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On the Design and Model-Based Validation of Flight Control
System Automation for an Unmanned Coaxial Helicopter
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Abstract: An existing coaxial helicopter with a maximum takeoff weight of 600 kg has been
transformed into a unmanned aerial system. To enable unmanned experimental validation of novel
flight control-laws in flight tests, the helicopter’s flight control system has been extended by digital
components. As the loss of the helicopter platform due to a failure in the experimental digital flight
control system has been identified a risk for the project, contingency procedures have been considered
in the system design. In this paper, we suggest a model-based and lean development approach for
system automation development, which to the best of the authors knowledge, is new. Within the
process we suggest to introduce Operational Sequence Diagrams that only represent procedural system
behavior to describe the Design Reference Scenarios of the Concept of Operations. Thereby we
enable the total exploitation of a System Architecture Behavioral model within the design process,
considering the definition of procedures, the validation of architecture design and automated code
generation. To validate the suggested approach, we present its application to the design of the system
automation for the flight control system of the unmanned helicopter. The system has been successfully
integrated and tested in caged flight tests in November 2022.

Keywords: Aircraft Automation, Contingency Procedures, System Operation, Large Scale Drones,
UAS, Model-Based Development

1 Introduction

For large experimental or prototype unmanned aerial system (UAS), the correctness of
novel functions provided by software cannot be guaranteed and hence, other contingency
approaches that ensure safe flight testing operations like tethering need to be applied [CF09].
While these approaches ensure safety, severe damage to the experimental system after a
failure is usually accepted and thus, the risk for the project remains high. It follows that
there is a need for contingency procedures to reduce the risk of a loss of the system, if the
reproduction of the system is not in the scope of the project’s budget, like it is for large scale
drones in research and prototype projects. In a cooperation of the Technical University of
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Munich, edm-aerotec GmbH and ZF Luftfahrttechnik GmbH, an existing coaxial helicopter
with a maximum take-off weight of 600 kg is transformed into a unmanned aerial system.
The applicability of flight control algorithms with a high level of complexity and task
reduction for the remote pilot shall be demonstrated for the given flight mechanics of
the coaxial helicopter. For that purpose, a first flight test campaign has been successfully
conducted in 2022 with the aim of testing the digital sensors utilized for the unmanned
system on the target helicopter platform and furthermore to identify the helicopters response
dynamics [Ma22] [Ho22]. Furthermore, the helicopter’s flight control system has been
extended by digital components. As the test plan for the flight control law algorithms
foresees an incremental extension of the flight control laws’ functionality, a simple and
robust contingency procedure is introduced, that ensures the shift of command authority to
a beforehand tested flight control law in case of a failure of the untested law. In this paper
we describe the development of the system automation function that supports both, the
flight test operational procedures under nominal conditions as well as the afore mentioned
contingency procedure in case of an emergency. We thereby suggest a holistic approach
that leverages the use of an executable model to simulate the behavior of the system for
purposes as procedural validation as well as automatic code generation. The approach, that
includes the specification of operational procedures based on the trace of the finite-state
machine that models the architectural behavior is, to the best of the authors knowledge, new.
It allowed us to introduce the desired contingency procedures into the flight test operations
while remaining within the limited budget of a research project. In section 2 we describe the
development process and point out its unique features. Section 3 gives an introduction to
our use-case, describing the subset of the system architecture that is relevant for this work
and present the contingency procedures that the system automation needs to support. The
system specification is given in section 4 followed by a description of the design of the state
machines for system behavior modelling and their transition logics in section 5. Finally, we
present the results of numerical simulations with the system model for validation of the
integrated design in section 6.

