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Abstract: In the past couple of years, sensor networks have evolved to a powerful
infrastructure component for monitoring and tracking events and phenomena in many
application domains. An important task in processing streams of sensor data is the
detection of anomalies, e.g., outliers or bursts, and in particular the computation of
the location and spatial extent of such anomalies in a sensor network. In this paper,
we present an approach that facilitates the efficient computation of such anomaly re-
gions from sensor readings. We propose an algorithm to derive spatial regions from
individual anomalous sensor readings, with a particular focus on obstacles present in
the sensor network. We improve this approach by proposing a distributed in-network
processing technique where the region detection is performed at the sensor nodes. We
demonstrate the advantages of this strategy over a centralized processing strategy by
utilizing a cost model for real sensors and sensor networks.

1 Introduction

Driven by major advancements in sensor technology, several sensor networks have been
and are being deployed in various application domains such as the monitoring of traf-
fic, buildings, rivers, and the environment in general. Typical examples for environmental
monitoring include precision agriculture (e.g., observing the humidity of the soil) and
monitoring particles in urban areas to react to changes in air quality measures. An impor-
tant objective in processing sensor data is the detection of anomalies that occur, e.g., in the
form of outliers or bursts. This kind of data processing and analysis not only reduces the
volume of data reaching end user applications but it also simplifies the further processing
and interpretation of the sensor data.

By analyzing individual and aggregated sensor measurements, one can obtain useful infor-
mation about the locations where anomalous events and phenomena occur. Such location
information then can be visualized on a map and interpreted for individual sensors. In par-
ticular it can be used to derive anomaly regions. Such regions are composed of neighboring
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sensors that show anomalous readings and are combined to describe a polygonal anomaly
region. Compared to information about only individual (anomalous) sensors, providing
users with such region information, including their spatial extent, has several advantages.

• It represents a natural way of event aggregation and correlation as needed in many
monitoring applications, such as impact analysis.

• The location information associated with sensor data and regions allows for a direct
processing of the results, e.g., for tracking regions.

• By approximating the regions in the unobserved space between sensors exhibiting
normal and anomalous readings, one can determine region boundaries that more
closely reflect the true boundaries of an event detected by a group of sensors. For
this, one can also take propagation characteristics of detected events as well as nat-
ural and artificial obstacles occurring in the sensor network region into account.

Figure 1: Example of anomaly region

For example, in the context of environmental mon-
itoring this then not only allows for the detection
of anomalies as measurement points on a map but
also for determining regions where related anoma-
lous values occur. Furthermore, obstacles such as
buildings, ridges, rivers, and valleys are taken into
account for predicting the propagation of anomaly
regions. This aspect is illustrated in Fig. 1 where
wind speed values are measured by the CIMIS sen-
sor network [cim] in California. Based on the sensor
locations (indicated by the blue dots) and the obsta-
cles (here ridges indicated by thick gray lines) the
marked region (read polygon) can be derived and
placed on a map.

It should be noted, however, that the benefit of detecting anomaly regions and the under-
lying spatial aggregation of anomalous sensor readings can only be exploited if the event
aggregation is performed locally at the affected sensor nodes or their close neighborhood,
respectively. Particularly for wireless and battery-powered sensors, the expected reduction
of expensive radio communication might improve the lifetime significantly when such a
processing of sensor data is performed locally and intermediate results from groups of sen-
sors are propagated in a hierarchical fashion. In this paper, we present such an approach
for the distributed detection of anomalous spatial regions in sensor networks. In particular,
the main contributions of our work are as follows:

1. We discuss a framework for anomaly detection that isolates the threshold-based re-
gion detection from the actual anomaly detection and, therefore, is orthogonal to the
event detection that could be triggered by outliers or bursts.

2. In our approach for determining anomaly regions, we consider natural and man-
made obstacles that might damp the effect of an event and thus need to be considered
appropriately in determining the spread of (potential) anomaly regions.

