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Abstract: UML has become the standard object-oriented analysis and design language 
in software industry. However UML lacks a precise semantics that hinders error 
detection in the early stages of system development. Even worse, there is no clear 
definition of consistency criteria among various UML notations, and there are few 
examples of illustrating the use of various notations together. In this paper, we present 
an approach of using Hierarchical Predicate Transition Nets (HPrTNs) to define and 
integrate UML statechart diagrams and collaboration diagrams. Our approach 
establishes a basis for relating various UML models together and for carrying out 
formal analysis.  

1  Introduction 

UML [BRJ99], developed by a group of leading experts in object-oriented anaylsis and 
design, has become the standard object-oriented development methodology in software 
industry. Its usefulness and impact on software development will be extremely profound in 
the coming years. However, many graphical notations in UML only have informal English 
definitions [UML99] and thus are error-prone and cannot be formally analyzed. 
Furthermore, there is no clear definition of consistency criteria among various UML 
diagrams. As a result, it is difficult to know how to use different UML diagrams together 
to model a system. 

With the goal to better understand UML and to reveal potential problems in the current 
definition of UML and to eventually formally analyze UML specifications and designs, 
many researchers are currently trying to formally define the meanings of UML notations. 
Our research shares the same goals of other researchers. Although there are many existing 
works on integrating different formal methods with object-oriented methods, research 
work on applying formal methods to UML specific notations is still rare. Of course one of 
the major reasons is that the UML specification documents of the OMG (Object 
Management Group) are still under constant revisions.  

The chosen formalism of our study is hierarchical predicate transition nets (HPrTNs), 
which are a class of hierarchical high-level Petri nets developed in [He96]. HPrTNs are 
graphical and executable and are especially suited for specifying and analyzing concurrent 
and distributed systems. Due to their graphical and executable nature, HPrTNs can be used 
to formally define many other UML notations dealing with behavior models. We have 
developed a general approach to define object-oriented concepts using HPrTNs [HD01]. 
We have applied HPrTNs in defining UML class diagrams [He00a,b] and use case 
diagrams [He00c].  
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This paper extends our earlier results in formalizing UML diagrams. In this paper, we 
present an approach to derive and synthesize HPrTNs from a system description modeled 
by statechart diagrams and collaboration diagrams. More specifically, we provide (1) a 
method to derive a state Petri net model (SPNM) from a statechart diagram, and (2) a 
method to synthesize derived SPNMs according to collaboration diagrams. Our results 
establish the foundation for formally analyzing the dynamic behavior and properties of 
UML diagrams and provide a way for checking the consistencies between several UML 
diagrams.  

2  Related Work  

In recent years, there have been considerable research activities in the area of defining 
more precise semantics of UML notations. There is a worldwide pUML (precise UML - 
http://www.cs.york.ac.uk/puml/) research group and there is an annual UML conference, 
initiated in 1998.  

Researchers have attempted to define formal semantics for class diagrams ([SF97], 
[Eva98], [FEL98], [LB98], [KC99], [He00a], [He00b]), use-case diagrams ([OP98], 
[BPP99], [He00c]), and interaction diagrams ([Kna99], [SS00]). A more comprehensive 
overview of recent results can be found at http://ctp.di.fct.unl.pt/~amm/wrk14.html, for the 
Workshop on Defining Precise Semantics of UML in the European Conference on Object-
Oriented Programming 2000. The chosen formal methods used in the above works 
include:  

(1) variants of Z [Spi92]: [SF97], [Eva98], [KC99]; 
(2) variants of logic: [OP98], [Kna99]; 
(3) refinement calculus: [BPP99]; 
(4) variants of Petri nets: [He00a], [He00b], [He00c], [SS00]. 

It can be seen that there is no a widely accepted formalism for defining UML and there is 
no a unified formalization for multiple UML notations, which is important for practical 
problems. Among the various formal methods used, variants of Petri nets have been 
applied to defining class diagrams ([He00a], [He00b]), use case diagrams [He00c], and 
startcharts and collaboration diagrams [SS00]. In addition, a recent volume (2001) of 
lecture notes in computer science [ADR01] contains a variety of approaches in using Petri 
nets to model OO concepts. 

