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Abstract: In this investigation we discuss powerful yet efficient retrieval mechanism
for text stream such as news stream. Difficulty comes from the fact how to manage
incremental information while keeping efficiency. Recently random projection has
been paid much attention on dynamic dimensionality reduction. Here we show this
novel technique is really useful for querying text stream in terms of cost and accuracy.
We examine some experimental results and excellent efficiency in computation and
memory usage.

1 Motivation

Recently much attention has been paid on text stream along with time axis, called Topic
Detection and Tracking (TDT), in Information Retrieval activities. We obtain a huge
amount of documents along with time axis, store and retrieve them. Here we face to
new kinds of difficulties that have been never attacked.

When processing text stream, we receive part of the stream in an incremental and unlimited
manner. Thus we couldn’t manage all the information without any summarization. Also
sometimes we should examine the stream efficiently in a form of queries while receiving
and storing them.

Generally we have evaluated queries to a collection of documents by extracting important
words and specifying vectors to the documents based on Vector Space Model[GF98, Ki02].
In this approach, very often we get high dimensionality of the vectors, say 10,000 to
100,000 words in ten thousands of documents. Clearly it would take much amount of
time and space to manage them without any works thus it is hard to examine the stream in-
formation. One of the main issues here is how we obtain dimensionality reduction against
input-stream.

There have been many techniques proposed and, among others, Latent Semantic Indexing
(LSI) has been paid much attention[De90, Oh03, Pa98]. This technique comes from Sin-
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gular Value Decomposition (SVD) in linear approximation, and provides us with dramatic
reduction (efficient execution) yet excellent approximation (precise results) to queries.

However, whenever changes arise in data collection, the technique requires recalculation
of SVD from scratch. Since it takes much time, it is not easy to apply the technique to
text stream. We can apply folding-in[BDO95] to avoid the recalculation, but the accuracy
decreases because this approach comes from sampling and assumes small changes.

In this investigation we propose a framework of information retrieval to text stream based
on Random Projection (RP)[Pa98]. Basically RP is a technique of dimension reduction,
especially RP can be obtained very quickly yet the recalculation is not necessary to any
changes. These properties show that RP allows us to apply dimension reduction dynam-
ically and to process queries in a real-time manner. Also we show RP provides us with
efficient (in both time and space) and precise results.

There have been active investigation about RP so far. Among others, there exists some
comparison with RP and LSI to the dimension reduction of text data and image data[BM01]
The work says about excellent accuracy result of RP with less amount of computation
complexity. However, the evaluation has been made based on data distortion/distribution
caused by dimension reduction but not on information retrieval. No consideration has been
discussed to data stream.

This paper is organized as follows. In section 2 we review RP and LSI as dimension
reduction techniques very quickly and we give some comparison. Section 3 contains our
proposal of information retrieval to text stream based on RP, while in section 4 we show
some experimental results. Finally we conclude our work in section 5.

2 Dimensionality Reduction of Text Data

In this section we quickly review RP and LSI techniques by which we can reduce dimen-
sionality of text information. In the following let X be a matrix of d×N where d means a
number of words and N a number of documents. Each column corresponds to one docu-
ment and (i, j) element in X , denoted by X ij , means i-th word appears Xij times in j-th
document. X is called a Term Frequency (TF) matrix.

2.1 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is a technique of dimension reduction based on Singular
Value Decomposition (SVD).

It is possible to show that a TF matrix X is decomposed into 3 matrices U, S, V in such a
way that:

Xd×N = Ud×rSr×rV
T
r×N (1)
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where two matrices U, V are orthogonal1, called left-singular and right-singular respec-
tively. Each row vector in U is called left-singular vector, so is true for V . A matrix S is
diagonal2 where S11 ≥ S22 ≥ · · ·, and each element is called a singular value. This de-
composition is called SVD, and it is well known that SVD takes time of O(dN 2)[GV89].

To obtain LSI dimensionality reduction, we calculate X SV D as follows:

XSV D
k×N = UT

k X (2)

where Uk means a matrix of d × k generated from U by selecting the first k left-singular
vectors.

