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Abstract

When systems are designed to tolerate faulty components, ap-
plication data must be protected against loss. This is reached
by a distribution of data together with addition of redundant
elements according to an erasure-tolerant code. In this paper,
we elaborate architectures for such a fault-tolerant data stor-
age. The concepts are originated from distributed systems and
mostly implemented by software. We extend these concepts for
usage in the scope of system on chip architectures. On the
one hand, systems on chips, and multi core systems are em-
ployed as a platform for code calculation - on the other hand,
such architectures include these techniques to fulfill their own
functionality. We explain how data coding is mapped to (i)
multi core CPU structures and (ii) implemented in a special-
ized design on a FPGA. We compare the time for coding on
these architectures for a Cauchy-Reed/Solomon and a classi-
cal Reed/Solomon code.

1. Introduction

Coding of data with erasure-tolerant codes protects against

data loss in systems composed of several components that fail

independently. Such systems range from networks of comput-

ers to system-on-chip architectures (SoC). For coding, data

is split into elements and distributed across k regions. Ad-

ditional redundant elements are added by the code and dis-

tributed across additional m regions. Well designed codes al-

low to tolerate up to m failures, i.e. regions that are faulty and

indentified by a diagnosis system. A typical application field

are distributed mass storage systems that can tolerate failures

of storage resources. These resources are mostly hard disks,

but also solid-state-based storage devices. The loss of data

is tolerated by decoding the remaining data and redundancy

pieces to the original data. As well, data at several locations

within a system on chip (SoC) can be the subject of erasure-

tolerant data coding. Therefore, we use the term storage loca-
tions for the sake of universality, which includes memory as

well. Particularly, future systems contain several independent

functional units and storage locations that are connected by an

on-chip network.

The demand for such a failure-tolerant data storage (and mem-

ory) originates from the trend of shrinking semiconductor fea-

ture sizes and high clock frequencies. This causes unreliable

operation that manifests in failures of functional units and data

corruption as well. In such a situation, the faulty functional

units need to get deactivated. When a unit acts as a storage

location, the contained data is lost. In addition, chip regions

can be deactivated by a management component, due to over-

heating effects or power saving reasons. All these phenomena

require the system to deal with partial failures and to provide

fault-tolerance techniques.

However, erasure-tolerant coding was often considered as too

time consuming and too resource-consuming. This changed

with the availability of multi-core processors, multi-core SoCs

and with the integration of FPGAs into computing systems.

These architectures offer a sufficiently high number of re-

sources (processor cores, logic cells, etc.) to implement data

encoding and decoding fast enough. Moreover, the calcula-

tions can be efficiently mapped to the structures for parallel

operation.

In this paper, we show how to express codes by equations.

These equations can be mapped to several architectures. Their

interpretation covers the core calculations for coding that are

tailored for the specific data layout and computing platform.

The paper is organized as follows. Section 2 introduces into

erasure-tolerant coding. How these codes are implemented

in different hardware platforms is described in Section 3. In

Section 4 the coding cost on a single CPU system, a multi core

system and a FPGA-based system is compared.

2. Erasure-tolerant data coding

Codes are typically specified using xor operations that ara ap-

plied across selected bits of the original data. This results in

a number of redundant bits. Most erasure-tolerant codes are

so-called systematic codes, that store original data bits and

redundancy bits at different locations. A wide variety of xor-

based codes can be described in this way. Common examples

are the parity code, the Hamming code[4], Evenodd[1], or

Cauchy-Reed/Solomon[2]. For a distributed storage system,

we developed a xor-based description of the encoding and de-

coding calculations[10]. Such a description not only allows

to parameterize which code is applied, it also defines the style

of coding. This style defines either iterative calculations of

redundant elements or calculations of redundant elements in-

dependently from each other.

All codes described by xor-based equations can be categorized

by the horizontal-vertical scheme (HoVer)[3]. It is a common

reference scheme that unifies most xor-based codes by defin-

ing the element placement pattern and the calculation algo-

rithm for redundant elements. Data elements are arranged in

a two-dimensional array spanned by (i) different storage loca-

tions and (ii) several elements on each location. This allows

to define codes that combine selected elements from differ-

ent locations, the so called two-dimensional codes. Specifi-

cally, original data is arranged in a k×ω array in this scheme,

and the horizontal redundancy in a m × ω array. The pa-

rameter ω specifies how many different bits of a code word

are placed at a storage location. For larger data sets, multi-

ple code words are mapped onto storage locations in a repet-



itive way. When ω = 1, i.e. only one dimension is re-

quired, the codes are called one-dimensional ones. Examples

for one-dimensional codes are the parity code and Hamming

codes. Two dimensional codes are for instance Evenodd and

the Cauchy-Reed/Solomon code (CRS). HoVer specifications

can be easily transformed to our equation-based code descrip-

tion.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

horizontal
redundancy

. . .