The work most closely related to ours is [SS00]. [SS00] used object Petri nets [Lak01] in 
modeling UML statecharts and collaboration diagrams. Their work provided some useful 
ideas on handling events in translating statechart diagrams; however, there are several 
major differences between their work and ours. First, we translate a statechart diagram 
directly into an HPrTN that maintains the hierarchical structural information of the original 
statechart diagram while the statecharts had to be flattened before they could be translated 
in [SS00]. Maintaining structural information not only help pinpoint to the possible defects 
in the UML specification but also facilitates potential code generation and maintenance. 
Second, our approach supports both synchronous and asynchronous integrations of derived 
Petri net models according to the collaboration diagrams while only synchronous 
integration was considered in [SS00]. Furthermore, we provide much more detailed 
translation rules than [SS00]. 
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3  Hierarchical Predicate Transition Nets 

A hierarchical predicate transition net (HPrTN) is a predicate transition net [Mur89] with 
hierarchies for system structure modeling [He96]. An HPrTN N consists of (1) a finite 
hierarchical net structure (P, T, F, ρ), (2) an algebraic specification SPEC, and (3) a net 
inscription (ϕ, L, R, M0).  

(P, T, F) is the essential net structure, where P ∪ T is the set of nodes satisfying the 
condition P ∩ T = ∅. P is called the set of places and T is called the set of transitions. 
There are two kinds of nodes for both places and transitions - elementary nodes 
(represented by solid circles or boxes) and super nodes (represented by dotted circles or 
boxes). Elementary nodes have the traditional meaning in flat Petri net models. Super 
nodes are introduced to abstract and refine data and processing in HPrTNs [HL91]. F is a 
set of arcs denoting flow relationships. An arc in an HPrTN may represent a cluster of 
flows due to the use of super nodes. ρ: P ∪ T → ℘(P ∪ T) is a hierarchical mapping that 
defines the hierarchical relationships among the nodes in P and T. The underlying 
specification SPEC is a meta-language to define the tokens, labels, and constraints of an 
HPrTN. Arc labels can contain label constructor + for non-deterministic flows and × for 
concurrent flows. The net inscription (ϕ, L, R, M0) associates each graphical symbol of 

the net structure (P, T, F, ϕ) with an entity in the underlying SPEC, and thus defines the 
static semantics of an HPrTN. The dynamic semantics of an HPrTN is defined in terms of 
its flattened PrTN. Due to the space limit, the details of HPrTN are omitted in this paper 
and can be found in [He96]. 

4 An Approach to Integrate Statechart and Collaboration Diagrams in 
HPrTNs 

In this section, we present our  translation approach, which consists of  

(1) a method to derive a state Petri net model (SPNM) from a statechart diagram, and 
(2) a method to obtain a system model (SM) by integrating derived SPNMs according to 

collaboration diagrams. 

4.1 Generating State Petri Net Model (SPNM) 

In UML, a statechart diagram is used to define the dynamic behaviors of the objects of a 
class by showing state changes responding to events [OMG00].  

In the following sections, we show how to formally define UML statechart diagram using 
HPrTNs incrementally. To simplify the discussion, only necessary net components and 
thus incomplete HPrTNs are used to illustrate relevant features. 

4.1.1 Representing States 

A state is a condition during the life of an object or an interaction during which it satisfies 
some condition, performs some action or waits for some event. There are two kinds of 
states:  simple states and composite states. 

A simple state may be subdivided into multiple compartments separated from each other. 
They are name compartment and internal transition compartment. Each internal transition 
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compartment can hold a list of internal actions or activities that are performed while the 
element is in the state. There are two reserved action labels – entry and exit. 

An event is a noteworthy occurrence while a message is a specification of stimulus 
[OMG00], which is a communication between two objects that conveys information with 
the expectation that some action will ensue. Both of the above concepts can be denoted by 
tokens in HPrTNs. 

Rule 1 – Event Rule: In SPNM, each event is represented using a token of the type: 
<Sender, Receiver, Return_transition, Event_type, Event_name, Event_signature>. 

Sender and Receiver denoting the source and target of an event respectively are of type 
OBJ_ID, which is the type of object identifications in the SPNM. Receiver can be null, 
which means every object that is interested in the event can receive this event. 
Return_transition, used for synchronization, is the name of a transition that requires the 
reply of this event as an input. Return_transition can be null, which means Receiver does 
not need to reply this event. Event_type indicates the type of the event. Without an event 
type, there can be some problems. For example, if all objects of class B is interested in 
event E generated by an object of A, we may have several different situations: (1) If one 
object of class B consumes E, then other objects cannot get E; (2) if none of the objects of 
class B consumes E, then E will stay forever in the “System Event Center” to be discussed 
later. In order to solve these problems, we define the following event types: 

• FOREVER: A copy of the event stays in System Event Center forever. 
• INSTANT: Whenever an object receives the event from “System Event Center”, 

“System Event Center” cannot keep the event at the same time. This means the event 
is consumed. 