For querying information, we describe each query as a vector q d×1 that should be pro-
jected into lower dimensional one:

qSV D
k×1 = UT

k qd×1 (3)

Then we evaluate similarity between the query vector qk×1 and candidate document vec-
tors, and generate ranking as the answers in descending order.

Similarity is defined as cosine value between query vector and document vector. Accord-
ing to the definition, similar documents should have the value close to 1.0. To examine
i-th document ki, we obtain the similarity value cos θki as follows:

cos θki =
(qSV D,XSV D

i )
|qSV D||XSV D

i |

where XSV D
i means i-th row vector in the LSI matrix.

Because of dimension reduction by LSI, there must be some error. In fact, we have the up-
per bound in error, called Frobenius Property, according to approximation theory[Pa98]D
Given a TF matrix X in d×N , Frobenius norm ||X ||F is defined as follows[GV89]:

||X ||2F =
d∑

i=1

N∑
j=1

|xij |2 (4)

This value describes one measure of recall-factor.

Once X is decomposed into UCSCV through SVD process, we extract the first k row
vectors to generate UkCSk and Vk. Then we construct a matrix Xk from X where k
means a rank of X as below:

Xk = UkSkV
T
k (5)

Then the following property holds between X and X k:

min
rank(Y )=k

||X − Y ||2F = ||X −Xk||2F (6)

1A matrix M is called orthogonal if MT × M = I holds where I is identity.
2A matrix M is called diagonal if Mij = 0 for every i, j, i �= j.
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This property (6) tells us that an error caused by LSI is the minimum in a sense of Frobenius
norm.

2.2 Random Projection

Random Projection is a matrix where each element is randomly selected. In our case, a TF
matrix X in d×N is projected into a lower dimensional one Y in k ×N where k << d.
Then we need a matrix R in k × d, called a RP matrix.

Then dimensionality-reducedXRP is obtained as follows:

XRP
k×N = Rk×dXd×N (7)

The process takes time complexity O(dkN)[Pa98]. Thus smaller dimensionality causes
less complexity.

In RP matrix R, every element must satisfy the following two conditions:

(1) each row vector in R must have the length 1.0
(2) R is orthogonal

However, it takes much time to satisfy the second condition.

To overcome the issues above, much simpler approach has been proposed based on naive
data distribution[Ac01]. More specifically each element R ij is selected as follows:

Rij =
√

3 ·
⎧⎨
⎩

+1 (probability 1/6)
0 (probability 2/3)
−1 (probability 1/6)

(8)

To generate this matrix, it takes complexity ofO(kd). Practically this value is really small
because of k << d.

Query based on RP is defined similarly as LSI. That is, we project a query matrix into the
one with lower dimensionality.

qRP
k×1 = Rqd×1 (9)

We calculate similarity values between the query vector and document vectors, and we
generate ranking information just same as LSI case.

Error caused by RP is defined as Euclidean distance between vectors.

|x − y|2 =
∑

(xi − yi)2

where xi, yi means i-th values of x,y. From a matrix X in d × N , we extract two row
vectors x1 and x2. Then we define the Euclidean distance (in d dimension) as as |x1−x2|.

154



To our surprise, this distance can be obtained in a vector space (in k dimension) reduced
by RP as follows[BM01]:

√
d/k |Rx1 −Rx2| (10)

To obtain (10), R should be orthogonal. When RTR is close to identity I , R is almost
orthogonal at the same time. We define a matrix ε of d×d as the measure that says to what
extent R is almost orthogonal:

ε = RTR − I (11)

Then we see elements in ε have the average 0.0 and the distribution 1.0/k. This means the
bigger k becomes, the smaller we have error in Euclidean distance[Ka98].

2.3 Comparison of LSI and RP

Although both of LSI and RP get dimensionality reduction by using matrix projection,
there exist important difference between them. LSI takes SVD approach while RP takes
random choice of values. The latter requires less amount of time complexity.

