEvent place, the same as these in Rule 2;
• RealSPNM super place, a sub SPNM of the sub statechart diagram.

Fig. 2: An HPrTN Definition of A Disjoint Composite State

Entry Point

KernelState Exit Point
EntryAction ExitAction

OutEvent

EntryPoint ExitPoint
RealSPNM

OutEvent

EntryAction ExitAction

103

Rule 4 –Concurrent Composite State Rule: A composite state with concurrent sub
states is represented by a super place, consisting of following components:

• EntryPoint, the same as the one in simple state;
• EntryAction, the same as the one in simple state;
• ExitPoint, the same as the one in simple state;
• ExitAction, the same as the one in simple state;
• ActionMSG, the same as the one in simple state;
• State_Path, a super place representing composite state of each path.

Fig. 3: An HPrTN Definition of A Concurrent Composite State

Composite state can have another property: the current behavior of the state depends on its
past. A history composite state is allowed to remember the last substate that was active in
it prior to the transition from the composite. Following rule is used to convert history
composite state.

Rule 5 – History Composite State Rule: A composite state with history is realized in
HPrTNs by adding a History place and a Distributor transition to the composite state. The
History place becomes the only entry of the composite state.

Fig. 4: An HPrTN Definition of A Composite State with Histroy

EntryPoint ExitPoint

State_Path1

State_Path2

OutEvent

EntryAction ExitAction

Entry Point

State

Exit Point

EntryAction
ExitAction

OutEvent

History

Distributor

104

The History place records the last left state by firing ExitAction transition, so whenever
reentered, it can get into the appropriate state by firing the Distributor transition.

4.1.2 Transitions

In a statechart diagram, a transition can have five parts: source state, event signature, guard
condition, action expression and target state.

An action, represented by action expression, must be completed before entering into the
target state. This means that synchronization needs be used in the HPrTN definition. The
following rule gives the HPrTN definition of transition.

Rule 6 – Transition Rule: A transition in UML is represented by a super transition of
HPrTN, consisting of the following components:

• A “GuardCondition” transition, whose constraint is defined by a guard condition;

• A “SynPoint” place;

• A “Leave” transition, waiting for the replies of the action which is represented by the
events sent from “GuardCondition” to “OutEvent”.

When “GuardCondition” transition is fired, it sends the event(s) representing the action
expression to “OutEvent”. Sometimes it also sends a corresponding event to “InEvent” and
enters into “SynPoint” place waiting for the event(s) indicating the action expression has
been finished. The action expression has been finished if the “Leave” transition is enabled.
When “Leave” transition is fired and enters into the target state, the transition of UML is
finished.

If a transition of in a statechart diagram does not include any action expression,
“SynPoint” and “Leave” are not needed.

Fig. 5: An HPrTN Definition of A Transition

4.1.3 Statechart Diagram

The following rule describes how to translate a statechart diagram into an HPrTN.

Rule 7 – Statechart Diagram Rule: A statechart diagram is represented by a super place,
consisting of the following components:

From Source
state

To Target state

InEvent

OutEvent

GuardCondition

SynPoint

Leave

Transition

105

• A super transition “Transitions”, consisting of internal places, derived from states of
UML according to rules of section 4.1.1, and interface transitions, derived from the
transitions of UML according to rules of section 4.1.2;

• An “InEvent” place, storing events relating with statechart diagram;
• An “OutEvent” place, storing events generated by statechart diagram;
• A “TimeMonitor” transition, used to generated events relating with time.

Fig. 6: An HPrTN Definition of Statechart Diagram

If there are no events with time, transition “TimeMonitor” can be omitted.

4.1.4 State Petri Net Model

From the above sections, we know how to convert a statechart diagram to a corresponding
HPrTN. The following rule is used to obtain a SPNM.

Rule 8 – State Petri Net Model Rule: An SPNM is represented by a super transition,
consisting of following components:

• A “Recv Event” transition, which receives events from its environment and sends the
events to “InEvent” of statechart;

• A “Send Event” transition, which receives events from “OutEvent” of statechart and
sends to its environment;

• A “StateChart” super place, representing the corresponding statechart diagram.