Fig. 1: Test Aircraft utilized for the initial flight test campaign. An aircraft of the same type has been
transformed into an unmanned system.
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2 Development Process

In figure 2, we embed the herein suggested development steps into a "Vmodel process
that is well known in the systems engineering domain. It includes model-based aspects
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Fig. 2: Suggested development process for system automation functions that exploits an executable
Architecture Behavioral Model.

suggested in [An23], like the usage of design models for both, automated code generation and
requirements validation. Whereas the author focused on the process from a perspective of
developing systems with a desired closed-loop control behavior, our work is complementary
in a sense that we focus on the introduction of nominal and abnormal operational procedures
by means of automation functionality that explicitly considers the system architecture
development activity. The process begins with the capturing of stakeholder expectations
in the Concept of Operations (ConOps). The ConOps contains the operational aspects of
the system from a user perspective. According to [Kal0], it should consider all aspects of
operations including nominal and off-nominal operations during integration and testing. It
includes a description of operational scenarios, fault management strategies, description of
human interaction and critical events. The operational scenarios describe the dynamic view
of the systems operations and include how the system is perceived to function throughout
the various modes and mode transitions, including interactions with external interfaces,
response to anticipated hazards and faults and during failure mitigation. The authors in
[Na20] suggest to include the operational procedures in a tabular way into the ConOps
document, which builds up a basis for the automation development. In the following, we
refer to the operational procedures as the Design Reference Scenarios.

After an initial ConOps is set up, the system architecture is derived by means of functional
analysis. In [Ha21], the architecture is defined as the allocation of functions to elements that
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are arranged in a structure and the definition of their interfaces. The authors in [Gi21] have
extended common methods like functional decomposition by a Procedure-based Function
Derivation for systematic identification of all functions related to the procedures. To provide
a basis for the design and development of automation functions, the concept of a Function
Life Cycle that provides a description of functional behavior is introduced in [Gi21], with
the goal of adding capability to simulate the procedures and associated functions. The
concept of behavioral modelling for architecture validation is also introduced in the system
development process defined in [Kal0]. No statement is made on modelling concepts or
utilized modelling languages in both works. In [Kal6] the authors use the Executable
System Engineering Method to create a development environment that supports automated
requirements verification using executable SysML. Requirements and executable behavior
models are formulated in finite-state machines and integrated into one toolchain to create
engineering products and ensure data consistency. The method covers a vast amount of
development aspects, however, neither ConOps related aspects like operational procedures
are considered nor is automatic code generation for integration with target hardware.

In order to mitigate hazards from failed functional elements in safety-critical systems, the
allocation of redundancy is usually applied. If during operation, the desired functionality
cannot be provided by the system, it is a common contingency procedure to reconfigure the
system to a safe state that may provide a degraded set of functions. A popular example is
the Airbus A320 law reconfiguration strategy after certain sensor failures [TLS06]. Other
concepts, that are referred to as runtime assurance, introduce functional dissimilarity with
the goal of reducing the rigour of verification for complex critical functions, by engaging
less performant but fully verified backup functions before the system enters an unsafe state
[MCC20]. It is thereby obvious, that the failure mitigation strategies, that are handled on
architecture level through the introduction of redundancy and functional reconfiguration,
includes an adaption in the behavior of the human operator due to the reduced functional
performance or defined contingency plans. We can see that the design choice, that was
taken during derivation of the systems architecture, influences the system operation and
hence, needs to be reflected in the ConOps such that the stakeholders expectations from the
operational domain can be consolidated with the contingency procedures. For that purpose,
we suggest to support this development iteration by utilizing two development artifacts:

. An Architecture Behavioral Model that simulates the architectural behavior, such
that failure mitigation strategies derived from functional analysis are validated. For
modelling of the behavior, we use finite-state machines as they provide an executable
and dynamic representation of a behavioral specification, such that validation can
easily be performed by simulative assessment of the design reference scenarios. For
the process of systematic state elicitation of the finite-state machines, the author
in [Vol4] suggests to consider a structured requirements inspection, a function
dependency analysis and knowledge from domain experts. Furthermore, various
engineering tools support the design and execution of finite-state machines. Due to
their formal definition they yield to powerful analysis techniques because it is possible
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to explore all possible sequences of states [LV11]. Hence, the model can be exploited
for formal analysis e.g. by model based safety assessment methods as suggested in
[AW13]. Finally, the model can be setup in a modular way, such that the state charts
can be referenced in other models used for code generation, which is supported e.g.
by MATLAB/Simulink and Stateflow.

