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A Parallel Non-Hydrostatic Shallow Water Model on
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Abstract: Even with current extreme scale systems, the accurate simulation of tsunamis continues to
be a challenging problem. One commonly used model for this task are the hydrostatic shallow water
equations which, however, are not able to represent all relevant physical effects of tsunamis. In this
paper, we therefore show how to solve the non-hydrostatic shallow water equations in parallel within
the partial differential equation framework sam(oa)2 by extending the existing ®nite volume method
for solving the hydrostatic shallow water equations. We present an element-oriented dual grid dis-
cretization of the equation for the non-hydrostatic pressure on triangular adaptive meshes which
allows for a matrix-free conjugate gradient solver for the corresponding system of linear equations.
In addition, the validity of the new model is shown based on two common numerical experiments
for non-hydrostatic shallow water models. Because we aim at solving large-scale problems on high
performance computing architectures, we demonstrate our distributed memory parallelization which
resulted in a parallel ef®ciency of 90.1% from 1 to 8192 cores for weak scaling and 96.8% from 16
to 512 cores for strong scaling.
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1 Introduction

During the past few decades, computation resources on extreme scale systems have sig-

ni®cantly increased. This has resulted in an increasing interest of scientists in using such

high performance machines in order to simulate important problems stemming from nat-

ural sciences and engineering. One of these problems is the modelling and prediction of

tsunamis. Considering the devastating consequences of a tsunami such as the one caused

by the Tōhoku earthquake in Japan in 2011, the critical need for accurate computational

models becomes evident. Valid mathematical and physical models should be ef®ciently

implemented on current high performance systems. This is a requirement to obtain mean-

ingful insights at scale into the development and propagation of tsunamis.

Even with current supercomputers having their peak performance in the peta¯op regime,

a full three-dimensional model for the simulation of a tsunami might still not be computa-

tionally feasible. Instead, the so-called shallow water equations provide a reasonable two-

dimensional approximation by essentially depth-averaging the full three-dimensional gov-

erning equations. A model that is commonly used—the hydrostatic shallow water model—

neglects the impact of the vertical velocity and assumes that the pressure is given by the
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hydrostatic pressure (the result of gravity). This applies to (long) shallow water waves that

are characterized by h/λ ≪ 1, where h is the height of the water column and λ the wave

length [LN08]. However, the corresponding hydrostatic shallow water equations do not

model the dispersion of deeper water waves that might e.g. occur near the coast [LN08].

Therefore, efforts have been made to extend existing hydrostatic solvers towards a mod-

i®ed non-hydrostatic shallow water model (e.g. in [Cu13], [Fu13], [SZ03] or [Wa05]).

Here, the general approach is to correct the solution produced by the hydrostatic solver in

each time step while still retaining a 2D depth-averaged model. As will be discussed later,

this correction requires to solve a system of linear equations in each time step.

In this paper, we ®rst show how to adapt this scheme to solving the non-hydrostatic shal-

low water equations using a conservation-law-based ®nite volume method for solving the

hydrostatic shallow water equations (Sec. 2.1). In Sec. 2.2, we present an element-oriented

approach towards solving the system of linear equations for the non-hydrostatic pressure

using a dual-grid discretization. Our extension has been integrated into sam(oa)2 [MRB11]

which is a parallel framework for solving partial differential equations (PDE) on adaptive

triangular meshes using space-®lling curves for cache and memory ef®cient grid traversals.

Based on some common experiments for non-hydrostatic models, we show the validity of

the new model (Sec. 4.1) and investigate the feasibility of using a conjugate gradient solver

for the system of linear equations (Sec. 4.2).

Since we aim at solving large-scale problems on high performance computing (HPC) sys-

tems, we furthermore discuss our parallelization strategy for the model which is based on

sam(oa)2’s parallelization interface (Sec. 3). Finally, strong and weak scaling experiments

verify a successful parallelization (Sec. 4.3).

2 Numerical Approach

In this section, we brie¯y introduce the non-hydrostatic shallow water equations, the as-

sumptions on which they are based and the general approach towards solving them. Next,

we present our element-oriented spatial discretization on triangular adaptive meshes in

sam(oa)2 that allows for a matrix-free linear solver.