Fig. 7: An HPrTN Definition of SPNM

Statechart

OutEvent Center

Recv Event

Send Event

InEvent OutEvent

TimeMonitor

Transitions

106

4.2 Generating System Model from UML Collaboration Diagrams

A collaboration diagram defines the interactions among objects of different classes. To
define object interactions in HPrTNs, we use one place: System Event Center visible to its
environment to store all events generated by different objects. If the system is open, it
must need events from its environment.

The system model can be viewed as a larger HPrTN, so we can change the system model
to another State Petri Net Model by applying the corresponding rules, which can form a
larger system model with the environment of the current system model.

Fig. 8: An HPrTN Definition of Collaborations

Although the sequence of events can be obtained by executing the system model, it is
convenient to define the sequence explicitly. We use the following arc labeling convention
to describe the sequence of events: <sequence number, sender, receiver, event name, event
parameters>. For example, if A sends event SetValue(d, 4) to B with sequence number
2.1.1 in UML collaboration diagram, then a label is added to the transition from class A to
System Message Center: <2.1.1, A, B, SetValue, <d, 4> >.

5 A Translation Example

We use the following a one-minute microwave oven adapted from [SM92] to illustrate our
translation approach. The microwave oven has the following points:

1) Only one control button for the user. If the button is pushed and the door of oven is
closed, the oven will cook (that is energize the power tube) for 1 minute.

2) Push the button at any time when the oven is cooking, you get an additional minute of
cooking time.

3) Pushing the button when the door is open has no effect.
4) There is a light inside the oven. Any time the oven is cooking or the door is open, the

light must be turned on.
5) If the door is closed, the light goes out.
6) If the oven times out, it turns off both the power tube and the light. It then emits a

warning beep to tell the user that the food is ready.

In this example, we define the following events. For microwave oven, there are five
events: V1: Button pushed; V2: Timer timed; V3: Door opened; V4: Door closed; V5:
Time Changed. Both light and power tube have two events respectively: L1: Turns on
light, L2: Turns off light for light and P1: Energizes power tube, P2: De-energizes power
tube for power tube. User can generate four events: U1: User is pushing button; U2: User

Class A Class C

Class B

System Event
Center

Events from
environment

107

is opening the door; U3: User is closing the door and U4: User is accessing the food. For
an event V, let V’ be the reply of event V.

The system model consists of the following essential UML diagrams: a class diagram
showing four classes and their relationships, four statechart diagrams modeling the
behaviors of the objects of the four classes respectively, and a collaboration diagram
defining the dynamic interactions among the objects of the four classes. To illustrate our
translation approach, we only show the statechart diagram for oven and the collaboration
diagram here.

State 2: Initial
cooking period

State 1:Idle with
door closed

State 3: Cooking
period extended

State 6: Cooking
interrupted

State 5: Idle
with door open

State 4: Cooking
Complete

V3: Door opened(oven id) /
Generate P2 and clear the timer

V1: Button pushed(oven id) / Add 1
minute to timer

V2: Timer timed out(
oven id) / Generate
L2, P2 and sound

warning beep

V3: Door opened(oven id)
/ Generate L1

V1: Button pushed(oven id) /
Generate L1 and P1

V3: Door opened(oven id) / Generate L1

V4: Door closed(oven id) / Generate L2

V4: Door closed(oven id) / Generate L2

V1: Button pushed(
oven id) / Add 1
minute to timer

V3: Door opened(oven id) /
Generate P2 and clear the timer

V2: Timer timed out(oven id) / Generate L2, P2, Sound warning neep

Fig. 9: Statechart Diagram of Oven

Ovenuser

PowerTube

Light

1.1 TurnOn
2.1 TurnOff
3.1 TurnOn
5.1 TurnOff

3.2 Energize
4.1 Deenergize

1. OpenDoor
2. CloseDoor
3. AddTime
4. OpenDoor
5. CloseDoor

Fig. 10: Collaboration Diagram

By applying above rules, we obtain the following SPNM of microwave oven.