. The architecture definition activity is finished once consistency between system
requirements, ConOps and the system architecture is achieved [Kal0O]. As operational
stakeholders of the system may not be from the technical domain, we suggest an
abstracting view onto the architecture behavioral model that helps to include all
domains into the discussion. We suggest to use the Operational Sequence Diagram
described below to validate the behavior captured by the Architecture Behavioral
Model with respect to the Design Reference Scenarios in a graphical representation,
that can be reviewed by all domains.

For realizing the design models that fulfill functions that are allocated to specific target
hardware elements, the state machines of the Architectural Behavioral Models can be
referenced if supported by the applied toolchain. At the Institute of Fight System Dynamics
of Technical University of Munich we use Mathworks Simulink and Stateflow Models to
integrate the state machines of the Architecture Behavioral Model into the Design Models.
For the purpose of code generation, we use a workflow that ensures certain objectives
derived from the foundational standards for safety critical software DO-178C/ED-12 and
DO-331/ED-216, that has been set up at the Institute of Flight System Dynamics. The
details of this workflow are out of the scope of this work and can be found in [Di20].

Finally, the right hand side of the V-Modell follows the well-known process of iterative
integration and verification of components and systems with the final goal of validation of
the integrated system with respect to stakeholder expectations.

2.1 Operational Sequence Diagram

The architecture definition is finalized once the ConOps, the system requirements and the
system architecture are consistent, which is an iterative activity. For that purpose, multiple
domains need to convert towards an agreed upon set of Design Reference Scenarios. The
usually utilized graphical representation of finite-state machines, the state transition diagram,
which is also suggested in [Gi21] by means of a Functional Life Cycle, contains all states with
respective transitions. For complex systems, this representation might quickly overwhelm
non-developers from other domains. The trace of a finite-state machine represents the state
response together with the input sequence that triggers it [LV11]. Thereby it captures the
behavior of the finite-state machine and hence suites our purpose of providing a simplified
representation of the behavioral system architecture model. In the following, we refer to the
trace of the Behavioral System Architecture model as an Operational Sequence Diagram,
which fulfills two tasks in our suggested process:
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. It provides a graphical format to validate the system behavior in reviews with project
members from other domains and to implement the Design Reference Scenarios in
the ConOps.

. It supports the definition of initial draft versions of the Architecture Behavioral Model.

The Operational Sequence Diagrams may not necessarily need be derived after an
initial Architecture Behavioral Model has been designed by means of a finite-state
machine. The method of abstract state machines seems to be well suited to fit into
the herein suggested process, as it allows to define so called "ground models"that
constitute a blueprint of the implemented piece of real world, thereby providing
means for model validation by simulation and property verification via mathematical
proof [B610].

3 System Description
Due to the iterative process of architecture design and ConOps definition, we here assume
an initial architecture design has been derived and step into the process that validates the

Design Reference Scenarios. The core components of the digital flight control system are
given in figure 3. Pilot inputs are received by the remote control (RC) through the available

APCU
PDCU J

Fig. 3: Block diagram of the core components of the digital flight control system and the functional
communication channels utilized for system automation.

human-machine interface (HMI) elements like sticks or switches and transmitted to the
onboard receivers, that are omitted here for simplicity. The Flight Control Computer (FCC)
is the primary source of actuator commands, that has enough computational resources
available to host complex experimental flight control laws in its application layer. The system
architecture is equipped with an air data, attitude and heading reference system and multiple
backup inertial measurement units that provide the required feedback measurements like
body rates and euler angles. As they play a secondary role for the automation considered
in this paper, we omit them in the figure. The Pilot Data Concentrator Unit (PDCU) is an
additional digital unit with less computational resources that hosts the backup law, which is
arigid direct law (DL) that maps the stick deflections to the control variables of the actuator
position control unit (APCU). FCC and PDCU provide their computed actuator control
commands to the APCU via dedicated communication channels. The APCU merges the
received commands based on a simple selection logic, that prioritizes PDCU commands as
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soon as they are received, and provides control of the actuators, which are as well omitted
in the figure for simplicity. Finally, the PDCU receives feedback of the APCU about the
availability of signals, transmitted by the FCC. The system architecture furthermore features
redundant power supplies, onboard receivers and feedback sensors for inertial data. The
APCU has been planned to host a high level of internal redundancy such that the system
could also fulfill reliability-related requirements. The details of these activities are out of
the scope of this paper and we consider the architecture design as given. Two contingency
procedures drove the design of the automation. They can be formulated by the folowing
system requirements:

. During flight, the pilot shall be capable of engaging the direct law upon a single
request.