. . .

. . .

. . .

original
data

different locations for data storage

...

...

...

... vertical
redundancy

el
em

en
ts

Figure 1. Horizontal-vertical scheme

The xor equations are provided by a dedicated component,

which either is a service used by a storage system, or a dedi-

cated functional unit on a chip. The equation generation can

be a complex task, compared to the raw interpretation of the

xor equations.

3. Architectures supporting coding

It will be explained how to map the equation-based code

description to several hardware platforms. A Cauchy-

Reed/Solomon code (CRS) is used - classified as a 2-

dimensional xor-based code.

In 3.1, coding on a multi-core CPU is explained. Another

platform, a FPGA-based hybrid computing system, is focused

in 3.2. Both architectures contain computing elements that are

used for calculation according to equations. Storage locations

are another type of elements, e.g. internal memory in a SoC or

external memory and storage. Possibly, computing elements

and storage locations can be placed together on a common

unit, e.g. on a processor core with local memory.

3.1 Case study: Multi-core CPU

Typical multi core CPUs combine several processor cores on

a chip. Today this is a number between 2 and 8 cores. Mostly,

the cores are connected by a hierarchy of split and shared

caches and share an interface to external memory. A few

systems also contain local memory for the processors, for in-

stance the CellBE chip. Multi-core CPUs allow to use the

cores for the execution of different coding equations in par-

allel. When there is local memory, storage locations can be

included in the system, such as assumed for our design.

A particular case for data storage within a multi core CPU

will be explained for a CRS code with k = 5 data storage

locations and two locations for redundant elements (m = 2).

The data elements have to be arranged in a 5 × 3 array with

ω = 3 elements on each storage location. There are six redun-

dant elements that are correspondingly distributed across two

additional storage locations. We refer the elements with num-

bers: elements 0 to 14 are the data elements, the elements 15
to 20 are the redundant elements. According to an algorithm

described in [2, 8] and particularly chosen generator parame-

ters, encoding equations are found as follows:

eq. 1: 15 = XOR(2,3,4,5,7,9,11,12)
eq. 2: 16 = XOR(0,2,3,7,8,9,10,11,13)
eq. 3: 17 = XOR(1,3,4,6,8,10,11,14)
eq. 4: 18 = XOR(0,2,4,6,7,8,11,12,13)
eq. 5: 19 = XOR(0,1,2,4,5,6,9,11,14)
eq. 6: 20 = XOR(1,2,3,5,6,7,10,12)

These equations are independent and six cores can be used to

calculate each redundant element independently from another.

This direct encoding requires 45 xor operations in total with 8

operations for the most costly equation. Compared to encod-

ing on a single core, a speedup of 5.6 is reached on 6 cores,

with an efficiency of 0.93.

Direct encoding includes redundant operations. These can be

eliminated by changing to a so-called iterative coding style.

In this case, the redundant elements are calculated using other

redundant elements and temporary elements. This eliminates

redundant calculations, but also introduces dependencies and

limits the parallel execution of calculations. On the other

hand, the total number of operations is reduced, which often

leads to a faster coding in result. The iterative encoding equa-

tions for the same code (CRS, k = 5, m = 2) are derived as

follows, using the symbols A . . . H for temporary elements.

eq. 1: 15 = XOR(B,C,D)
eq. 2: 16 = XOR(D,E,F)
eq. 3: 17 = XOR(3,4,8,E,H)
eq. 4: 18 = XOR(2,4,6,7,C,F)
eq. 5: 19 = XOR(0,2,9,11,B,H)
eq. 6: 20 = XOR(5,7,10,12,A,G)

eq. 7: A = XOR(2,3)
eq. 8: B = XOR(4,5)
eq. 9: C = XOR(11,12)
eq.10: D = XOR(7,9,A)
eq:11: E = XOR(10,11)
eq:12: F = XOR(0,8,13)
eq:13: G = XOR(1,6)
eq:14: H = XOR(14,G)

This iterative encoding requires 33 xor operations in total. The

longest path consists of 7 xor operations. The iterative style

provides a faster and more efficient calculation of the redun-

dant elements. Figures 2 and 3 show the regions for data stor-

age, regions for code calculation and the data communication

path for the two coding styles.