108

Fig. 11: The HPrTN Definition of Oven Statechart Diagram

State 1

State 2 State 3
State 4

State 5

State 6

InEvent

OutEvent

InEvent

InEvent

InEven
t

OutEvent

OutEvent

OutEvent

OutEvent

V1

L1× P1

L1’× P1’

V1

V2 L2’× P2’ L2× P2

L2× P2 V2+(L2’× P2’)

V1

L2× P2

V2 L2×P2

V2+(L2’× P2’)

V3

P2’
V3+
P2’

EP2 EP2

V3

L1

L1
L1’

V3+L1’

L2× P2

V4
L2

V4+L2’

L2’

V3 L1 L1’

V3+L1’

L1
V4 L2

L2’

L1× P1

L2

V4+L2’

V3

EP2 EP2

P2’ V3+
P2

L2

V5

V2

V5

V5

V1

V5 V5
V5

V5

V1+V3+V4+L1’
+L2’+P1’+P2’

L1+L2+P1+P2

109

From the Fig. 11, we know that every time the oven wants to notify the light/power tube to
turn on or turn off, it must send a corresponding event to light/power tube, and wait for the
corresponding event indicating the light/power tube has finished the action. When the door
of the oven is closed and the user pushed button, an event V5 is generated, which means
the oven need to change the cooking time. So “InEvent” place get the event V5 and
transition “TimeMonitor” i s enabled, when the transition is fired an event V2 is returned to
‘InEvent” place, which means the cooking was finished. For the actions that oven clear its
timer and sound warning beep, it can be viewed as the actions of the corresponding
“L eave” transition resulting in entering into state 4.

Fig. 12: The HPrTN Definition of Collobration Diagram

SPNM of Power tube SPNM of Light

Recv Event

InEvent OutEvent

Transitions

InEvent OutEvent

Send Event Recv Event

Transitions

InEvent OutEvent

Send Event

Recv Event

Send Event

V1+V3+V4

V1+V3+V4
+L1’+L2’+
P1’+P2’

L1+L2+P1+P2

L1+L2+
P1+P2

V1+V3+V4
+L1’+L2’+
P1’+P2’

P1+P2

P1’+P2’

L1+L2 L1’+L2’

P1+P2 P1’+P2’ L1+L2 L1’+L2’

SPNM of oven

InEvent
OutEvent

V1+V3+V4

V1+V3+V4
System
Event
Center

System
Event
Center

Recv Event

Send Event

EventGenerator

U1+U2+
U3+U4

V1+V3+V4

SPNM of User

SPNM of sub system model

V5

V2

TimeMonitor

110

By adding “Recv Event”, “Send Event” transitions and the associated arcs, we get the
SPNM of the subsystem model consisting of the SPNMs of the oven, the light and the
power tube. The SPNM of subsystem model receives events from the “System Event
Center”, which stores the events generated by the SPNM of the user. In the SPNM of
subsystem model, “Send Event” transition is never fired because the subsystem model
never sends events to the user.

By adding system inscription, we can simulate the executions of the system. The details
are omitted here due to space limit.

6 Concluding Remarks

In this paper, we presented an approach to derive a SPNM in an HPrTN from a statechart
diagram and to integrate SPNMs to obtain a complete system model according to the
dynamic class relationships defined by collaboration diagrams. Each SPNM can be studied
separately. By integrating SPNMs, we can detect potential inconsistencies among
statechart diagrams of different classes. Since SPNMs are hierarchical, we can study the
properties at a desired level of abstraction. SPNMs support both synchronous and
asynchronous event communications.

One direction of future work is to generate Class Petri Net Models according to class
diagrams and integrate them with SPNMs so that we can analyze structural and behavioral
properties in a unified framework based on HPrTNs. Another direction of future work is to
explore ways to formally analyze the properties of the system model using various Petri
Net tools and ways to interpret the properties of system model with regard to original
UML specifications that users can understand.

Acknowledgements

This work is support in part by NSF under grant HDR-9707076 and by NASA under grant
NAG 2-1440.

Bibliography

[ADR01] G. Agha, F. De Cindio, and G. Rozenberg (eds.): Concurrent Object-Oriented

Programming and Petri Nets – Advances in Petri Nets, Lecture Notes in Computer
Science, vol.2001, Springer-Verlag, 2001.

