
Demystifying Deep Learning: Developing a Learning App for
Beginners to Gain Practical Experience

Sven Schultze
sven.schultze@uni-oldenburg.de

University of Oldenburg
Oldenburg, Germany

Uwe Gruenefeld
uwe.gruenefeld@uni-due.de
University of Duisburg-Essen

Essen, Germany

Susanne Boll
susanne.boll@uni-oldenburg.de

University of Oldenburg
Oldenburg, Germany

(a) Flickr integration for training and test datasets. (b) Visual programming (puzzle-based) to create model.

Figure 1: Implementation of our web application to demystify deep learning. Best seen in color.

ABSTRACT
Deep learning has revolutionized machine learning, enhancing
our ability to solve complex computational problems. From image
classification to speech recognition, the technology can be beneficial
in a broad range of scenarios. However, the barrier to entry is
quite high, especially when programming skills are missing. In this
paper, we present the development of a learning application for
beginners that is easy to use, yet powerful enough to solve practical
deep learning problems. We followed the human-centered design
approach and conducted a technical evaluation to identify solvable
classification problems. In the future, we plan to conduct a user
study to evaluate our learning application online.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Applied
computing → Interactive learning environments.
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1 INTRODUCTION
In recent years, deep learning has received considerable attention,
with many beginners interested in learning the technology. Con-
tinually decreasing computational costs have made the technology
practical and applicable to real-world problems [6, 10, 13, 21]. Nowa-
days, deep learning empowers users to address a broad range of
problems, previously not considered practically solvable, and often
in a more effective manner than other machine learning approaches
[4, 12]. This potential has sparked interest, resulting in non-experts
willing to learn the technology. However, understanding the con-
cepts that constitute deep learning can be challenging.

In general, there are two different motivations to deal with deep
learning: 1) to be able to develop deep-learning-based systems, and
2) to understand the decisions of these systems in everyday life
[15]. If the latter is the motivation, people tend to have no technical
background and are overwhelmed when dealing with theoretical
foundations of Artificial Neural Networks (ANN), which are the
very essence of deep learning. The connection between cause and
effect is especially difficult to grasp when dealing with ANN [19].
Fortunately, understanding the theory in complete detail is not
required to understand decision-making by intelligent systems.
Moreover, applying deep learning workflows and solving practical
problems relies heavily on experimentation. Thus, experience and
intuition are vital for mastering deep learning. However, gaining
this experience is challenging for beginners. It is time-consuming
and can be frustrating because direct feedback is often missing.

https://doi.org/10.18420/muc2020-ws111-334
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Furthermore, the barrier of entry is quite high because it requires
solid technical skills, such as knowing a programming language.

We believe that a visualization-based learning application could
lower the barrier of entry, empowering beginners to understand
deep learning without first mastering a programming language.
Previous work has unveiled the potential of visualization-based
approaches [19, 27]. For example, visual programming languages
can help one to understand the concepts of programming quickly
[5, 25]. However, while visualization-based learning approaches
have proven useful in many different scenarios, it remains unclear
whether deep learning beginners can benefit from them as well.

In this paper, we followed the human-centered design process to
develop an interactive visualization-based learning application that
aims to support deep learning beginners during their first steps. Our
goal is to develop an application, powerful enough to solve practical
problems. To do so, we analyzed the existing work to understand
the state-of-the-art. We interviewed machine learning experts to
find a suitable scenario for beginners and conducted focus groups
to identify the application scope. Then, we developed a low-fidelity
prototype, did a cognitive walk-through, and implemented our
application. We finished with a technical evaluation to identify
solvable classification problems. Our work contributes insights into
the development of a user-centered learning application for deep
learning and the app itself.

2 RELATEDWORK
2.1 Understanding Decisions of ANN-based

Systems
ANNs often are complex networks consisting of many artificial
neurons and connections, making it incredibly challenging to assess
their behavior. Even experts cannot always predict how ANNs
react in every possible situation, which is hugely problematic (e.g.,
in safety-critical contexts [3]). Hence, the question arises of how
users without a technical background can trust them? To address
this issue, the field of neural network interpretability has formed,
following two objectives: 1) finding out what features ANNs learn
to recognize (feature visualization), and 2) what kind of data is
crucial in their decision process (feature attribution) [15].