. In case of a loss of the FCC, the PDCU shall take over command authority.

The first procedure is driven by the experimental nature of the flight control laws that shall
be tested. As the probability of unintended behavior is higher for flight law algorithms
that are yet untested in flight, the desired contingency procedure is the degradation to a
beforehand tested direct law. Obviously, the direct law needs to be tested first without an
available backup, but that risk has been accepted within the project. The second procedure
has been defined to mitigate the risk of severe system damage due to hardware failures
of the FCC. Even though the developed system has been tested to operate on the target
plattform in grounded tests - high onboard vibrations have been identified as a risk as they
cause physical loads on hardware-communication and power-supply interfaces, as well as
the hardware-internal circuits. Finally, it was declared an aim of the project to increase the
experience in the domain of fault-tolerant flight control system design at the Institute of
Flight System Dynamics of the Technical University of Munich.

4 Specification

In the following, we present the definition of the system states, the pilot interfaces and
present an exemplary Design Reference Scenario in an Operational Sequence Diagram in
this section.

4.1 Automation States

The design approach of the system states widely follows the hierarchical decomposition
structure that is suggested in [KH18]. Figure 4 provides an overview of the states allocated
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Fig. 4: Hirarchical decomposition structure of component states for PDCU (left) and FCC (right).

to the PDCU and FCC which includes the hirarchies of the states that are defined by several

levels:

. Level O: This Level has two states, Initializing and Executing. After boot-up of the
component, it will start in the Initializing state, waiting for confirmation timers in the
input data handing of the application layer to timeout, such that a valid integrity state
for available inputs can be defined. In Initializing state, the component remains silent
on its communication output channels linked with the APCU. Transition to Executing
is triggered after all timeouts have passed.

. Level 1: This Level defines the component behavior with respect to digital output
communication channels that are linked with the APCU.

Standby: The component remains silent at its communication channels that are
linked with the APCU, no data is transmitted.

Build-In-Test (BIT): The component executes a build-in-test to verify the
correct APCU response to predefined output signals.

Armed: Pre-conditions are fulfilled, such that the component is ready to transmit
actuator command outputs of a flight law to the APCU, no data is transmitted.

Active: The component transmits actuator command outputs of a flight law on
the APCU communication channel.



158 Hannes Hofsif3, Barzin Hosseini, Julian Rhein, Florian Holzapfel

. Level 2: This level defines the flight law that produces the command outputs of the
component transmitted to the APCU.

- Direct Law (DL): A rigid feed forward law that maps the stick deflections of
the RC to the actuator control variables.

- Stability Augmentation (SA): An augmented direct law that utilizes body rate
feedback to increase the damping of the helicopter response.

- Rate Law (RATE): This law interprets stick deflections of the RC as desired
rotational rates and considers body rotational rate feedback to shape the desired
helicopter response to stick deflections.

The details of the flight laws are out of the scope of this work, in future it is furthermore
planned to include higher modes of feedback control such as attitude and translational rate
response types.

4.2 Pilot Interface

Besides the definition of the system states, we need to define the pilot’s inclusion into the
operation of the system. From the first system level requirement above, we can already
derive, that the pilot needs to perform a dedicated action to engage the direct law. Hence,
the system needs to provide suitable interfaces for all procedures that include an action of
the pilot. According to [Bi96] a main challenge in designing system automation for flight
control systems is complexity. Increasing automation complexity inherently increases task
complexity for the operator, which again increases the opportunities that the system is used
beyond its capabilities or without regard to its constraints or rules. Therefore, our design
approach aims at minimizing task complexity by clearly assigning input signals to state
transition requests that are easily interpretable. The following set of logical input signals
has been identified:

. DL engage and disengage request: The signal that engages the direct law.