2.1 Finite Volume Formulation of the Non-Hydrostatic Shallow Water Equations

The subsequently described numerical approach for the non-hydrostatic extension closely

follows the one presented in [Cu13] and [Fu13]. Special attention is payed to the modi®-

cations required to combine this approach with our conservation-law-based ®nite volume

solver (cf. [Le02]) for the hydrostatic shallow water equations.

As a basis for the extension, we use the non-hydrostatic shallow water equations in con-

servation law form (see [Sa14] for a derivation based on [Ma]):
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Here, h(x,y) = η(x,y)− b(x,y) denotes the height of the water column, η(x,y) the free

surface elevation above the mean sea level, b(x,y) the bathymetry (elevation of the sea

¯oor), (U,V,W ) the depth-averaged velocity vector, g the gravity of earth and a subscript

the partial derivative with respect to the given coordinate. Further, q(x,y,z) represents the

non-hydrostatic portion of the pressure and q̂ = [q]z=b the non-hydrostatic pressure at the

sea bottom. The hydrostatic shallow water equations are obtained as a special case by

setting q = 0 and neglecting the vertical momentum equation.

The above equations include the assumption that the pressure can be decomposed into a

hydrostatic part pH and a non-hydrostatic portion q as introduced in [CS98]. We further

assume a linear vertical distribution of the non-hydrostatic pressure (decreases to zero

at the surface, maximum at the bottom) and the vertical velocity component (maximum

at the water surface) [Wa05]. Since bathymetry is represented as a step function in our

model, the vertical velocity w is zero at the sea bottom [Cu13]. Under these assumptions,

W = 0.5[w]z=η holds.

We employ a fractional step scheme towards extending the previously existing hydrostatic

solver similar to the one used in [Cu13]: in each time step, the quantities of the hydrostatic

solution will be computed and then corrected with the numerical non-hydrostatic pres-

sure parameter q̂ at the sea bottom—the new unknown in the non-hydrostatic model. This

gives rise to the need of solving a system of discretized Poisson-like equations for q̂. The

system is obtained using the pressure projection method ([Ch68]) that is e.g. commonly

used to solve the Navier-Stokes equations [GDN95]. Our correction formulas for the dis-

charges hU,hV computed by the hydrostatic solver follow from an explicit Euler time dis-

cretization of the non-hydrostatic equations (1). For correcting the vertical velocity ®eld,

we follow [Cu13] and neglect the non-linear terms in the vertical momentum equation.

In summary, the main steps in a non-hydrostatic timestep are (in this order): compute a

timestep with the hydrostatic solver (resulting in an intermediate solution), solve a linear

system of equations for q̂ and correct the intermediate solution with q̂.

2.2 Dual Grid Discretization on Triangular Meshes in sam(oa)2

Sam(oa)2’s particular setup allows ef®cient access only to element-local data in each grid

traversal step such that an element-oriented and matrix-free assembly of the system of

linear equations for q̂ is required. Instead of collocating the control volumes for computing

the non-hydrostatic pressure with the ®nite volume cells, we therefore propose a dual grid

arrangement as shown in Fig. 1.
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Fig. 1: Control volumes/dual grid cells (dashed) for the non-hydrostatic pressure: the left picture

shows the two kinds (green and blue) of dual grid cells that might occur in a grid of uniform re-

®nement depth. On the right, a control volume for the non-uniform case is depicted. Note that an

element will contribute to three different control volumes. The points denote the nodes on which the

unknowns q̂d and the vertical velocity wd for a dual grid cell d are located. For each q̂d , there is

exactly one corresponding control volume/dual cell d.

Our ®nite volume method for solving the hydrostatic shallow water equations is basically

a Galerkin method with piecewise constant ansatz and test functions that determines for

each primary cell an average Qn
i = (hn

i , [hU ]ni , [hV ]ni )
T . For compatibility reasons, the same

choice of basis and ansatz functions has also been made for discretizing q̂ and w.

With these remarks, the basis for deriving the system of linear equations for the non-

hydrostatic pressure will be the following weak form of the continuity equation given for

a dual grid control volume:

∫

Γd

nx hU dΓ+
∫

Γd

ny hV dΓ+
∫

Ωd

wdΩ = 0 (2)

Here, Γd denotes the boundary, n = (nx,ny) its outward pointing normal unit vector and

Ωd the region of the dual cell d. Note that some terms occurring in the derivation of this

formula had to be neglected since they cannot be directly obtained from the hydrostatic

quantities computed in our model3.