In text stream, we receive incremental information continuously. In LSI approach, we
generate LSI matrices from TF matrices and, whenever changes happen in TF matrices,
we have to modify LSI matrices according to the changes. Then we project incremental
information into lower dimensionality using new SVD matrices. On the other hand, the
RP matrices R are independent of TF matrices X , and we don’t modify R at all when
changes happens in X . What we need is that we project incremental information into
lower dimensionality (using same R).

Errors in LSI and RP can be calculated: in LSI, the error is defined by Frobenius norm to
matrices, which means LSI matrices try to preserve relationship among words and docu-
ments. On the other hands, in RP, the error is defined by Euclidean distance between two
vectors, which means RP matrices try to preserve relative relationship among TF vectors.
This is the essential reason why RP matrices are independent of data and suitable for in-
cremental updates. Also this RP property allows us to expect good accuracy similar to LSI
in cosine-based queries.

All these discussions show that LSI is not suitable for querying text stream but RP is in
terms of time and space complexity: no recalculation of the matrices and no additional
memory for incremental data. Note that RP matrices are orthogonal in a sense of approx-
imation and that accuracy of RP-based queries varies widely. It is known[BM01] that the
variance is inversely proportional to reduced dimensionality k, thus we expect bigger k
causes better accuracy.

In the next section we describe how to process text stream by using RP technique. And,
in section 4, we show some experimental results about the comparison of LSI and RP, the
accuracy and the variances of RP queries, and we discuss RP technique can be applied to
querying text stream.
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3 Querying Text Stream

Now we are ready to develop our theory. We discuss two points, (1) how to manage and
query text stream by means of RP matrices, and (2) how to manage temporal aspects of
text stream.

Let R be a RP matrix. We consider text stream as a stream of document vectors. Then,
whenever a new document dd×1 comes in a stream, we project it into dRP

k×1 through R as
follows:

dRP
k×1 = Rdd×1 (12)

Since each document vector has temporal aspect such as timestamp, we have a collection
of temporal vectors. Especially we have fresh new vector and ancient vectors at the same
time. Generally it seems better to put priority on new vectors than ancient ones, because
users asks of recent topics very often. When a query comes in, we expect new vectors
as answers even if others satisfy the query conditions. That’s why we discuss weight on
temporal text data.

In this work, we take a weightwa that decreases exponential along time axis. More specif-
ically, we take a lifetime t of data (how long it lives) as a variable of wa :

wa(t) = exp(−t/a) (13)

A value a means a parameter by which we can manage a drop rate. The bigger a becomes,
the more gentlewa we have. When a = ∞, we havewa(t) = 1 and we have no distinction.
When t = 0 (fresh new), we have wa(t) = 1.

Assume two vectors d1
RP with lifetime t1 and d2

RP with lifetime t2 in reduced dimen-
sionality. By multiplying the cosine similarity between the two vectors bywa(t1)×wa(t2),
we can capture temporal aspects thus it is possible to distinguish new vectors from ancient
ones.

4 Experimental Results

In this section, we describe several preliminary about text stream data and evaluation
methodologies to query them. After that we show some experimental results of the com-
parison of LSI and RP, and several querying text stream. Finally we discuss these results.

4.1 Preliminaries

We discuss our experiments under the environments of FreeBSD 4.6.2 on Pentium4 2.8
GHz with 1 GB real memory. Here we assign all the information to dynamically allocated
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array. To generate random values that are utilized for RP matrices, we use Mersenne
Twister software3.

To examine our approach, we assume Reuter-21578 4 where Reuter-21578 consists of
21578 news articles for the purpose of test collection to document classification. How-
ever, there exist some news articles that have no contents nor categories, and we utilize
19042 articles finally. We discuss Reuter-21578 mainly because each article has times-
tamp correctly and contineously. You might imagine other test sets whenever they keep
the same properties.

We examine all the words appeared in the category names and the article contents, and we
take them as terms (in a sense of our TF matrix). Then we remove stop words from them
and make stemming[GF98, Ki02]. Eventually we obtain 26870 terms.