. BIT request: The signal that triggers the transition from Standby to BIT state in the
level 1 FCC automation.

. FCC engage and disengage request: The signal that triggers the transition from Armed
to Active in the level 1 FCC automation.
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. Flightlaw request: The signal that triggers the transitions between the flight law states
in the level 2 FCC automation

After their definition, we allocated the signals above to switches on the RC. All switches
are two-position toggle switches except for the switch that hosts the law requests, which
has three positions. We decided to use switches instead of pushbuttons, especially for the
engage and disengage requests, as switches give a direct visual feedback of the current
requests to the pilot, thereby easing the pilot’s mode awareness. Besides the pilot HMI via
the RC, the system includes a ground station that receives data from all system components
for monitoring of all relevant internal logical states and output signals.

4.3 Operational Sequences

Rgst: FCC Arm Rgst: FLSA Rgst: FCCEngage Rgst: DL Engage Rgst: FCC Disengage
: FCC : : FCC : : FCC : : FCC : : FCC : : FCC : : FCC :
I Standby I | BIT I I Armed I I Active | | Active | I Active I I Armed I
1| FL-NA | I 1| FL-na 1 1| FL-DL | |1 1| FL-sa | I 1| FL-sa | 1 1l FL-DL | |1 1| FL-oL |1
1 |’I |»I |‘I |»I I»' |‘I 1
1 PDCU 1 | PDCU 1 1 PDCU 1 1 PDCU | | PDCU 1 1 PDCU 1 1 PDCU 1
1] standby |1 I| standby |1 1] standby |1 1] standby |1 I| standby || 1 Active 1 1| Active 1
! APCU 1 ! APCU ! ! APCU 1 ! APCU ! ! APCU ! ! APCU 1 ! APCU 1
pefault |1V pefaut |V N pefaur ' M peraur ' | kcc I L T
[repp—— L=———= L= L=———2"1 L=—==—2 L= L==—21

Fig. 5: Operational Sequence Diagram for an exemplary Design Reference Scenario: Switch of
command authority to the DL hosted on the PDCU by a single pilot request while the system has
started up with the FCC in command which is defined as the nominal system startup procedure.

An example for an Operational Sequence Diagrams that captures a Design Reference
Scenario is depicted in figure 5. The illustrated procedure shows a take-over of command
authority with the PDCU upon a single pilot request for the direct law. If the pilot triggers
the dedicated request for the direct law on the remote control, the PDCU level 1 state
transitions to Active, as the reason for the pilots request is likely to be a failure on the
FCC, which hosts the experimental laws. Hence, a conservative provision of the direct
law is performed by shifting the command authority to the PDCU. Note that the FCC also
degrades its internal mode on level 2 to the direct law, in case it operates nominally. By
this procedure, the intended take-over capability can furthermore be verified in a flight test
without a failure of the FCC actually being required. Thereby we reduce the risk during
the test as the pilot is prepared for a degradation in the control law and no pilot reaction
delay needs to be considered. The sequences are plotted event-based, such that each of the
blue arrows indicates a transition in at least one component state. This corresponds to the
trace of the finite-state machine that implements the Architectural Behavior Model that is
presented in section 5. Transitions can therefore only be triggered by external events like
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pilot requests depicted by vertical arrows, or by time delayed transitions that occure after
entry into certain states, like the transition from BIT to Armed state in the level 1 states of
the FCC. Failure events are also considered as external event inputs.