368



3. We present a distribution strategy for the in-network detection and processing of
anomalous sensor readings and deriving anomaly regions. This strategy can lead to
significant savings in power consumption. We demonstrate the capabilities of the
in-network detection approach using an evaluation based on real sensor network
characteristics.

This paper is organized as follows: In Section 2, we introduce the scenario and goals of
this paper. We also present our framework for the detection of anomaly regions. Section 3
summarizes related work in the areas of anomaly detection, region detection, obstacle
handling, and in-network processing. In Section 4, we present our algorithm for detecting
anomaly regions in the presence of obstacles. We discuss the benefits of the in-network
computation of anomalies and anomaly regions in Section 5. The corresponding evaluation
and experimental results are presented in Section 6. Section 7 concludes the paper.

2 Background and Setup

We assume a sensor network S comprised of m stationary sensors, S = {s1, . . . , sm}.
Each sensor s ∈ S has a spatial attribute, 〈xs, ys〉, which defines its location in 2D space.
Our approach is also applicable to a 3D setting, where nodes in the network are given by
their xs, ys, and zs coordinate to account for different elevations. For ease of presentation,
we focus on 2D scenarios. The sensors are distributed non-uniformly in the network and
monitor the same environmental variable such as temperature, humidity, or wind speed.

For a sensor s, a measurement of a variable is denoted rs,t, with the timestamp t indicating
when the variable reading was obtained. The network in our setting is synchronized, i.e.,
a set of m new measurements is processed in the network each time period. Synchronous
processing is not a strict requirement for our method, but eases the processing of measure-
ments as well as explaining the functionality of our technique.

Based on the spatial attribute of sensors a spatial neighborhood Nf (si) ⊆ S can be defined
for each sensor si ∈ S. A suitable neighborhood function f allows for different metrics,
such as distance based neighbors (given a maximum distance r) or k-nearest neighbors.

2.1 Degree-Based Anomalies

Anomaly detection is a broad field that comprises areas like outlier detection, deviation
detection, and burst detection. Anomalies of any kind are, by definition, data points that
appear anomalous when compared to other data points in a data set or stream. For example,
bursts are characterized as “abnormal aggregates in data streams” by Zhu et al. [ZS03]. An
outlier is described as “a data point that is significantly different from the rest of the data
points” in [BM07].

In threshold-based approaches, a threshold is used to separate two categories of data
points, anomalous and normal ones. Some algorithms in the field of outlier detection use
the notion of degree-based outliers, e.g., [FG08, WCD+07], to better capture the intensity
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of the observed anomaly. In this context, an anomaly degree, AD ∈ [0, 1], is determined for
each data point. By using an AD value to describe a data point, it is taken into account that
some data points are more clearly anomalous than others. When analyzing a data stream,
each sensor s and measurement rs,t, respectively, is assigned a value AD ∈ [0, 1], which
can change with each new measurement the sensor obtains. An AD value of 0 indicates
that the measurement obtained by s at time t is normal.

A reference is necessary to answer the question “rs,t is anomalous with respect to which
other measurements?”. In a spatial setting, it is common to use the spatial neighborhood
Nf (s) as reference. If only previous values of s are used to determine the AD of sensor
s at time t, then Nf (s) = ∅. The other extreme is to set Nf (s) = S. Then measurements
from all nodes in the network are used as reference. Between these two extremes, other
definitions of Nf (s) are possible, as mentioned above.

At time t, an anomaly detection algorithm is applied to each of the m new measurements.
The output of the anomaly detection algorithm is a stream of tuples (si, t, AD), i.e., at
time t sensor si has the anomaly degree AD.

In the following, we use two different approaches for anomaly detection, a degree-based
outlier detection algorithm [FG08] and a burst detection algorithm [KKPS08]. Both algo-
rithms determine the AD value of a measurement with the help of two threshold parame-
ters klow and khigh. If the measurement is between the two thresholds klow and khigh, its
AD value is computed based on its distance to klow, i.e., the farther from klow the mea-
surement is, the higher is its assigned AD value. Otherwise the measurement is assigned
AD = 0 or AD = 1 depending on whether it is above or below both thresholds.