• MESSAGE: The event is a type of message and a corresponding operation is invoked. 
It is reserved for future use. 

• NOTIFY (obj_id.Event_name):  the “System Event Center” keeps a copy of the event 
until the specified event is generated by the designated obj_id. Obj_id can be a class 
name, which means if “System Event Center” receives the specified event from any 
object of the class, the current event in “System Event Center” is consumed at the 
same time. 

• REPLY: The event is a reply for some event. In this case, the Return_transition cannot 
be null and Receiver cannot be null or be a class name. 

• TIMES (n): whenever a object receives the event from “System Event Center”, the 
event count in “System Event Center” becomes TIMES(n-1). If n-1 is equal to 0, the 
“System Event Center” consumes the copy.  

Event_name and Event_signature contain information of the event, the latter indicates the 
event parameter type and value information. 

Rule 2 – Simple State Rule: A simple state is represented by a super place, consisting of 
the following components: 

• An EntryPoint place, denoting the entry of the current state; 
• An EntryAction transition, sending corresponding event to OutEvent to invoke the 

entry actions when fired; 
• A KernelState place, denoting the current state without entry and exit actions; 
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• An ExitAction transition, sending corresponding event to OutEvent to invoke the exit 
actions when fired; 

• An ExitPoint place, denoting the exit of the current state; 
• An ActionMSG place, used to store the messages that should be invoked when entry 

or exit the state. 

 

 

 

 

 

 

 

 
Fig. 1 An HPrTN Definition of A Simple State 

If a state does not have the Entry/Exit actions, then EntryPoint/ExitPoint, EntryAction/ 
ExitAction and OutEvent are not needed. In this situation, KernelState is enough to 
represent the state. 

A composite state is decomposed into concurrent substates or mutually exclusive disjoint 
substates. A given state may only be refined in one of these two ways. Naturally, any 
substate of a composite can also be a composite state of either type.   

Rule 3 – Disjoint Composite State Rule: A composite state with disjoint sub states is 
represented by a super place, consisting of following components: 

• EntryPoint place, the same as these in Rule 2; 
• EntryAction transition, the same as these in Rule 2; 
• ExitPoint place, the same as these in Rule 2; 
• ExitAction transition, the same as these in Rule 2; 
• OutEvent place, the same as these in Rule 2; 
• RealSPNM super place, a sub SPNM of the sub statechart diagram. 

 

 

 

 

 

 

 

 

 
 

Fig. 2: An HPrTN Definition of A Disjoint Composite State 
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EntryAction ExitAction 
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Rule 4 –Concurrent Composite State Rule:  A composite state with concurrent sub 
states is represented by a super place, consisting of following components: 

• EntryPoint, the same as the one in simple state; 
• EntryAction, the same as the one in simple state; 
• ExitPoint, the same as the one in simple state; 
• ExitAction, the same as the one in simple state; 
• ActionMSG, the same as the one in simple state; 
• State_Path, a super place representing composite state of each path. 

 

 

 

 

 

 

 

 

 
Fig. 3: An HPrTN Definition of A Concurrent Composite State 

 

Composite state can have another property: the current behavior of the state depends on its 
past. A history composite state is allowed to remember the last substate that was active in 
it prior to the transition from the composite. Following rule is used to convert history 
composite state. 

Rule 5 – History Composite State Rule: A composite state with history is realized in 
HPrTNs by adding a History place and a Distributor transition to the composite state. The 
History place becomes the only entry of the composite state.  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4: An HPrTN Definition of A Composite State with Histroy 
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The History place records the last left state by firing ExitAction transition, so whenever 
reentered, it can get into the appropriate state by firing the Distributor transition.  

4.1.2 Transitions 

In a statechart diagram, a transition can have five parts: source state, event signature, guard 
condition, action expression and target state.  

An action, represented by action expression, must be completed before entering into the 
target state. This means that synchronization needs be used in the HPrTN definition. The 
following rule gives the HPrTN definition of transition. 