S Design

The design of the Architecture Behavioral Model has been carried out in MATLAB Simulink
and Stateflow models. After their simulative validation based on the reference scenarios as
presented in section 6, we integrated the state machines into the Simulink application layer
Design Models for the FCC and the PDCU, from which C-code was automatically generated.
Beneath the state machines, these models contained the functionality of the control laws as
well as further input and output handling functionalities. In this section we describe the
design of the logics that trigger the transitions between the states defined in section 4.1.
Similar to the procedure in [Kr20], we present the state machines and summarize its input
and output signals in interface tables. Due to their simplicity we omit the presentation of the
level 0 logics, which are the same on FCC and PDCU. After boot-up, the Initializing state is
entered and a transition to the Executing state is triggered several cycles later. Initialization
is defined to be the time interval until confirmation timers at the application layers input
handling module, which is not discussed in this work, have timed out, such that system
health data that is provided to the system automation can be considered to be valid. The

{FC_level1_lgx = FC_level1_lgx.STANDBY}

STANDBY
[rast_bit_flg == true]

{FC_level1_lgx = FC_level1_lgx.STANDBY} | (FC_levell_lgx =FC_levell_Igx.BIT}
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Fig. 6: FCC Level 1 state machine.

FCC level 1 state machine is given in figure 6. The transition action in the initial transition
is necessary, as the FCC level 1 state machine is disabled as long as the FCC level O state
machine is in the initializing state. The respective structure of state machines in the Simulink
design is given in [KH18]. Hence, the output FC_levell_lgx is set to its initial value, which
is defined to be unused. The request-based transitions must be triggered by the pilot via
the HMI inputs defined in the previous section. When entering the BIT state, an automatic
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Tab. 1: FCC Level 1 Interface

Name Direction  Datatype
rgst_bit_flg input boolean
unavail_flg input boolean

rgst_engage_flg input boolean
rgst_disengage_flg input boolean
bit_passed_flg input boolean
bit_failed_flg input boolean
FC_levell_lgx output enumerated

build in test can be executed, to verify the correct response of the aircraft to predefined
sequences of FCC actuator command signals. The detailed design of the built-in test is out
of the scope of this work. The bit_passed_flg and bit_failed_£f1lg are set according to
the automatic assessment of the built-in test and hence the operation of the system with
the FCC is forbidden in case of a built-in test failure. The transitions to the Standby state
from the Armed and Active states are coupled to the unavail_f£1g. This signal is set to true
based on the functional capability that the FCC can provide. As the main task of the FCC is
to host flight control laws, a minimum set of valid input data needs to be received by the
application layer, such that any flight law can provide valid outputs. In our case, all flight
laws hosted by the FCC need at least valid data transmitted by the RC as it contains the stick
deflections as required inputs of all flight control laws and the aforementioned pilot discretes.
Hence, the unavail_f1g is set to true if no valid RC data is received in the input handling
section of the FCC application layer. Figure 7 illustrates the state machine of the FCC

O2 O2 O
1 [(rgst_rate_flg == true && rate_avail_flg == true... 1 __

&& law_inferlock_flg == false)] T A

FC_level2_lgx = E FC_level2_lgx.RATE; = =9 = :

S L } && law_interlock_flg == false]

RATE [(rgst_dI_flg == true) || rate_avail_flg == false.

|| (rqst_sa_fig == true && sa_avail_flg == true. [rgst_dI_flg == true
&& law_interlock_flg == false)] || sa_avail_flg == false]

2.-{FC_level2_lgx = Enum_FC_level2_Igx.SA}

SA
[(rgst_dI_fig == true.
{FC_level2_Igx = Enum_FC_level2_Igx.RATE} || sa_avail_flg == false)]

O 2 1 O
[rgst_rate_flg == true {FC_level2_lgx = Enum_FC_level2_lgx.DL}
&& rate_avail_flg == true
&& law_interlock_flg == false]

. [law_interlock_flg == false &&((rgst_sa_flg == true &&... BL
[rast_sa_fig == true] sa_avail_fig == true) || (rqst_rate_flg == true &&
{FC_level2_lgx = Enum_FC_level2_Igx.SA} "} ic auai fig == true))]

O 20

Fig. 7: FCC Level 2 state machine.

level 2 states. Similar as above, the Simulink design ensures that the state machine’s output
signal FC_level2_lgx is set to unused as long as the level 1 logics is not in the Active or the
Armed state. For the initial flight tests, the opportunities of triggering a mode transition in
the FCC level 2 logics should have been reduced to the minimum possible to reduce the
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Tab. 2: FCC Level 2 Interface