2.2 Anomaly Regions and Obstacles

Anomaly regions are time-variant spatial regions in a sensor field where unusual phenom-
ena or events are taking place at some point in time. Detecting event regions and their
boundaries has been studied in, e.g., [FG08, KZ06], but so far obstacles in the sensor field
have not been taken into account when constructing such regions.

For anomaly region detection we use the TWISI (Triangulated WIreframe Surface Intersec-
tion) approach proposed in [FG08], where polygonal anomaly regions are constructed with
respect to an intensity threshold ϕ. At each point in time, the currently detected anoma-
lous sensors are used for region construction. A user specified value ϕ ∈ [0, 1] is used to
select a subset of all detected anomalous sensors, i.e., only those sensors having AD ≥ ϕ
should be included in an anomaly region. A region’s boundary is placed in the unobserved
space between anomalous and normal sensors. It is placed in such a way that we assume
a measurement taken at a location next to the boundary would have an AD value close to
ϕ. In Section 4 we briefly outline how region detection using the TWISI approach works.

We use the TWISI approach as the basis for our anomaly region detection because
TWISI’s boundary placement is very accurate. To illustrate this, we use the Intel lab sen-
sor data [Int], which provide temperature measurements from 54 sensors deployed in the
Intel Berkeley Research lab. Figure 2 shows a section from the region detected by TWISI.
The black lines are part of the region boundary, and each of the sensors is labeled with its
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current AD value. The gray sensor in the figure is a control point that does not contribute
to the region boundary detection. It is used to check if the boundary placement is accu-
rate. When setting the intensity threshold ϕ to 0.25, it can be seen that the control point
having AD = 0.27 is located fairly close to the region boundary and inside the anomaly
region. This shows that the boundary placement is meaningful with respect to the values
that could be measured by new sensors, like the gray sensor in Figure 2, that are placed in
the unobserved space between existing sensors, like the sensors having AD values 0.0 and
0.32 in Figure 2.

Figure 2: Accuracy of boundary place-
ment

Obstacles in a sensor field are typically physical
barriers like walls, buildings, rivers, or mountains.
In 2D, obstacles are commonly modelled as sim-
ple polygons (see, e.g., [THH01]). Obstacles might
damp the effects of a phenomenon, but do not nec-
essarily stop its spread completely. A wall in a
building will damp the effect of a cold room on the
adjacent rooms, but the adjacent rooms’ tempera-
ture will nevertheless be affected. In contrast, a draft
in one room will not spread through walls to adja-
cent rooms. Thus, obstacles provide different damp-
ing factors for different phenomena. As the damp-

ing factor of large obstacles can vary, e.g., a mountain does not provide the same damping
everywhere, we assign a damping factor df(si, sj) ∈ [0, 1] to each pair of sensor nodes,
according to the obstacle(s) between the two sensors. Obstacles do not necessarily have
to be physical barriers, as the air between two sensor locations can act as an obstacle
as well, thereby damping the effect of an event due to the distance. Our approach is not
limited to symmetric damping factors between two sensors, i.e., it is possible to define
df(si, sj) ;= df(sj , si).