Previous work proposes different visual analytic tools to support
model explanation, interpretation, and debugging [8]. For example,
Yosinski et al. suggest two different tools [27], one to demonstrate
activation of neurons using the user’s webcam as input, and another
one to see how the layers of the network learn certain features. One
more tool that explains what convolutional neural networks learn
internally is ShapeShop [7]. It is an interactive experimentation
environment inwhich users can create a custom dataset from simple
shapes (circles, squares, and triangles), train a model, and view
the experiment results. Analytic tools often use a method called
activationmaximization that focuses on input that highly activates a
specific neuron [16]. Similar approaches are activation aggregation
and neuron-influence aggregation [9]. However, while these tools
can help users to understand the trained model better, they require
fundamental knowledge about neural networks, making them better
suited for more advanced users.

2.2 Educational Applications for Deep
Learning

Interactive visualizations can significantly increase beginners’ un-
derstanding of program behavior [2]. They can be integrated into
learning experiences with explorable explanations, for example
[22]. To support beginners, we will use explorable explanations in
our application as well.

A few educational applications that help beginners understand
deep learning exist. One example is Teachable Machine1 by Google
Creative Labs. It is a simple application that collects user-labeled im-
ages from the webcam, trains a neural network in the background,
classifies the images in real-time, and visualizes the results. Another
example is Tensorflow Playground2 by Smilkov et al. [19], which
allows users to experiment with neural networks via direct manip-
ulation, allowing them to build intuition about the relationships
between artificial neurons, loss functions, learning rates, and other
concepts of machine learning. Nevertheless, while both applications
address beginners, they do not explain the deep learning workflow.
However, to apply learned concepts to practical problems, users
must not only understand how neural networks work, but must
also understand the workflow from finding a dataset to training
and evaluating a model.

3 METHOD
In this paper, we develop a visualization-based learning application
that allows users to create custom datasets with little effort, assem-
ble neural network architectures with a puzzle-based interaction,
train their models on a remote server, and evaluate it using up-
loaded images. To develop this application, we followed the human-
centered design approach [11]. Hence, we started by defining the
context of use, in which we focused on users with no deep learning
or programming experience. To make the learning application avail-
able on a broad range of devices and following previous work [19],
we developed it using standard web technologies. We interviewed
experts to choose a learning scenario that is well-suited for novice
users. Then, we conducted focus groups to understand what mat-
ters to beginners. Next, we created a low-fidelity (Lo-Fi) mock-up
prototype and evaluated it with the thinking-aloud method [14],
which allowed us to gain insights into the participants’ cognitive
processes during a walk-through of the interface. These insights
helped us to eliminate misleading design elements and identify
possible improvements. After that, we implemented a high-fidelity
prototype in the form of a web application. Last, we conducted a
technical evaluation to benchmark the performance and feasibility
of our implemented learning application.

4 DEVELOPING THE LEARNING
APPLICATION

In the following, we describe all steps we undertook to develop
our application. These steps are based on methods taken from the
human-centered design approach [11].

1Teachable Machine. https://teachablemachine.withgoogle.com
2Tensorflow Playground. https://playground.tensorflow.org
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(a) Interactive introduction of classification problems.

(b) Navigation bar to switch between views.

(c) Adobe XD screenshot that shows some view prototypes.

Figure 2: Lo-Fi prototype development of our application in Adobe XD. Best seen in color.

4.1 Selecting a Learning Scenario with Expert
Interviews

We conducted unstructured interviews with three experts that of-
fered recurring workshops/tutorials on machine learning at sci-
entific conferences in HCI. All interviewed experts agreed that
classification tasks, more specifically image classification tasks (e.g.,
distinguishing between cats and dogs) are a good starting point for
beginners. These tasks are easy to understand and provide many
opportunities for interaction. Furthermore, image hosting providers
such as Flickr provide free access to large datasets required as input
for many deep learning algorithms. Hence, we focus on image classi-
fication tasks in our learning tool. Additionally, experts highlighted
that beginners need quick feedback, empowering them to iterate
over their solutions quickly and gain more practical experience in
a shorter time.

For the classification, we decided to use convolutional neural net-
works (CNN) (a specific type of ANN) because they are frequently
used for image processing. These networks consist of different
building blocks (referred to as layers) that can be connected in
various ways. We thought that limiting the available blocks could
reduce the complexity of the task.