Looking at the results into detail, we see 9610 terms appear only once. These terms are not
really useful to retrieve documents since they don’t play comprehensive role. Thus we’d
better remove non-frequent words. Here in this work we assume Zipf’s law[Zi49] which
says about experimental relationship between ”frequency in use of words”and ”ranking of
the frequency”. Applying the law to the articles, we get 2662 terms in total. 5

We consider the news articles as text stream since each article contains timestamp. After
sorting them in timestamp and dividing the duration into time-intervals of 6 hours, we have
199 non-empty chunks each of which contains 95.7 articles in average and 422 articles at
most.

3http://www.math.keio.ac.jp/ matumoto/emt.html
4http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
5There are two kinds of Zipf’s laws, one for frequent terms and another for non-frequent terms. The first law

says that frequency f in use of a term and the order r of the ranking satisfy the equation

f × r = C (14)

In the second Zipf’s law, the number Ff of terms of frequency f and the number F1 of terms that appear only
once satisfy the relationship

F1

Ff
=

f(f + 1)

2
(15)

Then we obtain appropriate frequency suitable for useful terms, thus we examine frequency fk that satisfies both
laws. To do that, in the equation (15), we put Ffk

= 1. Then we obtain fk value as follows:

fk =

√
8F1 + 1 − 1

2
(16)

Accoding to the value for fk , we select the number of terms:

1. We select all the words of the frequency fk as terms.

2. Also we select all the words of the maximum frequency to frequency fk − 1 as terms. Assume there are
K terms.

3. We select the top K words which have the frequency less than or equal fk + 1 as terms.

In our experiment, we have F1 = 9610 and we get fk = 138 by putting it into the equation (16). According
the procedure above, we have K = 1339 and finally 2660 terms in total. By examining Reuter-21578, we select
2662 terms with frequency 48 or higher.
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4.2 How to Evaluate Results

We take average precision factor of 11 points which means average precision factors in
the cases of recall-factors 0.0,0.1,0.2,...,1.0 in queries. This plays an overall measure to
describe relationship between precision and recall factors.

Recall factor has been devised as a measure how comprehensive query result has, defined
as follows:

Recall =
NumberOfCorrectDocumentsRetrieved

NumberOfCorrectDocuments

Precision factor is a measure how precise query results have, defined as below:

Precision =
NumberOfCorrectDocumentsRetrieved

RetrievedDocuments

There exists trade-off between recall and precision factors. Clearly we’d better have query
systems with recall 1.0 and precision 1.0. However, it is common that higher recall causes
lower precision and that higher precision causes lower recall. In our case, we evaluate
query without dimensionality reduction and then we select documents with similarity value
0.5 or higher, by which we can examine query results under the influence of dimensionality
reduction.

We also apply the average precision of 11 points to text stream. In the following experi-
ments, we evaluate queries each time a new chunk of documents (in 6 hours) comes in as
incremental information and we obtain a series of the average precisions, the average and
so on. To evaluate queries in text sream, we select documents with similarity value 0.5 or
higher without dimensionality reduction.

4.3 Comparison of LSI and RP

First of all, let us describe experimental results of LSI and RP. The main purpose of this
experiment is that we show how well RP technique works compared to LSI in terms of
time and accuracy. Then we discuss these comparison in this section. After next section,
we only discuss Text Stream using RP.

To discuss LSI queries, we select first 10,000 articles from text stream, which means we
need SVD processing to a matrix of 2662×10, 000. And this takes time of 21469 seconds
(about 6 hours).

In RP queries, we evaluate all of the 19042 articles at once, and we show the computation
results in a table 1. Clearly readers see computation time is in proportion to the number of
dimensionality.

Now let us describe query accuracy of LSI and RP along with 10 kinds of dimensionalities
(5,..., 250). There are 635 correct documents in RP and 407 in LSI respectively. We
examine RP queries 3 times on each dimensionality. We generate RP matrix each time for
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Dimension Time (seconds)
100 74
200 150
300 231
400 308
500 387

(LSI:2662) 21469

Table 1: Computation Time in RP/LSI

dimensionality reduction and w obtain the average of the average precision factors of 11
points the minimum, the maximum and the variance.