By taking obstacles into account, we select a subset of all anomalous sensors detected at
time t to be included in the anomaly region. This step uses the stream of anomalies as
input, and works on a jumping window such that the most recent AD values of all m
sensors are considered. The main purpose of detecting anomaly regions is to indicate the
spread of events. We therefore use information about obstacles to extend the regions by
also including anomalies having AD < ϕ. An anomalous sensor s with ADs < ϕ is
included in a region if there is an obstacle between the source of an event and sensor s
that damped the effect of this event. Assume ϕ = 0.45 and two sensors s1 and s2 with
ADs1 = 0.29 and ADs2 = 0.51. Also assume an obstacle between s1 and s2 that incurs
a damping factor of df(s1, s2) = 0.2. Sensor s2 is clearly included in the anomaly region,
as ADs2 ≥ 0.4. The event spreads from s2 to s1, but is damped by the obstacle. We
therefore expect the AD value of s2 to be lower than it would be without the obstacle,
and decrease the threshold ϕ for including s2 in the region by the damping factor. This
step is called threshold propagation. By doing so, s2 is now only required to have AD ≥
ϕ − df(s1, s2) = 0.45 − 0.2 = 0.25 in order to be included in the anomaly region. As
ADs1 = 0.29 ≥ 0.25, the detected region includes s1 and s2 This example is illustrated
in Figure 4(b).
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Figure 3: Conceptual and physical architecture of our framework

2.3 Three Tier Framework

All three steps, anomaly detection, threshold propagation, and anomaly region detection
are combined into a three tier framework, as illustrated on the left hand side of Figure 3.
Within this framework, the incoming stream of sensor measurements is piped through the
different algorithms, which in the end output a stream of anomaly regions over time. Note
that this framework comprises three modular processing steps, and therefore each of the
three components can be replaced independently. For example, anomaly detection can be
done using the burst detection or outlier detection approach mentioned above. Also, in an
obstacle-free sensor field the second tier, threshold propagation, can be omitted without
any changes to the remaining framework. The left hand side of Figure 3 shows the con-
ceptual architecture of our framework, whereas the physical architecture is depicted on
the right hand side. The latter consists of a hierarchically organized sensor network and a
central server. Details about the physical architecture are presented in Section 5.

3 Related Work

Anomaly Detection Wu et al. [WCD+07] propose a degree-based outlier detection al-
gorithm for static data sets. Franke et al. [FG08] do the same for data streams. The output
of such algorithms is the basis for the threshold propagation and region detection we pro-
pose in this paper. Other anomaly detection methods can be used as well, for example the
burst detection algorithm proposed by Klan et al. in [KKPS08]. Their approach can be
easily modified to detect degree-based anomalies by adding a second threshold khigh and
computing AD values as described in Section 2.1. Similar modifications can be applied to
other anomaly detection algorithms, e.g., [SPP+06, ZS06].
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Region Detection Other region or boundary detection algorithms in sensor fields,
e.g., [DCXC05, KZ06], place the region boundary right next to the sensors that are on
the edge of a region having distinct properties. Some papers, e.g., [DCXC05], define the
region boundary as the set of sensors that are in the interior of a region but close to sen-
sors outside the region. In contrast, our boundary placement is more considerate. We place
the boundary between anomalous and normal sensors in a meaningful way, and its exact
location depends in the intensity of an event at different locations.

Using spatial clustering algorithms, e.g., those mentioned in [HKT01], to partition the
sensor field in anomalous and normal regions would not result in an accurate boundary
placement either. This is because clustering aims at finding distinct groups of sensors rather
than the exact location of the boundary between each two groups.

Obstacles Many publications deal with various data mining techniques in the presence
of obstacles, e.g., [THH01, ZPMZ04]. However, in these methods obstacles are consid-
ered impenetrable objects that need to be bypassed, for example, to compute the distance
between two objects as done in [ZPMZ04]. In contrast, we consider obstacles to be perme-
able albeit having different properties than their surroundings. We achieve this by defining
a damping factor for pairs of sensors that are separated by one or more obstacles. This way,
our definition subsumes existing definitions of obstacles, as a damping factor of 1 results
in a impenetrable obstacle, providing absolute damping.