4.2 Defining the Application Scope with Focus
Groups

After selecting a learning scenario suitable for beginners, we con-
ducted focus groups to define the applications’ scope. To have
uninfluenced opinions from deep learning beginners, we carried
out two focus groups. In the first group, two intermediates and one
expert participated (all three had more than one year of experience).
In contrast, the second group was composed of three beginners
(with less than six months of experience). The six participants (2
female) were between 21 and 39 years old (mean: 26.0, standard
deviation: 6.6).

We discussed the degree to which the app should guide users,
collecting the result as Likert-items (ranging from 1=no guidance,
maximum self-experimentation to 10=maximum guidance, no self-
experimentation). The answers to this question were dependent on
the participants’ experience level. The beginners opted for more
guidance (7, 6, 7). They agreed that they had problems finding an
entry point to the field of deep learning because of its vastness.
The experts chose lower guidance (4, 4, 3). They explained that
experimentation is a big part of the deep learning workflow re-
quired to gain practical experience. Hence, we offer guidance in
the beginning, but later switch to self-experimentation.

Then, participants debated which phases of the deep learning
workflow are most important. For this, they ordered the following
steps by priority: define the problem, gather data, build model, train,
evaluate, and deploy. All participants agreed that the most critical
phase is model building because it is the core of the workflow. In the
second place, they ranked data gathering to build intuition about
compositions and dimensions of datasets. This process takes time
and should be dealt with thoroughly in the application. Participants
also suggested to discard to deployment as is does not actively
contribute to understanding deep learning. Next, participants de-
cided on a basic set of layer types, resulting in the following layers:
convolutional, pooling, flatten, and dense. Furthermore, both fo-
cus groups’ participants suggested not to deal with optimizers and
activation functions.

4.3 Designing a Lo-Fi Prototype
Together with an experienced UX Designer, we created a horizontal
Lo-Fi prototype in Adobe XD3. The prototype is shown in Figure 2.
Each step of the deep learning workflow is represented in a dedi-
cated view. The views can be switched in the top navigation bar of
our application. In the following, we explain all views in the order
they appear in the navigation:

3Adobe XD. https://adobe.com/xd, last retrieved August 10, 2020

https://adobe.com/xd
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Problem. The first view the user sees is the problem view. Here,
the classification problem is illustrated using an explorable expla-
nation [22], where two images are manually classified into cats and
dogs (see Figure 2a).

Data. The data view is split into two halves (see the prototype
view in the center of Figure 2c). Each half contains a text field on
top with a grid view of images underneath. These images can be
loaded from the Flickr API by typing search terms into the text field.
Each half represents one of the two classes that the classifier needs
to distinguish. For the images, we decided to use Flickr because
its API enables highly customizable image searches and already
scaled-down resolutions, which is useful for reducing loading times.

Preprocess. In this view, users can interact with a slider to change
the proportional composition of the train and test subsets of the
dataset. The slider range is reduced by ten percent on both sides to
ensure both datasets exist.

Model. The model view is where the network architecture is
defined. It consists of a layer panel on the left, which allows the
user to add different layer types to the model panel on the right
(see Figure 1b for the already implemented view). In the model
panel, the newly added layer shows an interactive visualization,
illustrating the functionality of the layer. The user can interact with
a few parameters, depending on the layer type. For example, the
convolution layer allows the user to interact with the size of the
convolution kernel, as well as the depth of the output.

Initially, only input and output layers are present in the model
panel, and neither layer can be rearranged or deleted. Since layers
can be arranged only in specific orders, they are represented as
puzzle elements that follow the same constraints. If the user does not
follow these constraints, the layers are visualized as disconnected,
and an error message suggests fitting layers. If the model is valid,
the user can proceed to the next view.

Train. In this view, users can use a set of controls to reset, pause,
or start the training. Additionally, a slider allows users to set the
number of epochs.When the training starts, the slider automatically
moves to the left, as the remaining epochs decrease. A line chart
displays the training progress by showing the accuracy for every
trained epoch.

Evaluate. This view displays all images from the test subset of
the data set with their prediction. It orders the pictures into four
columns representing the true and false predictions for both classes
and shows their respective class probabilities.

Upload. The upload view allows users to upload their images to
predict them with a previously trained model. For these images, the
view uses the same visualization technique for the predictions as the
evaluate view. The images can either be dropped into a designated
upload area or opened via the standard file dialog of the operating
system.

