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Abstract

The quest for high-performance has led to multi- and many-core systems. To push the performance of a single core to 

the limit, simultaneous multithreading (SMT) is used. SMT enables to fetch different instructions from different 

threads, hiding latencies in other threads. SMT also gives the opportunity to execute redundant threads (redundant 

multithreading, RMT) and thus to detect faults by comparing the results of both threads. The instruction fetch algorithm 

determines which instructions to fetch from which thread and therefore has great influence on processor performance. 

This work investigates the influence of different instruction fetch algorithms on the performance of an SMT processor 

by modeling it with Petri nets. Over the intrinsic results of a detailed processor simulation, our approach offers a generic 

evaluation. Furthermore, we distinguish between homogeneous (redundant execution, RMT) and inhomogeneous 

threads to determine the effects on the performance of each execution scheme with a dedicated instruction fetch 

algorithm. For inhomogeneous threads, the effect of instruction fetch algorithms can be confirmed, but not for 

homogeneous threads. Therefore, scheduling algorithms as simple as Round Robin can be recommended for redundant 

execution.

1. Introduction 

Today’s microprocessors execute programs in a 

parallel superscalar fashion. The degree of 

parallelization is limited by the available resources and 

data dependencies. A technique to push the 

performance of single-core processors to the limit is 

multithreading. Here, the instructions of multiple 

programs are partitioned into threads, being 

independent instruction streams. Dependencies and 

thus latencies within a thread can be hidden by 

switching the processor context between threads 

(Simultaneous Multithreading, SMT). SMT is able to 

feed instructions of different threads to different 

execution units. A major problem is to choose the 

appropriate instruction to execute from the I-Cache. It 

seems reasonable to consider the processor’s inner state 

to decide what instruction to schedule onto the 

instruction window. This is done through instruction 

scheduling. The scheduling significantly determines 

the performance of an SMT processor.  

In this work, we investigate the influence of different 

instruction fetch algorithms on the performance of an 

SMT processor by modeling it with Petri nets. 

Additionally, we examine homogenous and 

inhomogeneous threads.  

Typically, the threads executed on an SMT processor 

differ from each other (inhomogeneous threads). The 

idea to execute homogeneous threads on an SMT-

processor was first presented by [3]. There, a leading 

(active) and a trailing (redundant) thread execute the 

same process. The results are compared at the end of 

the execution. On a difference, an error is signaled. The 

work from [4] presents and evaluates different 

instruction fetch algorithms for SMT processors. Their 

experiments are based on a simulation of a specific 

processor. The behavior of the underlying processor is 

modeled in every detail. Thus, the model is complex 

and the experimental results intrinsic. A more generic 

approach is to evaluate the processor performance 

through simulation [6]. Here, an SMT processor is 

modeled by Petri nets. Our work is inspired by 

Zuberek’s approach. A Petri net was developed to 

evaluate different instruction scheduling algorithms, 

including the behavioral model of an SMT processor. 

From this, data of unknown behavioral phenomena, 

including performance, can be derived. We distinguish 

between redundant execution and multi-programmed 

workloads.  



The remainder of this article is organized as follows. In 

Section 2, we briefly describe instruction fetch 

algorithms and their evaluation criteria. In Section 3, 

we present our Petri net model of an SMT processor, 

and present and evaluate the simulation results in 

Section 4. Section 5 concludes the paper.  

2. Instruction scheduling for SMT 

The instruction fetch phase within a processor works 

optimal if the following criteria are fulfilled. A 

minimum number of instructions is fetched after a 

conditional branch. The waiting time of instructions in 

the instruction window is as small as possible to avoid 

congestions. As a consequence, the processing units 

can be provided continuously with instructions. To 

approximate these criteria, several strategies exist [4]. 

In the following, the four strategies to be analyzed are 

described. 

Round Robin statically chooses the next thread cycle-

by-cycle without considering the inner state of the 

processor. For the sake of simplicity it ignores the 

potential of dynamic scheduling strategies, but it was 

implemented in current processors and serves as a 

reference.  

BRCOUNT counts the branch instructions in several 

pipeline stages per thread including the instruction 

window. The thread with the smallest number of 

branch instructions will be selected for the execution. 

The latency of control-flow conflicts is hidden.  

MISSCOUNT tries to hide latencies caused by data 

cache misses. Data dependent instructions will have to 

wait in the instruction window until the data has been 

loaded. MISSCOUNT counts the number of data cache 

misses per thread. The thread which has the smallest 

number of cache misses has the highest priority.  

ICOUNT counts the number of instructions in several 

stages. The thread with the smallest number of 

instructions is preferred to execute next.  

Two additional parameters determine the performance 

of an instruction fetch algorithm in each cycle:  

• P1: The maximum number of threads that the 

fetch unit is able to fetch instructions from.  

• P2: The number of instructions that the fetch 

unit is able to extract from each thread.  