Name Direction  Datatype
law_interlock_flg input boolean
rgst_rate_flg input boolean
rgst_sa_flg input boolean
rgst_dl_flg input boolean
rate_avail_flg input boolean
sa_avail_flg input boolean

FC_level2_lgx output enumerated

occurrence of transients in the FCC actuator command outputs to a small set of predefined
system states. Hence, the system should forbid the pilot to trigger state transitions to SA
or RATE when controlling the helicopter in flight. We accounted for this functionality by
introducing the law_interlock_f1g and set it true if the FCC level 1 logics is not in Armed
state or if the DL is requested by the dedicated switch for the DL request on the RC. Note
that the input signal rqst_d1_£1g is defined as a logical "or "operation of the DL engage
request that is triggered via its dedicated switch and the Flight law request being set to DL
which is equal to the switch being in the down position. Furthermore, we allow automatic
degradations of the active flight law due to missing resources required to obtain a valid
output of the respective flight law. For example, if body rate measurements are not received
by the FCC application layer, both rate and stability augmentation cannot produce valid
outputs, while the direct law does not require these measurements as it is designed in a feed
forward manner. Hence, an automatic transition to the direct law would be triggered as the
rate_avail_flg and the sa_avail_£1g would both be set to false. Finally, figure 8 shows

O

{PD_level1_lgx = Enum_PD_level1_Igx.STANDBY}

[((APCU_FCC_valid_fig == false && rqst_FCC_engage_flg == true) ||..

STANDBY rqst_DL_engage_fig == true) && unavail_flg == false]

{PD_level1_lgx = Enum_PD_level1_Igx. STANDBY}

{PD_level1_lgx = Enum_PD_level1_lgx.ACTIVE}

[(rgst_DL_engage_flg == false && rgst_FCC_engage_flg == false) || ..

(rgst_DL_engage_flg == false && rqst_FCC_engage_flg == true &&. ACTIVE
APCU_FCC_valid_flg == true) || unavail_flg == true]
O

Fig. 8: PDCU Level 1 state machine.

the state machine for the PDCU level 1 states. We designed the initialization of the output the
same way as for the FCC level 1 states. The transition from Standby to Active state considers
the d1_rgst_engage_flg as well as the fc_rgst_engage_£f1g that are both commanded by
the pilot discrete signals on the RC. As long as all conditions for the PDCU are met to
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Tab. 3: PDCU Level 1 Interface

Name Direction = Datatype
APCU_FCC_valid_flg input boolean
unavail_flg input boolean
rgst_dl_engage_flg input boolean
rqst_fcc_engage_flg input boolean

PD_levell_lgx output enumerated

provide valid direct law outputs, it will either start transmitting commands to the APCU if
the pilot requests the direct law via the dedicated switch or if the pilot requests the FCC to
be engaged, but the APCU does not receive the FCC commands. This could be the case if
the FCC loses power supply during flight or if an internal monitoring of the FCC prevents
the transmission of commands to the APCU after the detection of a failure to maintain
behavioral integrity throughout the system. Hence, this transition logics implements the
second contingency procedure defined in section 3 as it ensures the take-over of command
authority by the PDCU if the FCC has failed. Still, the pilot can operate the system without
an available FCC by only commanding the dedicated DL engage and disengage request.