4.4 Thinking Aloud to Unveil Design Flaws
After prototyping, we applied the thinking-aloud method, in which
participants walk through the learning application while verbally
expressing their thoughts to discover design flaws in our clickable

Lo-Fi prototype [14]. The procedure went as follows: we explained
the rules of the thinking-aloud method and informed them that we
would record their thoughts and actions. Then we asked the partic-
ipants to click through the prototype step by step and to pretend
to perform the image classification task. In the end, we discussed
possible solutions for the problems the participants encountered.

We recruited three male participants from the age of 27 to 39
years (mean: 31.3, standard deviation: 6.7). All the participants had
more than three years of experience in the field of human-computer
interaction, while their level of expertise in deep learning varied
widely.

Overall, we identified several user experience problems in the
interface. For example, in some cases, participants mentioned that
positive feedback is missing or that it would be great to present
helping information only once but allow them to get it back with
a simple button click. These comments are in line with the eight
golden rules of interface design by Shneiderman [18], which state
that users should receive informative feedback for their actions,
and Nielsen’s heuristics for user interface design [17], which say
that the interface should be minimalistic. Furthermore, we unveiled
some technical flaws in our design concept in terms of correctness
and practicality.

4.5 Implementation of the Learning Platform
Following the thinking-aloud method, we implemented a high-
fidelity prototype4 in the form of a web application, incorporating
all given feedback. We implemented the client-side of the appli-
cation using the progressive Javascript framework Vue.js5, and
developed our server in Python using Tensorflow6. Client-server
communication is based on sockets.

Users can create custom datasets with little effort. To achieve
this, we use Flickr’s REST-API7, enabling users to load labeled
images from the image hosting service via keyword-based search
(see Figure 1a). Each class consists of 200 pictures with a resolution
of 75x75 pixels (used resolution can be changed in model view), so
400 images in total. Additionally, users can replace specific images
with new ones.

Furthermore, we implemented a purely client-based version us-
ing Tensorflow.js8, allowing users to train networks using their
hardware.

5 TECHNICAL EVALUATION
For the technical evaluation, we asked ourselves two questions: 1)
what accuracies are possible with our learning application, and 2)
how much slower is training on the client vs. on the server.

5.1 Accuracy of Trained Models
First, we evaluated what accuracy is possible for known image
classification problems in our application. Accuracy is important
for user experience because a well-performing model can increase
the users’ satisfaction. We expected a lower model performance
4Our learning application. http://ai.uol.de
5Vue.js. https://vuejs.org, last retrieved August 10, 2020
6Tensorflow. https://www.tensorflow.org, last retrieved August 10, 2020
7Flickr API. https://www.flickr.com/services/api/request.rest.html, last retrieved Au-
gust 10, 2020
8Tensorflow.js. https://www.tensorflow.org/js, last retrieved August 10, 2020
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since we limited the dataset size and resolution, to achieve lower
response times and allow quicker experimentation. Furthermore,
we examine less-complex models trained in a reasonable amount of
time. To evaluate the performance impact of these limitations, we
tested a model architecture with four different datasets. We trained
the model for 20 epochs on each dataset with a 75%/25% train/test
split (see Table 1).

Table 1: Resulting accuracy for different example datasets.

First Class Second Class Accuracy
Dogs Cats 65%
Golden Retriever American Shorthair 80%
Pigs Horses 87%
Landscapes Paintings 95%

While for simple problems like ’Pigs & Horses,’ or ’Landscapes
& Paintings,’ the model achieves higher accuracy, the accuracy for
the default problem ’Dogs & Cats’ is below 70 percent. We think
this is due to the variety of dog and cat breeds. Since the dataset is
small, the test subset of the dataset likely contains images of breeds
that the model had never encountered during training. Hence, we
recommend training more specific classes. For example, ’Golden
Retriever & American Shorthair’ achieves better results.

Previous analyses of deep learning models deliver more insights
into this problem. They show that the primary features learned
by the first convolutional layers in the models often resemble
frequency- and orientation-selective kernels or color blobs [13, 26].
The recorded accuracy may be a result of this since images of
pigs and landscapes both feature distinct color values and shapes
compared to their respective counterparts in the datasets. For exam-
ple, pigs are mostly pink, while horses are often brown. Similarly,
landscapes mostly feature sharp and horizontal gradients, while
paintings are colorful and have smaller, curved gradients in vari-
ous orientations. The images of dogs and cats, however, are quite
similar in this regard. Thus, this classification task might require
more complex models or larger datasets, both of which are limited
in our application to increase beginner friendliness.