Let Nd denote the set of primary elements that contribute to the dual cell d, Γe,d the part

of the boundary of d that lies in the primary element e and Ωe,d the region of the dual cell

that lies within e (compare Fig. 1). Then, an element-wise assembly of the equation as a

sum of element contributions is re¯ected in the following equivalent form of (2):

∑
e∈Nd

(∫

Γe,d

nx hU dΓ+
∫

Γ
ny hV dΓ+

∫

Ωe,d

wdΩ

)
= 0. (3)

3 For instance,
∫

Vd

∂u
∂x

dV =
∫

Γd
nxhUdΓ+

∫
Ωd

uz=b
∂b
∂x

− uz=η
∂η
∂x

dΩ holds and the second and third summands

had to be neglected.
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Plugging the correction formulas for the discharges hU,hV and the vertical velocity w into

the summand of (3) gives the following dual cell equation contribution:

∫

Γe,d

n ·




h̃U

(n+1)

h̃V
(n+1)


 −Δt

h(n)

2
∇q̂


dΓ+

∫

Ωe,d

w̃(n+1)+2Δt
q̂

h(n+1)
dΩ = 0. (4)

In contrast to a collocated scheme, our dual grid arrangement avoids having to evaluate

derivatives of hydrostatic quantities at primary cell boundaries (the location of a disconti-

nuity between two cell averages) which would be particularly problematic in the adaptive

case. The gradient of the non-hydrostatic pressure term ∇q̂ at the dual cell boundaries

is approximated using central ®nite differences. Both the normal vectors and the non-

hydrostatic pressure gradient have to be rotated appropriately from a canonical standard

reference element orientation into the actual orientation of the considered element.

In our implementation, during a non-hydrostatic grid traversal (after the hydrostatic step),

all three dual cell equation contributions (4) will be computed yielding 3×3 local element

matrices for the unknowns on the three nodes of a primary element. In another traversal,

the linear solver determines the local residuals for the dual cell equations using these ele-

ment matrices. Finally, the unknowns q̂ on the nodes are updated according to the chosen

iterative method for solving the system. In another traversal, the obtained solution will be

used to correct the cell averages and the averaged vertical velocity.

3 Parallelization

In order to be able to solve large-scale problems, the non-hydrostatic extension is intended

to being run on current HPC systems. While the linear solver and the hydrostatic com-

ponent had already been parallelized in previous work, our non-hydrostatic extension re-

quired a solid parallelization strategy as presented subsequently.

Fig. 2: Merging process. Left two pictures: Merging sections owned by one process. Rightmost pic-

ture: Merging sections owned by multiple processes. Color of sections denote their process af®lia-

tion. The blue marked nodes are master nodes. The ®gure is based on [MB15].

3.1 Parallelization in sam(oa)2

Sam(oa)2 provides solid groundwork for parallelization: by ordering elements along a

space-®lling curve and then cutting sequentialized elements into sections, the grid is auto-

matically split into atomic work units which are distributed to the processes. In each time
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step, sam(oa)2 also transparently handles load balancing. When splitting the grid, border

nodes belonging to multiple sections are duplicated (see Fig. 2). Therefore, only partial

results are stored on the border nodes which requires a merging of the nodes. Merging is

performed in different ways depending on whether the border nodes’ sections belong to

one process (shared memory) or to multiple processes (distributed memory), as depicted

in Fig. 2. For distributed memory, a peer-to-peer merging is conducted, so each node is

merged with each other node. For shared memory, sam(oa)2 merges the nodes master-

slave-wise: ®rst, all slave nodes are merged into one master node, then the master’s result

is copied back to the slaves.

3.2 Merge Operators

Merge operators can be used to de®ne how sam(oa)2 merges the nodes. A merge operator

takes two nodes, the local node and the neighbor node, with the latter being read only. The

merge operator then shall merge the neighbor node into the local node.

