
Petri Net Analysis of Non-Redundant and Redundant Execution Schemes

Stefan Einer, Schweizerische Bundesbahnen, 3000 Bern, Switzerland, stefan.einer@sbb.ch

Bernhard Fechner, FernUniversität in Hagen, 58084 Hagen, Germany, bernhard.fechner@fernuni-hagen.de

Jörg Keller, FernUniversität in Hagen, 58084 Hagen, Germany, joerg.keller@fernuni-hagen.de

Abstract

The quest for high-performance has led to multi- and many-core systems. To push the performance of a single core to

the limit, simultaneous multithreading (SMT) is used. SMT enables to fetch different instructions from different

threads, hiding latencies in other threads. SMT also gives the opportunity to execute redundant threads (redundant

multithreading, RMT) and thus to detect faults by comparing the results of both threads. The instruction fetch algorithm

determines which instructions to fetch from which thread and therefore has great influence on processor performance.

This work investigates the influence of different instruction fetch algorithms on the performance of an SMT processor

by modeling it with Petri nets. Over the intrinsic results of a detailed processor simulation, our approach offers a generic

evaluation. Furthermore, we distinguish between homogeneous (redundant execution, RMT) and inhomogeneous

threads to determine the effects on the performance of each execution scheme with a dedicated instruction fetch

algorithm. For inhomogeneous threads, the effect of instruction fetch algorithms can be confirmed, but not for

homogeneous threads. Therefore, scheduling algorithms as simple as Round Robin can be recommended for redundant

execution.

1. Introduction

Today’s microprocessors execute programs in a

parallel superscalar fashion. The degree of

parallelization is limited by the available resources and

data dependencies. A technique to push the

performance of single-core processors to the limit is

multithreading. Here, the instructions of multiple

programs are partitioned into threads, being

independent instruction streams. Dependencies and

thus latencies within a thread can be hidden by

switching the processor context between threads

(Simultaneous Multithreading, SMT). SMT is able to

feed instructions of different threads to different

execution units. A major problem is to choose the

appropriate instruction to execute from the I-Cache. It

seems reasonable to consider the processor’s inner state

to decide what instruction to schedule onto the

instruction window. This is done through instruction

scheduling. The scheduling significantly determines

the performance of an SMT processor.

In this work, we investigate the influence of different

instruction fetch algorithms on the performance of an

SMT processor by modeling it with Petri nets.

Additionally, we examine homogenous and

inhomogeneous threads.

Typically, the threads executed on an SMT processor

differ from each other (inhomogeneous threads). The

idea to execute homogeneous threads on an SMT-

processor was first presented by [3]. There, a leading

(active) and a trailing (redundant) thread execute the

same process. The results are compared at the end of

the execution. On a difference, an error is signaled. The

work from [4] presents and evaluates different

instruction fetch algorithms for SMT processors. Their

experiments are based on a simulation of a specific

processor. The behavior of the underlying processor is

modeled in every detail. Thus, the model is complex

and the experimental results intrinsic. A more generic

approach is to evaluate the processor performance

through simulation [6]. Here, an SMT processor is

modeled by Petri nets. Our work is inspired by

Zuberek’s approach. A Petri net was developed to

evaluate different instruction scheduling algorithms,

including the behavioral model of an SMT processor.

From this, data of unknown behavioral phenomena,

including performance, can be derived. We distinguish

between redundant execution and multi-programmed

workloads.

The remainder of this article is organized as follows. In

Section 2, we briefly describe instruction fetch

algorithms and their evaluation criteria. In Section 3,

we present our Petri net model of an SMT processor,

and present and evaluate the simulation results in

Section 4. Section 5 concludes the paper.

2. Instruction scheduling for SMT

The instruction fetch phase within a processor works

optimal if the following criteria are fulfilled. A

minimum number of instructions is fetched after a

conditional branch. The waiting time of instructions in

the instruction window is as small as possible to avoid

congestions. As a consequence, the processing units

can be provided continuously with instructions. To

approximate these criteria, several strategies exist [4].

In the following, the four strategies to be analyzed are

described.

Round Robin statically chooses the next thread cycle-

by-cycle without considering the inner state of the

processor. For the sake of simplicity it ignores the

potential of dynamic scheduling strategies, but it was

implemented in current processors and serves as a

reference.

BRCOUNT counts the branch instructions in several

pipeline stages per thread including the instruction

window. The thread with the smallest number of

branch instructions will be selected for the execution.

The latency of control-flow conflicts is hidden.

MISSCOUNT tries to hide latencies caused by data

cache misses. Data dependent instructions will have to

wait in the instruction window until the data has been

loaded. MISSCOUNT counts the number of data cache

misses per thread. The thread which has the smallest

number of cache misses has the highest priority.

ICOUNT counts the number of instructions in several

stages. The thread with the smallest number of

instructions is preferred to execute next.

Two additional parameters determine the performance

of an instruction fetch algorithm in each cycle:

• P1: The maximum number of threads that the

fetch unit is able to fetch instructions from.

• P2: The number of instructions that the fetch

unit is able to extract from each thread.

Instruction fetch algorithms also differ in the following

points:

• A constant set of instructions can be fetched

within each cycle from a constant set of

threads. Here, P1 ⋅ P2 = b, where b equals the

total bandwidth of the instruction fetch unit.

• The context is changed if no instructions can

be fetched from the actual thread (P1 ⋅ P2 > b).

The losses in efficiency can be determined through a

comparison with an ideal (theoretical) parallelization.