In-Network Computation TinyDB [GM04] and Cougar [YG02] are two well estab-
lished query processing systems for sensor networks. Both systems support in-network
processing with respect to data quality and sensor node life time. The essential difference
is the used aggregation strategy. In TinyDB all sensor nodes are of the same type, whereas
Cougar distinguishes three classes of nodes: sources nodes, intermediate nodes for data
processing like aggregations, and gateway nodes, which connect the user. In order to de-
crease energy-consumption, both systems build aggregation trees to aggregate sensor data
in nodes at higher levels within the routing tree. Building an optimal aggregation tree is
NP-Hard. In [KEW02] the authors investigated the performance of aggregation in sensor
networks and presented some heuristics to generate suboptimal aggregation trees.

Sensor placement in the network can have a significant impact on the communication costs
of in-network processing. Dhillon et al. [DC03] propose an algorithm that places sensors in
the network with the goal of effective coverage of the area. The sensor placement generated
by the pSPIEL algorithm by Krause et al. [KGGK06] aims at minimizing communication
cost between sensors and placing sensors at the most informative locations. In both papers
obstacles are taken into account when finding the optimal sensor placement.

4 Detecting Anomaly Regions

The basis for our anomaly region detection is the TWISI method proposed in [FG08]. The
TWISI approach assumes a barrier-free network, where events spread unhindered between
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nodes. However, obstacles like buildings or mountains can obstruct the direct spread of
temperature, wind, fine particles, etc. We therefore extend the TWISI approach to take
obstacles into account. In the next paragraph, we describe the original TWISI method as
proposed in [FG08], and then introduce our extensions.

The first step in TWISI is to construct a Delaunay triangulation of the sensor network using
sensors as nodes in the triangulation. Then, a third dimension is added to represent the AD
values of sensors, i.e., nodes are assigned a height according to their AD value. This results
in a 3D surface, called triangulated wirefame surface or TWS for short, where outlier
regions stand out as “hills”. The height of each node is updated periodically when new
measurements are obtained by the sensor and consequently its AD value is recomputed.
To detect anomalous regions, a plane parallel to the x/y plane is intersected with the TWS
at height ϕ, yielding a set of line segments where the plane intersects the different triangles
of the triangulation. The projection of these line segments onto the x/y plane represents
the boundaries of anomaly regions, which are polygons. The TWISI approach includes all
anomalous sensors with AD ≥ ϕ in the generated regions.

Now, we show how to extend the TWISI approach to take obstacles into account. The goal
is to propagate the original intensity threshold ϕ through the network such that also sensors
having an AD < ϕ might be included in the final anomaly region. This is motivated by the
fact that the effect of an event might be damped by the obstacles in the network. By taking
this damping factor betwen pairs of sensors into account, the anomaly region is extended
such that we can observe the spread of a phenomenon taking the effect of obstacles into
account. When propagating the threshold ϕ from s1 to s2, its value is lowered according
to the damping factor between both nodes.

After the threshold is propagated through the entire network, the TWISI approach is ap-
plied. Due to the lowered threshold at some of the nodes, not one plane is used to intersect
the TWS, but several planes at different heights, according to the threshold propagated to
each of the sensor nodes. The resulting anomaly region is still a polygon, constructed from
the line segments generated by the intersection of the planes at different heights with the
TWS.

Propagation Algorithm The propagation algorithm works as described by Algorithm 1,
and is iterative. All nodes that will be included in the anomaly region and their respective
thresholds are stored in the data structureO. In the initial iteration 0, we identify anomalies
having AD ≥ ϕ, add them to O, and mark these sensors as visited by adding them to
Smarked. We call these “level 0 anomalies”, and their threshold is set to ϕ (lines 1 – 4).
Then, in each subsequent iteration i the threshold is propagated from each node o ∈ O
of the current level i to its direct neighbors, denoted Neigh(o), i.e., all nodes that are
connected to o by an edge in the triangulation of the network (line 7). This is done as long
as new nodes are added to O in one iteration (line 5). If the neighbor n is an anomaly and
has not been marked yet (line 8), the damping factor df between o and n is determined
(line 10). The propagated threshold Δ of n is computed by subtracting the damping factor
from o’s threshold, i.e., n.Δ = o.Δ− df . If n is a direct neighbor of more than one level i
anomaly, then we choose the largest of the propagated thresholds to prevent over-damping
(lines 11 – 13). If n is not in O yet, i.e., it is not a direct neighbor of any of the level
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i anomalies checked so far, then n is added to O at level i + 1 (lines 14 – 15). After
checking all direct neighbors of all level i anomalies, we remove nodes o from O where
the AD value is less than their propagated threshold Δ (line 16). This way, only nodes
with AD value above the propagated threshold are included in the final anomaly regions.