Instruction fetch algorithms also differ in the following 

points: 

• A constant set of instructions can be fetched 

within each cycle from a constant set of 

threads. Here, P1 ⋅ P2 = b, where b equals the 

total bandwidth of the instruction fetch unit.  

• The context is changed if no instructions can 

be fetched from the actual thread (P1 ⋅ P2 > b).   

The losses in efficiency can be determined through a 

comparison with an ideal (theoretical) parallelization. 

The values I-Cache-V, IQ-Clog-V and Multipath-V 
express this degradation. I-Cache-V occurs if no 

executable instructions are in the instruction cache. The 

execution will be prolonged in comparison with an 

ideal parallelization. IQ-Clog-V occurs if the 

instruction window is full. Multipath-V is caused by 

latencies of conditional branches. It comprises 

speculatively executed instructions, which are not 

relevant for the program’s state, since the speculation 

lead to an irrelevant path. 

3. Generation of Models 

Petri nets are a widespread means for modeling, 

originally used for communicating automata [2]. Later, 

specializations and extensions evolved; cf. e.g. [1]. In 

the present investigation we use Stochastic Colored 
Petri Nets (SCPN) and the tool TimeNet [5]. Petri nets 

are bipartite graphs where nodes are either places or 

transitions. Places in a Petri net can contain tokens. 

Transitions can fire according to some rules and thus 

remove tokens from places and/or put them onto 

places. This token game allows changing the state of 

the Petri net. Thus Petri nets are useful to describe 

dynamic systems and simulate their behavior. 

In our SCPN, we model the different stages during the 

processing of an instruction as a sequence of linked 

subnets. The instruction fetch algorithm to be used is 

activated before simulation. Tokens are used for the 

instruction and counter values. They also mark the 

availability of resources and the selection of threads 

(cf. Figure 1). 



The subnets to describe the stages differ in complexity. 

They comprise the models for the instruction fetch 

algorithms, the instruction window and a generator for 

instructions which is specific for our model. The model 

assumes that multi-path execution is used to resolve 

control flow conflicts, instead of applying simple 

branch speculation. Moreover, we consider the 

scheduling strategy used to avoid dispatch of 

instructions from the instruction window that belong to 

a thread currently subject to a data cache miss. 

The model has the following parameters: 

1. Probabilities for conditional branches and 

misses in instruction and data caches 

2. Latencies 

3. Instruction window size 

We model the instruction fetch algorithms from 

Section 2 as a 1.8 variant, i.e. in every cycle we try to 

take 8 instructions from one thread. 

4. Simulation Results and Evaluation 

The values for the model parameters were chosen in a 

straightforward manner. As the qualitative evaluation is 

mostly independent of the particular values, we refrain 

from discussing them. We only distinguish whether the 

parameter values (probabilities or time spans) are 

identical for all threads or can be different for each 

thread. Thus we obtain simulations with homogeneous
or inhomogeneous threads, respectively. The 

distinction can be explained in a simplified manner as 

threads belonging to the redundant execution of the 

same program or threads belonging to different 

programs. 

Interestingly, the simulation with homogeneous threads 

indicates no clear preference for a particular instruction 

fetch algorithm, i.e. losses and throughput vary from 

run to run in the same manner for all algorithms. The 

presence of variations indicates that the performance of 

the instruction fetch algorithms is dependent on the 

particular details and circumstances of each run. Only 

the simulations with inhomogeneous threads reveal 

preferences for particular instruction fetch algorithms, 

as indicated by the exemplary simulation result 

depicted in Figure 2. As expected by [4], the IQ-Clog 

loss is smallest with I-Count, followed by 

MISSCOUNT. On the other hand, these algorithms 

show more I-Cache loss than Round Robin or 

BRCOUNT. We conclude that for redundant 

execution, simple algorithms for the instruction fetch 

are sufficient. 

5. Conclusions 

We have presented how to model and simulate the 

behavior of an SMT processor with several instruction 

fetch algorithms, including redundant and non-

redundant execution. Petri net modeling has the 

advantage that it avoids emulation of the SMT 

processor and already includes its known behavioral 

patterns as features. In contrast to a previous 

evaluation, our simulation distinguishes between 

homogeneous (redundant) [3] and inhomogeneous 

threads and different instruction fetch algorithms. For 

inhomogeneous threads, we could confirm the effect of 

instruction fetch algorithms, but not for homogeneous 

threads. Instead, our results indicate that the effect of 

an instruction fetch algorithm is strongly dependent 

from a particular program run. 

Figure 1: The Abstract Petri Net for Simulation 



As a consequence, a processor using SMT to provide 

fault tolerance by redundantly executing one thread can 

be less complex than a typical SMT processor, by 

choosing a simple scheduling algorithm such as Round 

Robin. 
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Figure 2: Comparison of Instruction Fetch Algorithms 
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