Here, two merge operators are required: one after setting up the system of equations and

one for the correction traversal. In the former, the partial right hand sides of the system

of linear equations are merged. In the latter, we merge two helper variables which are

required for the correction. For all these cases, we can abstract the problem to a sum being

computed on the node, which sums information stored on the node’s adjacent cells:

p̂n = ∑
∀m∈Mn

pm;n, (5)

where p̂n is the result to be stored on node n, Mn is the set of cells adjacent to this node and

pm;n is the information on the cell m for this node. If node n is a border node, the adjacent

cells are a subset of Mn, so only a partial sum is computed. Since Mn,1∪Mn,2∪ . . .∪Mn,k =
Mn, where Mn,i denotes the set of adjacent cells of node n in section i, we get

p̂n = ∑
∀m∈Mn,1

pm;n + ∑
∀m∈Mn,2

pm;n + . . .+ ∑
∀m∈Mn,k

pm;n. (6)

Thus, the merge operators need to compute the sum of the partial results stored on the

nodes. For merging the right hand side, it generally looks like this:

local_node.rhs := local_node.rhs + neighbor_node.rhs

4 Results

4.1 Physical Validation

In order to validate the new model, we conducted different common experiments for non-

hydrostatic models. To reliably ensure convergence we used for these experiments a simple

Jacobi solver with a maximum absolute local residual threshold of ε = 0.1. However, as

we show in Sec. 4.2, the CG method is suitable for solving the system, too.
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Standing Wave

As a ®rst experiment, we simulated a standing wave in a closed (wall boundaries) cuboidal

basin of quadratic shape with length 10m. This experiment has been conducted in other

related work such as [Cu13], [Fu13] and [SZ03]. For details on the experimental setup

and the analytical solution, please see [Fu13]. The constant depth of the basin d is in-

crementally increased yielding a higher ratio d/λ such that a hydrostatic model fails to

approximate the correct propagation speed as can be seen in Fig. 3.
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Fig. 3: Standing wave: plot of the water elevation at (x,y) = (10m,5m) over time. 32768 cells were

used for the uniform grid.

Notice the numerical damping for both the hydrostatic and the non-hydrostatic model. This

is a common phenomenon especially for low-order discretizations like the one we employ

here.

Solitary Wave

In the next test case, the propagation of a solitary wave in a closed channel of width 2m

and depth d = 10m is examined—another standard test case for non-hydrostatic models

(cf. e.g. [Cu13], [SZ03], [Wa05] and [WJ00]). Since viscosity and friction are absent in our

model, the solitary wave should not deform while propagating. As depicted in Fig. 4, the

non-hydrostatic solution keeps the correct water level over time with some small trailing

waves. These trailing waves have been observed in other non-hydrostatic models such as

[SZ03]. They are likely due to the spatial discretization’s inherent failure of resolving large

eigenmodes of the problem correctly. Fig. 5 shows that the hydrostatic model produces an

overall wrong sawtooth shaped water surface pro®le.

4.2 Solver

Even if the physical validation experiments were successfully performed by using the Ja-

cobi method, we intended to apply conjugate gradient (CG) to bene®t from faster con-
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Fig. 4: Solitary wave (#cells = 38400): water elevation over time at the points (x1,y1) =
(80m,0.25m) and (x2,y2) = (200m,0.25m). For the sake of clarity, the hydrostatic solution is

omitted in this plot.

0 100 200 300 400 500 600
−0.5

0

0.5

1

1.5

2

x [m]

e
ta

[m
]

hydrostatic − t=20s

hydrostatic − t=40s

non−hydrostatic − t=20s

non−hydrostatic − t=40s

Fig. 5: Solitary wave (#cells = 38400): water level at two different points in time.

vergence. However, CG is only de®ned for symmetric positive de®nite system matrices

[HS52]. Although we expected the matrix to be symmetric positive de®nite for constant

bathymetry, we conducted tests by simulating several scenarios and checking the prop-

erties of the global matrix at every time step. We only found symmetric positive de®nite

system matrices during these tests. Certainly, our tests did not cover all possible scenarios,

so even if the matrix was symmetric positive de®nite in our case, these results do not prove

that the matrix will also be symmetric positive de®nite for other scenarios.