The equations that are prepared for a system can be tailored

specifically for an available number of cores.
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Figure 2. Direct coding on a multi core CPU
with different storage locations

Decoding of data in case of a unit failure works with xor-based

equations as well. A dedicated component provides the de-

coding equation for the particular failure case, similarly to the

encoding equations. These decoding equations are either pro-

vided on demand, i.e. at the time when the failures are de-

tected, or are selected from a pre-calculated set of equations.

Similarly to encoding, a selection of a (de-)coding style and a

mapping of equations to functional units is necessary.

3.2 Case study: FPGA-based
Hybrid Computing System

A hybrid computing system consists of several differently

structured computing resources. For example, these can be

field programmable gate arrays (FPGAs) that are coupled with

multi-core CPUs. Today, a couple of commercial high per-

formance computing systems are designed as a combination

of CPUs and FPGAs, for instance the Cray XD-1 system, or

SGI RASC-Brick (Reconfigurable Application Specific Com-

puter). We use the FPGA as platform for a coding coproces-

sor.

The redundant elements of Reed/Solomon-coded data are cal-

culated by several multiplication units and summators. The

encoding can be described on the level of single bits, where

multiplication maps to logical ’and’ and the sum is an xor op-

eration. Such an architecture follows CRS as a variant of the

Reed/Solomon code. The direct encoding style is used. For

these calculations, the FPGA is configured to a set of XOR-

calculation engines that are connected properly, according to

the equation-based description of the code.

Alternatively, coding can also be implemented by a classi-

cal Reed/Solomon code [5, 7] by combining several words

(groups of ω bits that are placed continuously on a particular

storage location) using Galois Field arithmetics. The latter ap-

proach has been experimentally evaluated in [9].

For a system with 5 data storage location (elements e1, e2, e3,
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Figure 3. Iterative coding on a multi core CPU
with different storage locations

e4, e5) and two locations for redundant data (elements e6, e7),

the equations are specified as follows:

e6 = g1,1 · e1 + g2,1 · e2 + g3,1 · e3 + g4,1 · e4 + g5,1 · e5

e7 = g1,2 · e1 + g2,2 · e2 + g3,2 · e3 + g4,2 · e4 + g5,2 · e5

For the elements, the notation ei is used instead of the ele-

ment number, to distinguish elements from constants. The

constants gi,j form a part of the generator matrix that is loaded

into the coprocessor. The coprocessor implements structures

and a data path that are directly adopted from the data flow for

Reed/Solomon calculations, according to [7]. For the multi-

plication we use a specialized multiplier architecture [6], in-

stead of lookup tables. This multiplier is able to generate one

product in a single clock, when included into a pipelined ar-

chitecture. The rest of the coprocessor structures are designed

as follows:

• The multiplications are done in parallel by a 2-

dimensional array of Galois field multipliers. On a Xilinx

Virtex4-LX160 FPGA we could place 8 × 8 multipliers

together with the other components on the system. This

allows to calculate 8 redundant elements in parallel for

k = 8 data elements.

• The products are summed up by XOR gates that combine

corresponding bits of all products in a row. Every single

row produces a redundant element.

• The constant factors for multiplication are taken from a

matrix memory that is loaded once at the beginning of

the systems operation.

Fig. 4 depicts the encoding circuit that has been implemented

on a FPGA. A similar coding architecture can be used for de-

coding too. Then, the decoding equations are transformed to a

matrix and placed in the code matrix memory. In case of fail-

ures, with the remaining data and redundancy elements as an



input, the erased data elements are obtained. In the next sec-

tion, we provide a comparison of computation cost for single-

core-based, multi-core-based and FPGA-based coding.
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Figure 4. FPGA-based coprocessor for R/S
coding

4. Comparison

The computation cost, measured in the number of time steps,

is derived for different platforms. It covers CRS on a single

core, CRS on a multi core execution platform, classical R/S

on a FPGA, and for comparison for the optimum cost for a

MDS code on a single core system. The reference unit is the

time for a single xor operation. All costs are justified to that

base.

Optimum for sequential code calculation:

In the optimal case, k bits (one bit on every data storage lo-

cation) have to be combined for a single bit on a redundant

storage location. This requires k − 1 xor operations for every

redundant bit, and k − 1×m xor operations for all redundant

bits.