[BPP99] R. Back, L. Petre, and I. Paltor, “Analyzing UML Use Cases as Contracts”, Proc. Of
UML’99, Lecture Notes in Computer Science, vol. 1723, 1999, 518-533.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson: Unified Modeling Language User Guide,
Addison-Wesley, 1999.

[Eva98] A. Evans, “Reasoning with UML Class Diagrams”, Proc. of 2nd IEEE Workshop on
Industrial-Strength Formal Specification Techniques, Boca Raton, 1998, 102-113.

[FEL98] R. France, A. Evans, K. Lano, and B. Rumpe, “Developing the UML as a Formal
Modeling Notation”, Computer Standards and Interfaces, no. 19, 1998, 325-334.

[HD01] X. He and Y. Ding, “Object-Orientation in Hierarchical Predicate Transition Nets”,
Lecture Notes in Computer Science, vol2001, Spring-Verlag, 2001, 196-215.

[He96] X.He, “A formal definition of hierarchical predicate transition nets”, Proc. Of the 17th
Int’l Conference on the Application and Theory of Petri Nets (Lecture Notes in
Computer Science, vol. 1091, June, Osaka, Japan, 1996, 212-229.

111

[He00a] X. He, "Formalizing Class Diagrams Using Hierarchical Predicate Transition Nets",
Proc. of the 24th Int’l Computer Software and Application Conference
(COMPSAC'2000), Taiwan, Oct. 2000, 217-222.

[He00b] X. He, “Defining UML Class Diagrams using Hierarchical Predicate Transition Nets,”
Proc. of the Workshop on Defining Precise UML Semantics in ECOOP’2000.

[He00c] X. He, "Formalizing Use Case Diagrams in Hierarchical Predicate Transition Nets",
Proc. of the IFIP 16th World Computer Congress, Beijing, China, August 2000, 484-
491.

[HL91] X. He and J.A.N. Lee: “A Methodology for Constructing Predicate Transition Net
Specifications”, Software – Practice & Experience, vol.21, no.8, 1991, 845-875.

[KC99] S. Kim and D. Carrington, “Formalizing the UML Class Diagram Using Object-Z,”
Proc. Of UML’99, Lecture Notes in Computer Science, Vol. 1723, 1999, 83-98.

[Kna99] A. Knapp, “A Formal Semantics for UML Interactions,” Proc. Of UML’99, Lecture
Notes in Computer Science, Vol. 1723, 1999, 116-130.

[Lak01] C. Lakos: “Object-Oriented Modeling using Object Petri Nets”, Lecture Notes in
Computer Science, vol.2001, 2001, 1-37.

[LB98] K. Lano and J. Bicarregui, “Formalizing the UML in Structured Temporal Theories,”
Proc. Of the 2nd ECOOP Workshop on Precise Behavioral Semantics, Springer-Verlag,
1998, 105-121.

[Mur89] T.Murata, “Petri Nets: Properties, Analysis and Applications”, Proc. Of IEEE, vol. 77,
no.4, 1989,

[OMG00] OMG Unified Modeling Language Specification, Version 1.3, 1st Edition, March, 2000.
[OP99] G. Overgaard and K. Palmkvist, “A Formal Approach to Use Cases and Their

Relationships,” Proc. of the Unified Modeling Language: UML’98: Beyond the
Notation, Lecture Notes in Computer Science, Vol. 1618, Springer-Verlag, 1999.

[SF97] M. Shroff and R. France, “Towards a Formalization of UML Class Structures in Z,”
Proc. of COMPSAC’97, Washington, D.C., 1997.

[SS00] J. Saldhana and S. M. Shatz, "UML Diagrams to Object Petri Net Models: An Approach
for Modeling and Analysis," Proc. of the Int. Conference on Software Engineering and
Knowledge Engineering (SEKE), Chicago, July 2000, 103-110.

[SM92] Shlaer and Mellor, Object Lifecycles – Modeling the world in states, Yourdon Press,
Prentice Hall, 1992.

112