Input: ϕ
Output: set of polygons
I = get-anomalies(); /* i ∈ I of the form [SID, AD] */1
O = {[o.SID, o.AD, ϕ, 0]|o ∈ I ∧ o.AD ≥ ϕ}; /* o ∈ O of the form [SID, AD, Δ, lvl] */2
Smarked = {o.SID|o ∈ I ∧ o.AD ≥ ϕ};3
level = 0;4
while ∃o ∈ O : o.lvl = level do5

Schecked = ∅;6
foreach o ∈ O : o.lvl = level do7

foreach n ∈ Neigh(o) ∩ I : n.SID /∈ Smarked do8
Schecked = Schecked ∪ {n.SID};9
df = get-damping-factor(o.SID, n.SID);10
if ∃on ∈ O : on.SID = n.SID then11

if on.Δ < o.Δ − df then12
on.Δ = o.Δ − df ;13

else14
O = O ∪ {[n.SID, n.AD, o.Δ − df, level + 1]};15

O = O \ {o ∈ O|o.AD < o.Δ};16
Smarked = Smarked ∪ Schecked;17
level = level + 1;18

return get-and-combine-line-segments(O);19
Algorithm 1: Centralized threshold propagation and region detection algorithm

Marking visited sensors after each iteration prevents cycles, where the threshold of a node
would initially be set in iteration i and then overwritten in iteration j > i because of a
chain of direct neighbors being included in O. In combination with the iterative approach,
marking visited sensors causes the threshold to be propagated to each node in only one
iteration, and this iteration corresponds to the minimum number of hops from the level 0
anomalies. That is, each node is visited “as soon as possible”, starting at the nodes that
are initially above the threshold ϕ, and the propagated threshold for each node can not be
overwritten in later iterations.

Figure 4 illustrates the effects of threshold propagation, using the example we already
discussed in Section 2.2. The intensity threshold is set to ϕ = 0.45 in both figures. Each
sensor is labeled with its sensor id and AD value. The triangulation of the nodes is shown
in Figure 4(b) by the thin gray lines. The thick gray lines mark obstacles between sensors,
which induce damping factors of 0.2 between each pair of sensors that is connected by an
edge in the triangulation. Figure 4(a) depicts the anomaly region that was detected without
threshold propagation. Sensor s1 is not included in the region, although it is anomalous
and fairly close to sensors that are inside the region, i.e., it is a direct neighbor of sensors
s2 and s4, which are included in the anomaly region. Due to this proximity we would like
to include s1 in the region if its AD value, considering the damping factors to s2 and s4

respectively, is sufficiently high. This will be determined using threshold propagation.
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(a) Without threshold propagation (b) With threshold propagation

Figure 4: Anomaly regions without and with threshold propagation

In Figure 4(b) threshold propagation was applied before constructing the anomaly region.
The region in Figure 4(b) spreads to the area above the obstacle and includes the anoma-
lous sensor s1 there. This is what we wanted to achieve, as it provides us with additional
information about the phenomenon we detected in the area below the obstacle. That is,
the phenomenon spreads to sensors in the proximity of affected sensors in the lower area,
i.e., to s1, although s1 is shielded from the phenomenon by an obstacle. In contrast, the
region and thus the phenomenon does not spread to the area on the left of the obstacles,
because the sensors s7 and s8 that are in the close proximity of the anomalies s9 and s10

are normal. The phenomenon in the lower area cannot spread through normal sensors to
the anomalous sensors. Technically speaking, sensors s9 and s10 were not included in the
region because they do not have a direct neighbor that has been added to the data structure
O and thus could have propagated the threshold.