The values I-Cache-V, IQ-Clog-V and Multipath-V
express this degradation. I-Cache-V occurs if no

executable instructions are in the instruction cache. The

execution will be prolonged in comparison with an

ideal parallelization. IQ-Clog-V occurs if the

instruction window is full. Multipath-V is caused by

latencies of conditional branches. It comprises

speculatively executed instructions, which are not

relevant for the program’s state, since the speculation

lead to an irrelevant path.

3. Generation of Models

Petri nets are a widespread means for modeling,

originally used for communicating automata [2]. Later,

specializations and extensions evolved; cf. e.g. [1]. In

the present investigation we use Stochastic Colored
Petri Nets (SCPN) and the tool TimeNet [5]. Petri nets

are bipartite graphs where nodes are either places or

transitions. Places in a Petri net can contain tokens.

Transitions can fire according to some rules and thus

remove tokens from places and/or put them onto

places. This token game allows changing the state of

the Petri net. Thus Petri nets are useful to describe

dynamic systems and simulate their behavior.

In our SCPN, we model the different stages during the

processing of an instruction as a sequence of linked

subnets. The instruction fetch algorithm to be used is

activated before simulation. Tokens are used for the

instruction and counter values. They also mark the

availability of resources and the selection of threads

(cf. Figure 1).

The subnets to describe the stages differ in complexity.

They comprise the models for the instruction fetch

algorithms, the instruction window and a generator for

instructions which is specific for our model. The model

assumes that multi-path execution is used to resolve

control flow conflicts, instead of applying simple

branch speculation. Moreover, we consider the

scheduling strategy used to avoid dispatch of

instructions from the instruction window that belong to

a thread currently subject to a data cache miss.

The model has the following parameters:

1. Probabilities for conditional branches and

misses in instruction and data caches

2. Latencies

3. Instruction window size

We model the instruction fetch algorithms from

Section 2 as a 1.8 variant, i.e. in every cycle we try to

take 8 instructions from one thread.

4. Simulation Results and Evaluation

The values for the model parameters were chosen in a

straightforward manner. As the qualitative evaluation is

mostly independent of the particular values, we refrain

from discussing them. We only distinguish whether the

parameter values (probabilities or time spans) are

identical for all threads or can be different for each

thread. Thus we obtain simulations with homogeneous
or inhomogeneous threads, respectively. The

distinction can be explained in a simplified manner as

threads belonging to the redundant execution of the

same program or threads belonging to different

programs.

Interestingly, the simulation with homogeneous threads

indicates no clear preference for a particular instruction

fetch algorithm, i.e. losses and throughput vary from

run to run in the same manner for all algorithms. The

presence of variations indicates that the performance of

the instruction fetch algorithms is dependent on the

particular details and circumstances of each run. Only

the simulations with inhomogeneous threads reveal

preferences for particular instruction fetch algorithms,

as indicated by the exemplary simulation result

depicted in Figure 2. As expected by [4], the IQ-Clog

loss is smallest with I-Count, followed by

MISSCOUNT. On the other hand, these algorithms

show more I-Cache loss than Round Robin or

BRCOUNT. We conclude that for redundant

execution, simple algorithms for the instruction fetch

are sufficient.

5. Conclusions

We have presented how to model and simulate the

behavior of an SMT processor with several instruction

fetch algorithms, including redundant and non-

redundant execution. Petri net modeling has the

advantage that it avoids emulation of the SMT

processor and already includes its known behavioral

patterns as features. In contrast to a previous

evaluation, our simulation distinguishes between

homogeneous (redundant) [3] and inhomogeneous

threads and different instruction fetch algorithms. For

inhomogeneous threads, we could confirm the effect of

instruction fetch algorithms, but not for homogeneous

threads. Instead, our results indicate that the effect of

an instruction fetch algorithm is strongly dependent

from a particular program run.

Figure 1: The Abstract Petri Net for Simulation

As a consequence, a processor using SMT to provide

fault tolerance by redundantly executing one thread can

be less complex than a typical SMT processor, by

choosing a simple scheduling algorithm such as Round

Robin.

References

[1] Einer, S.: Petri netzbasierte Spezifikation und

Analyse operationaler Prozesse am Beispiel

Eisenbahnsicherung. Dissertation, TU

Braunschweig, Fortschritt-Berichte, Reihe 20,

Nr. 373, VDI Verlag, 2003.

[2] Petri, C. A.: Kommunikation mit Automaten.

Dissertation im Fachbereich für Mathematik und

Physik der TH Darmstadt, 1962.

[3] Rotenberg, E. 1999. AR-SMT: A

Microarchitectural Approach to Fault Tolerance

in Microprocessors. In Proceedings of the
Twenty-Ninth Annual international Symposium
on Fault-Tolerant Computing (June 15 - 18,

1999). FTCS. IEEE Computer Society,

Washington, DC, 84.

[4] Tullsen, D. M. et al.: Exploiting Choice:

Instruction Fetch and Issue on an Implementable

Simultaneous Multithreading Processor.

Proceedings of the 23rd Annual International

Symposium on Computer Architecture,

Philadelphia, 1996.

[5] Zimmermann, A.; Knoke, M.: TimeNet 4.0 – A

Software Tool for the Performability Evaluation

with Stochastic and Colored Petri Nets – User

Manual. TU Berlin, Faculty of EE&CS

Technical Report 2007-13, ISSN: 1436-9915,

Berlin, 2007.

[6] Zuberek, W.M.: Modeling and Analysis of

Simultaneous Multithreading. 14th Int’l. Conf. on

Analytical and Stochastic Modeling Techniques

and Applications (ASMTA’07), Prag, 2007.

Figure 2: Comparison of Instruction Fetch Algorithms

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

RR Br-Count Miss-Count I-Count

Throughput

Multipath-V

IQ-Clog-V

I-Cache-V