6 Validation

In this section, we validate the design described above in Simulink simulations. For that
purpose, we set up a Simulink test harness model and integrated the described state logics of
FCC and PDCU that we also use for code generation into the model. This simple integration
model serves as a behavioral model of the integrated real-world-system and hence, we
use it for model-based validation of the system behavior with respect to the specification
given by the operational sequences defined in diagrams like the one in figure 5. The state
transitions can be triggered by sequences of simulated pilot HMI input signals as defined
by the interfaces of the state machines in tables 1, 2 and 3. The correctness of the state
transitions can be assessed by the state machine outputs, that are designed to describe the
currently active state, and by a respective cmd_transmit_f£1g of the FCC and the PDCU
application layers. These signals trigger the command transmission in the respective driver
software that was designed by hand-written C-code and hence is out of the scope of this
work. The input sequence on the left triggers the state logics on the right in the order
specified by the operational sequence diagram. Validation is performed by assessing the
state transitions provided by the simulation with respect to the transitions specified in the
diagram. The results for the simulated operational sequence that is specified in figure 5
are depicted in figure 9. After boot-up, we simulate the pilot to start the build-in-test by
operating the mechanically centered switch at t = 1s and releasing it at t =2s. The FCC
transitions to the BIT state which is shown in the plot for FCC_levell_lgx and transitions to
the Armed state after the built-in test has passed at t = 3s. Next, we set the rqst_FL_1gx
to the stability augmentation law at t = 5s. As this request is allocated to the mechanically
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latched three-position-switch, this action is equal to setting the switch to its middle position.
As a result, the FCC_level2_1gx transitions to the SA state. Flipping the switch for the FCC
engage request to the up position at t = 6s causes the rqst_FC_engage_flg to switch to
true and hence, FCC_levell_lgx transitions to Active and the FCC_cmd_transmit_flg is
set to true, indicating that the component now starts transmitting its command outputs to
the APCU. After t = 8sec we simulate to flip the switch to engage the DL by setting the
rqst_DL_engage_flg to true. Thus, PDCU_levell_lgx transitions to Active state and the
PDCU starts transmitting direct law commands as a result of the FCC_cmd_transmit_£flg
switching to true. As the APCU component hosts a simple source selection that selects
PDCU commands if command data is received and else selects FCC commands if received, a
switch of command authority from FCC to PDCU has now been accomplished. Furthermore
also the FCC_level2_lgx transitions to DL and hence direct law commands are transmitted
also by the FCC. Finally, at t = 9s, we simulate to flip the FCC engage request back to
the down position by resetting the rqst_FC_engage_f1lg to false and the FCC_levell_lgx
transitions to Armed state, the FCC_cmd_transmit_£f1g settles to false, indicating that the
FCC stops transmitting commands to the APCU. A switch in the APCU_FCC_valid_£f1g is not
used for this specific scenario. Still, we can validate the behavior of the PDCU as it remains
silent as long as the APCU_FCC_valid_f1g and the rqst_FC_engage_£flg remain true and
the rqst_DL_engage_flg remains false. The design has been validated in multiple further
scenarios like the one presented here, using the abstracted integration model. Also the
automatic take-over of command authority in case of a loss of the FCC has been validated
by means of the scenario specification.
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true ! . . ACTIVE
—rqst_BIT_flg
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PDCU_level1_lgx
false unused
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Fig. 9: Result of a numerical simulation with the Architecture Behavioral Model that integrates the
state logics of PDCU and FCC.

7 Conclusion

In this work, we present the model-based design and validation of the system automation for
the digital flight control system of an unmanned coaxial helicopter with a maximum take-off
weight of 600 kg that is developed in a cooperation of the Technical University of Munich,
edm-aerotec GmbH and ZF Luftfahrttechnik GmbH. We follow a holistic approach that
centers an executable model of the system architectures behavior as the source for operational
validation activities and code generation. We propose the novel definition of Operational
Sequence Diagrams that provide a simplified view onto the Architecture Behavioral Model
by means of the trace of its finite-state machines for specification of Design Reference
Scenarios in the ConOps. Furthermore, we suggest to integrate the Architecture Behavioral
Model in the Design Models used for automated code generation by means of model
references. Thereby we ensure consistency throughout all design activities with a lean
process. To the best of the authors knowledge, this development approach is new. It is
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applicable for development projects that consider the loss of a large demonstrator aircraft
as a key project risk. Leveraging the idea to validate design assumptions by an abstracted
finite-state machine before designing an Architecture Behavioral Model is content of future
work. We present the application of the process for an exemplary function that realizes the
switch of command authority between two sources of actuator commands. Our approach
allowed us to efficiently introduce the desired contingency procedures, has contributed to
a seamless hardware integration phase and thereby reduced the overall project risk. The
system has been tested in caged flight tests in November 2022 and performed as expected,
tests in free flights are planned for early 2023.
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