5.2 Clients vs. Server for Training
For our application, we implemented two different training meth-
ods: 1) a Python backend based on Tensorflow, and 2) a frontend
trainer based on TensorFlow.js. We experimented with a frontend-
based approach because it allows the web application to scale better
if it performs well enough on users’ hardware.

To measure the performance of both approaches, we sequen-
tially ran both configurations, including the server, on the same
machine. Our machine consisted of an Intel Xeon E5-2678 CPU and
an NVIDIA Quadro P5000 GPU. For the training, we set up a simple
model in our application and trained it with a total of 200 images
of two classes in 20 epochs in both configurations. We measured
the time between the start and end of the training (see Figure 3).

As Figure 3 shows, the backend trainer finished more than three
times faster than the TensorFlow.js frontend trainer. The reason
is that TensorFlow for Python can access the GPU of the System
directly. At the same time, the javascript library is limited by the

Computation Time in Seconds
0 10 20 30

Javascript frontend with Tensorflow.js Python backend with Tensorflow

Figure 3: Computation time in frontend vs. backend

API WebGL, which is intended for rendering graphics and not deep
learning. We argue that the loss in power is quite significant. Fur-
thermore, the library TensorFlow.js uses all available computational
resources, often resulting in system lags. Thus, we recommend us-
ing the Python backend, and reverting to the frontend when the
backend is not available (e.g., overload or connection issues).

6 DISCUSSION
The focus of our application is to empower beginners to gain practi-
cal experience with deep learning. Hence, we created a minimalistic
design that teaches the user the basic concepts while solving prac-
tical problems.

6.1 Scope of Our Application
We tried to identify the essential features our application should
include with methods from the human-centered design process.
However, during our technical evaluation, we realized that our
design does not include many countermeasures against overfit-
ting. Overfitting could become a problem because the small dataset
sizes encourage this phenomenon. Due to missing generalization,
that is, the ability of the model to adapt to previously unseen data
overfitting affects the training process very early [23]. Currently,
our prototype only allows the user to stop the training process at
the right time to avoid overfitting. Nevertheless, several features
would enable users to combat this phenomenon. For example, the
application could introduce the dropout layer type after the user
encountered the effects of overfitting the first time. The dropout
layer would allow the user to add regularization to the model, which
reduces overfitting [20]. Another option is the introduction of data
augmentation [24]. However, this process by itself is computation-
ally demanding, since it transforms every image in various ways to
increase the size of the dataset artificially.

6.2 Model Training Accuracy
An important factor is the performance of the trained models. If
users should stay motivated to use the application, a certain level
of accomplishment is required. Unfortunately, the minimalistic
design compromises performance in several ways. For example,
the limited size of images in datasets enables users to interact
with every picture but introduces limitations. We evaluated how
these limitations affect performance in more difficult classification
problems, for example, with the groups dogs and cats. Here, it
is likely that the many different breeds of dogs and cats make it
challenging for the model to learn the differentiating features of
the two classes. However, in simpler classification problems, the
results were much better. Thus, we recommend starting with them.
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6.3 Future Work
We plan to conduct an online study to evaluate the usability and
learning support of our web application in the wild. Therefore, a
short dialogue will ask users that try out the app if they are willing
to participate in a user study. If they agree, we ask them to walk
through the app from beginning to end and to train and evaluate a
model. Then, we will ask them questions about their experience.
For example, we will measure usability with the SUS questionnaire
[1]. If users continue using the application, we ask them if we can
collect data on their performance. Additionally, we plan to integrate
our application into university courses on machine learning and
acquire direct feedback via interviews.

We already addressed the addition of the dropout layer type. This
feature allows users to combat the effects of overfitting, a common
solution for this problem in real-world scenarios. In the future, the
application could allow the user to deploy their trained model to
an external device (e.g., their smartphone). We could implement
an app that enables the user to download their trained model from
the backend, for example, for the classification of images from the
smartphone’s gallery with a respective companion app.

7 CONCLUSION
In this paper, we developed a web-based learning application that
helps beginners understand deep learning workflows and solve
practical problems. We followed the human-centered design ap-
proach to create a user-friendly interface and conducted a technical
evaluation to demonstrate which problems can be solved in the app.
Next, we plan to do an online evaluation to determine usability and
what beginners are able to achieve with the web application.
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