Copt = (k − 1) × m

This is a lower bound that holds for MDS codes, which

actually tolerate m faulty storage locations. It also expresses

the optimal calculation time on a sequential computation

platform, which is reached only by a few codes for special

parameters (k,m).

Cauchy–Reed/Solomon (CRS):

Computations are mapped to xor operations, which allows a

comparison to the optimum of MDS coding. However, more

than a single bit per storage location is included in the xor cal-

culations for a single redundant bit. This can be quantified by

a factor between 2 and 3 (see [8]), depending on the parame-

ters k,m and the construction of the code generator matrix.

CCRS = (FCRS × k) − 1) × m

using 2 ≤ FCRS ≤ 3

This factor FCRS corresponds to a comparison made in [1]

for ω = 8. A single Galois field multiplication costs 1.3

time units additionally to the cost of xor-ing the products

(+1). For a Reed/Solomon code, the factor 2.3 over the

optimum is obtained. It is notable that the cost of a classical

Reed/Solomon code is practically much higher, due to the

need for table lookup of products that are more costly than

xor operations.

CRS on a multi core execution platform:

The cost CCRS can be reduced by using multiple cores for the

calculation of different equations. In a system with p proces-

sor cores, a number of min(p, m × ω) cores can be actually

taken for code calculations. For example in 3.1, a number of

6 cores has been used, because of m = 2 and ω = 3.

In the best case, the cost is reduced by a fraction of min(p, m·
ω), compared to the original cost. This reduction has to be

weighted with the efficiency of parallel execution E, which is

0.93 for direct coding and 1.07 for iterative coding. The latter

efficiency includes the reduction of xor operations by reusing

intermediate results.

CCRS−multi = CCRS ·
1

min(p, m · ω) · E
(1)

The value E is strongly dependent on the code used; we use

the values above for the comparison.

FPGA-accelerated Reed/Solomon-Code:

The FPGA-based coprocessor combines parallel multiplica-

tion and pipelining of the stages multiplication and summa-

tion. As long as the multiplier array is large enough for the

required number of storage locations, redundant data can be

produced each single clock period. This corresponds to a time

of one xor operation for a set of m redundant bits, i.e. CFPGA

would be 1.

For a fair comparison we take the lower clock frequency of a

FPGA into account and introduced a factor T = fCP U

fF PGA
. For

example, this factor is 18 for a design that runs on 124 MHz

and have to compete with a CPU running with 2.2 GHz clock

speed.

Another limitation is the available space for multipliers and

summators. When using 64 multipliers and 8 summators, the

calculation requires � k
8

� × � m
8

� time units, solely for

the multiplication. When k > 8, the partial sums have to

be combined sequentially on another xor unit, which requires

(� k
8

� − 1) × m xor operations. The cost is derived as fol-

lows:

CFPGA = � k
8

� × � m
8

� × T + (� k
8

� − 1) × m.

The cost function for the different platforms are depicted by

plots in Figure 5 by varying k. The different plots are dis-

played for different numbers of redundant storage locations

m = 2, m = 4 and m = 6. A factor FCRS = 2.5 is used. The

results must be interpreted related to the word size of elemen-

tary operations, e.g. 32-bit wide xor operations of a processor

core.



The analysis reveals that both the multi core system and the

FPGA based design are faster than the optimum coding on a

single core system. But this is reached with different resource

consumption. The multi core system reaches the fastest speed

by using ω · m cores.

The FPGA-based design requires more time steps for coding,

but is still faster than a single core CPU and optimal coding.

This speed is reached with a relatively high number of units

(e.g. multipliers), which are far less complex than a CPU core.

It could be shown that multiple computation units within a

SoC - and also special designs for code calculations - can be

effectively used to speed up code calculations. This can help

to provide a reliable, an fast memory (or storage) for applica-

tions executed on a SoC.
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5. Summary

The concepts of erasure-tolerant codes for reliable data stor-

age have been analyzed for reliable memory and storage

within SoCs. The en- and decoding calculations, expressed

by equations, have to be mapped to several computation units.

On the one hand, this provides fast memory/storage access, on

the other hand it utilizes the available units.

It is a complex task to select a proper code and to map them

efficiently to the computation units. We demonstrated it using

examples and derived the coding cost for a multi core CPU

and a specialized design for en- and decoding. The analysis

shows that one can speed up coding significantly by using - or

wasting - a high number of processor cores for that purpose.
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