Rule 6 – Transition Rule: A transition in UML is represented by a super transition of 
HPrTN, consisting of the following components: 

• A “GuardCondition” transition, whose constraint is defined by a guard condition; 

• A “SynPoint” place; 

• A “Leave” transition, waiting for the replies of the action which is represented by the 
events sent from “GuardCondition” to “OutEvent”. 

When “GuardCondition” transition is fired, it sends the event(s) representing the action 
expression to “OutEvent”. Sometimes it also sends a corresponding event to “InEvent” and 
enters into “SynPoint” place waiting for the event(s) indicating the action expression has 
been finished. The action expression has been finished if the “Leave” transition is enabled. 
When “Leave” transition is fired and enters into the target state, the transition of UML is 
finished.  

If a transition of in a statechart diagram does not include any action expression, 
“SynPoint” and “Leave” are not needed. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5: An HPrTN Definition of A Transition 

4.1.3 Statechart Diagram 

The following rule describes how to translate a statechart diagram into an HPrTN. 

Rule 7 – Statechart Diagram Rule: A statechart diagram is represented by a super place, 
consisting of the following components: 

From Source 
state 

To Target state 

InEvent 

OutEvent 

GuardCondition 

SynPoint 

Leave 

Transition 
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• A super transition “Transitions”, consisting of internal places, derived from states of 
UML according to rules of section 4.1.1, and interface transitions, derived from the 
transitions of UML according to rules of section 4.1.2; 

• An “InEvent” place, storing events relating with statechart diagram; 
• An “OutEvent” place, storing events generated by statechart diagram; 
• A “TimeMonitor” transition, used to generated events relating with time. 

 

 

 

 

 

 

 

 

 
Fig. 6: An HPrTN Definition of Statechart Diagram 

 

If there are no events with time, transition “TimeMonitor” can be omitted. 

4.1.4 State Petri Net Model 

From the above sections, we know how to convert a statechart diagram to a corresponding 
HPrTN. The following rule is used to obtain a SPNM. 

Rule 8 – State Petri Net Model Rule: An SPNM is represented by a super transition, 
consisting of following components: 

• A “Recv Event” transition, which receives events from its environment and sends the 
events to “InEvent” of statechart; 

• A “Send Event” transition, which receives events from “OutEvent” of statechart and 
sends to its environment; 

• A “StateChart” super place, representing the corresponding statechart diagram. 

 

 

 

 

 

 

 

 

 

 
Fig. 7: An HPrTN Definition of SPNM 
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4.2  Generating System Model from UML Collaboration Diagrams 

A collaboration diagram defines the interactions among objects of different classes. To 
define object interactions in HPrTNs, we use one place: System Event Center visible to its 
environment to store all events generated by different objects. If the system is open, it 
must need events from its environment.  

The system model can be viewed as a larger HPrTN, so we can change the system model 
to another State Petri Net Model by applying the corresponding rules, which can form a 
larger system model with the environment of the current system model.  

 

 

 

 

 

 

 

 
Fig. 8: An HPrTN Definition of Collaborations 

Although the sequence of events can be obtained by executing the system model, it is 
convenient to define the sequence explicitly. We use the following arc labeling convention 
to describe the sequence of events: <sequence number, sender, receiver, event name, event 
parameters>. For example, if A sends event SetValue(d, 4) to B with sequence number 
2.1.1 in UML collaboration diagram, then a label is added to the transition from class A to 
System Message Center: <2.1.1, A, B, SetValue, <d, 4> >. 

5  A Translation Example 

We use the following a one-minute microwave oven adapted from [SM92] to illustrate our 
translation approach. The microwave oven has the following points: 

1) Only one control button for the user. If the button is pushed and the door of oven is 
closed, the oven will cook (that is energize the power tube) for 1 minute. 

2) Push the button at any time when the oven is cooking, you get an additional minute of 
cooking time. 

3) Pushing the button when the door is open has no effect. 
4) There is a light inside the oven. Any time the oven is cooking or the door is open, the 

light must be turned on. 
5) If the door is closed, the light goes out. 
6) If the oven times out, it turns off both the power tube and the light. It then emits a 

warning beep to tell the user that the food is ready. 