We show the LSI result in a figure 1 and the RP result in a figure 2.

Figure 1: Accuracy in LSI

All the experimental results tell us that computation time of queries by RP is always supe-
rior to LSI case. This is mainly because SVD calculation takes time a lot and the matrix
depends on every TF matrix. Also smaller dimensionality of TF matrices doesn’t relieve
SVD calculation. On the other hand, RP matrices are easily and efficiently obtained. The
matrices become smaller dramatically according to smaller dimensionality of TF matrices.

Compared to query accuracy, RP is superior to LSI except 5 dimension, although RP
shows big variances. The higher dimension we have, the smaller the variances become. In
100 dimension, we have very small difference (1% to 2 %) between the maximum and the
minimum. Thus we can say RP technique is superior to LSI in more than 100 dimension.
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Figure 2: Accuracy in RP

4.4 Text Stream Using RP

As we said, we consider our news articles as text stream by sorting transaction time of
articles. Then we take weight scheme for the stream according to the equation (13). Here
we take day as a unit (for example, 0.25 means 6 hours).

Here in the equation (13), we give 3 kinds of weight parameters, radical (a = 10), gentle
(a = 45) and transparent (a = ∞). With the gentle parameter, the weight value decreases
Down to 0.5 in 30 days and down to 0.05 in 130 days. With the radical parameter, on the
other hand, the weight gets to 0.5 in 7 days and to 0.05 in 30 days. With the transparent
parameter, the value is always 1.0.

With all the weight values, we evaluate queries in the case of 100, 300 and 500 dimensions.

The 9 results of the average precision factors of 11 points are shown in figures 3 (radical
case), 4 (gentle case) and 5 (transparent case).

By taking average values of these results, we show, in a table 2, our expected values of the
9 average precision factors of 11 points.

Dimension 100 300 500
radical 0.968 0.980 0.992
gentle 0.979 0.992 0.997
transparent 0.982 0.998 0.995

Table 2: Average Values of Average Precision of 11 Points

In our experiments, we often see no similar recent articles to a given query vector and no
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Figure 3: Query Accuracy with weight exp(−t/10)

correct document is found. In this case we ignore this query and remove answer from our
results. A table 3 contains the number of ignored queries in all the 199 queries.

To see the variances of 9 query results, we examine the maximum and minimum values of
the average precision factors of 11 points. In our case, we see all the maximum values are
1.0. Thus we show the minimum precision (i.e., the maximum errors) in a table 4.

4.5 Discussions

Let us look at the figure of the average precisions of 11 points. Then we see the values
drop because of the articles with lower similarity (i.e., 0.5 or so) in a transparent parameter
case. By incremental information we might have many articles with lower similarity and
precision drops. With appropriate weight scheme, these articles disappears (the similarity
become less than 0.5) and the precision gets better. In fact, with radical parameter the
precision drops but locally. With gentle/transparent parameters, the precision goes down
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Figure 4: Query Accuracy with weight exp(−t/45)

eventually.

The average of the average precision factors of 11 points is more than 90% in all the cases,
and RP provides us with good accuracy for querying text stream. Especially we can say
higher dimensionality means better accuracy.

Weight scheme tells us how we manage temporal aspect of stream data where transparent
parameter is the best and gentle parameter the worst. However transparent parameter
causes continuous degradation while radical parameter drops locally.

The number of ignored queries is the least with weight on transparent parameter but the
most with radical parameter. This is because only recent articles keep alive in radical case
as time goes by.
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Figure 5: Query Accuracy with a = ∞

5 Conclusion

In this investigation, we have examined RP technique and shown how useful it is for query-
ing text stream in terms of query efficiency and accuracy. We have also compared RP with
LSI and we have discussed RP is really suitable for text stream.

In this work, we have considered limited number of documents but may have huge amount
of documents in practical test stream. Since dimensionality reduction relieves memory
usage, we could take this advantage for better accuracy and efficiency.
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