The blue line in Fig. 6 displays the average number of CG iterations for the ®rst 0.05s of

simulation time of the standing wave scenario for different grid resolutions. Starting with

58 iterations for 32k cells, we ended at 812 iterations for 256M cells. The line is neatly

®tted by the function
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y = 1.2712x0.3258, (7)

where x is the number of cells and y the number of iterations. It is depicted in Fig. 6 as a

dashed line. Thus, for this scenario, the number of iterations increases by a factor of about

20.3258 = 1.2534 if the number of cells is doubled. So even with perfect weak scaling (see

Sec. 4.3), one has to expect at least an 25% increase in simulation run time each time the

number of cells is doubled.
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Fig. 6: Average number of CG iterations for the ®rst 0.05s seconds of simulation time of the standing

wave scenario for different grid resolutions. The dashed line shows the ®tted function as denoted in

Eq. 7.

4.3 Scaling

All measurements were performed on the SuperMUC4 Thin Nodes, a supercomputer op-

erated by the Leibniz Supercomputing Center near Munich. Each node is equipped with

two eight-core Xeon E5-2680 processors. One island incorporates 512 nodes, resulting in

8192 cores per island. The nodes are connected via In®niband FDR10. We used the stand-

ing wave scenario and always placed one MPI process and one section on each physical

core with section splitting5 turned on. We employed PipeCG as solver which is a special-

ized version of CG. While being equivalent to CG up to rounding errors, it reduces the

global communication (see [GV14] for more information).

We measured performance in element throughput, which is de®ned as the number of el-

ements which are handled per second per core. Thus, since this is a measure of parallel

ef®ciency, a constant element throughput indicates perfect scaling.

Weak Scaling

The results of the weak scaling measurements are displayed in Fig. 7. Each measurement

ran for 0.05 s of simulation time. The scaling was conducted for one up to 8192 cores with

4 http://www.lrz.de/services/compute/supermuc/systemdescription/
5 Normally, sam(oa)2 treats sections as atomic work units (see Sec. 3). For load balancing, however, sections can

be split and partially transfered to other processes.



2062 Philipp Samfass and Raphael Schaller

a grid resolution of 32k cells up to 256M cells. Furthermore, a run on 16384 cores and a

grid resolution of 512M cells was performed, but for 0.0002 s of simulation time due to

limited CPU time budget. We achieved a parallel ef®ciency of 90.1% for 8192 cores.
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Fig. 7: Weak scaling of the standing wave scenario on 1 up to 16384 cores. While the blue bars ran

for 0.05 s of simulation time, the red bar ran for 0.0002 s.

Strong Scaling

The strong scaling results are shown in Fig. 8. We performed measurements on 16 up to

512 cores, each for 100 time steps and with a grid resolution of 2M, 4M and 8M cells. On

512 cores with a grid resolution of 8M cells, we reached a parallel ef®ciency of 96.8%. On

128 cores with the same grid resolution, we even achieved super-linear speedup (101.0%).

However, due to increased overhead, the lower the grid resolution is, the worse is the

parallel ef®ciency. This effect appears for a grid resolution of 2M cells: on 512 cores, a

parallel ef®ciency of only 46.8% is reached, since the number of cells per core (here 2048)

is too low.

5 Conclusion & Outlook

Starting with a ®nite-volume conservation-law formulation of the non-hydrostatic shal-

low water equations, we have shown how the equation for the non-hydrostatic correction

parameter can be discretized on triangular meshes. This allows for adaptivity and a matrix-

free approach towards solving the corresponding system. This was attained by using a dual

grid which resolved the drawbacks of a collocated discretization. Our results obtained with

common test cases demonstrate the success of our numerical model to more accurately re-

solve the dispersion relation of a standing and a solitary wave compared to the previously

existing hydrostatic solver. We furthermore have shown feasibility of conjugate gradient

for our test cases. Our parallelization strategy yielded solid strong and weak scaling results

which allows to solve large problems on HPC systems.
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Fig. 8: Strong scaling of the standing wave scenario for 16 up to 512 cores for a grid resolution of

2M, 4M and 8M cells.

Future work will have to study the non-hydrostatic model’s behavior on more complex

and realistic test cases. Although the terms that had to be neglected in the continuity equa-

tion did not seem to adversely affect the results we obtained in the validation test cases,

including them into the model certainly leaves room for improvement. Moreover, further

research is required for applying faster solvers.
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