In this example, we define the following events. For microwave oven, there are five 
events: V1: Button pushed; V2: Timer timed; V3: Door opened; V4: Door closed; V5: 
Time Changed. Both light and power tube have two events respectively: L1: Turns on 
light, L2: Turns off light for light and P1: Energizes power tube, P2: De-energizes power 
tube for power tube. User can generate four events: U1: User is pushing button; U2: User 

Class A Class C 

Class B 

System Event 
Center 

Events from 
environment 
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is opening the door; U3: User is closing the door and U4: User is accessing the food. For 
an event V, let  V’ be the reply of event V. 

The system model consists of the following essential UML diagrams: a class diagram 
showing four classes and their relationships, four statechart diagrams modeling the 
behaviors of the objects of the four classes respectively, and a collaboration diagram 
defining the dynamic interactions among the objects of the four classes. To illustrate our 
translation approach, we only show the statechart diagram for oven and the collaboration 
diagram here. 

State 2: Initial 
cooking period

State 1:Idle with 
door closed

State 3: Cooking 
period extended

State 6: Cooking 
interrupted

State 5: Idle 
with door open

State 4: Cooking 
Complete

V3: Door opened( oven id ) / 
Generate P2 and clear the timer

V1: Button pushed( oven id ) / Add 1 
minute to timer

V2: Timer timed out( 
oven id ) / Generate 
L2, P2 and sound 

warning beep

V3: Door opened( oven id ) 
/ Generate L1

V1: Button pushed( oven id ) / 
Generate L1 and P1

V3: Door opened( oven id ) / Generate L1

V4: Door closed( oven id ) / Generate L2

V4: Door closed( oven id ) / Generate L2

V1: Button pushed( 
oven id ) / Add 1 
minute to timer

V3: Door opened( oven id ) / 
Generate P2 and clear the timer

V2: Timer timed out( oven id ) / Generate L2, P2, Sound warning neep

 
Fig. 9: Statechart Diagram of Oven 

Ovenuser

PowerTube

Light

1.1 TurnOn
2.1 TurnOff
3.1 TurnOn
5.1 TurnOff

3.2 Energize    
4.1 Deenergize

1. OpenDoor      
2. CloseDoor     
3. AddTime        
4. OpenDoor      
5. CloseDoor       

 
Fig. 10: Collaboration Diagram 

 

By applying above rules, we obtain the following SPNM of microwave oven. 
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Fig. 11: The HPrTN Definition of Oven Statechart Diagram 
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From the Fig. 11, we know that every time the oven wants to notify the light/power tube to 
turn on or turn off, it must send a corresponding event to light/power tube, and wait for the 
corresponding event indicating the light/power tube has finished the action. When the door 
of the oven is closed and the user pushed button, an event V5 is generated, which means 
the oven need to change the cooking time. So “InEvent” place get the event V5 and 
transition “TimeMonitor” i s enabled, when the transition is fired an event V2 is returned to 
‘InEvent” place, which means the cooking was finished. For the actions that oven clear its 
timer and sound warning beep, it can be viewed as the actions of the corresponding 
“L eave” transition resulting in entering into state 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12: The HPrTN Definition of Collobration Diagram 
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By adding “Recv Event”, “Send Event” transitions and the associated arcs, we get the 
SPNM of the subsystem model consisting of the SPNMs of the oven, the light and the 
power tube. The SPNM of subsystem model receives events from the “System Event 
Center”, which stores the events generated by the SPNM of the user. In the SPNM of 
subsystem model, “Send Event” transition is never fired because the subsystem model 
never sends events to the user.  

By adding system inscription, we can simulate the executions of the system. The details 
are omitted here due to space limit. 

6  Concluding Remarks 

In this paper, we presented an approach to derive a SPNM in an HPrTN from a statechart 
diagram and to integrate SPNMs to obtain a complete system model according to the 
dynamic class relationships defined by collaboration diagrams. Each SPNM can be studied 
separately. By integrating SPNMs, we can detect potential inconsistencies among 
statechart diagrams of different classes. Since SPNMs are hierarchical, we can study the 
properties at a desired level of abstraction. SPNMs support both synchronous and 
asynchronous event communications. 

One direction of future work is to generate Class Petri Net Models according to class 
diagrams and integrate them with SPNMs so that we can analyze structural and behavioral 
properties in a unified framework based on HPrTNs. Another direction of future work is to 
explore ways to formally analyze the properties of the system model using various Petri 
Net tools and ways to interpret the properties of system model with regard to original 
UML specifications that users can understand.   
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