5 Distributed Approach

In wireless networks, sending and receiving messages is much more energy consuming
than local processing. As energy consumption (measured in Joule J) is a crucial (if not
the most crucial) cost factor in wireless networks, the number of messages should be min-
imized. In the centralized approach proposed up to here, all data sources, i.e., the sensors
in the network, periodically send their data to a central server where it is analyzed and
processed. Thus, a promising idea is to distribute the processing costs and by this hope-
fully lower the number of messages needed. This can be achieved by pushing (parts of) the
processing steps down into the network, which is called in-network processing. Actually,
there is a choice on the degree of distribution. As an opposite to the centralized processing,
all processing steps are completely delegated to the sources and only detected anomalies
are signalized to a central sever. We assume a multi-hop network having a hierarchical or-
ganization, similar to the one used in [SPP+06]. The idea is to partition the network using
virtual grids. The network has several levels: at the lowest level sensors in a local area are
combined in one grid cell, and cells at higher levels subsume multiple cells from lower
levels. At the highest level is one cell (the central server) representing the entire network.
Each cell at each level (except the root cell) has a leader node which can be either cho-
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Figure 5: Possibilities of in-network processing

sen from the nodes in the network or it can be a virtual node. Like this, the hierarchy of
nodes can be illustrated as a tree. In our setup we assume the same tree for both, multi-hop
message passing and in-network processing (which is rather intuitive). This implies that
each node can reach its parent node in one single hop. In [KGGK06] Krause et al. give
an algorithm that can be used to partition the sensor network into grid cells and choose
leader nodes. The resulting partition takes obstacles in the network into account, and thus
it is unlikely that sensors within one cell are separated by one or more obstacles. Such an
obstacle-aware partitioning of the network is desirable for our distributed algorithms.

Figure 5 illustratively summarizes the focus of the following section. For anomaly detec-
tion, we have three choices:

1. send all data to a central server for processing
2. choose leader nodes that collect data from all peers in their neighborhood and pro-

cess the data
3. detect anomalies at each source separately

Option 3 is only practicable if anomalies are independent from neighboring sources, be-
cause otherwise a full exchange between all sources in a neighborhood is needed.

Threshold propagation and anomaly region detection cannot be processed on the individual
sources, i.e., on the sensors, or for each neighborhood independently, because we also have
to detect regions crossing neighborhoods. Thus, we only have the options:

1. send all data to a central server for processing
2. use a hierarchy between chosen leader nodes that exchange data accordingly

Obviously, threshold propagation and region detection can only be processed in-network
if anomaly detection is done in-network as well. As all properties and statements made in
the following equally apply to threshold propagation and region detection, from now on
we use only region detection when referring to both methods, threshold propagation and
region detection.
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The choice on the degree of distribution depends on the trade-off between processing and
transmission costs. For making the right decision on this, we will discuss an appropriate
cost model. The crucial part is the energy consumption observed at the data sources and
hierarchy peers. Thus, the factors influencing the total costs C (in μJ

s = W (Watt)) are:
• cmsg: constant costs for a single message (header etc.) in μJ

• cbyte: additional costs for each byte in a message in μJ

• ccpu(op): costs for processing operation op on a node in μJ

• rm: the rate of taking measurements in 1
s

• ra: the rate of events, i.e., the average rate an anomaly is detected, in 1
s

• m: number of sources contained in the network
• ml: the number of leader nodes (the number of separated neighborhoods, respec-

tively)
• h: average number of hops from a source to the central server (correlating with

shortest paths in the node hierarchy)
In the following, we will develop general cost formulas for the different options of in-
network processing. In Section 6 we will use concrete cost values in order to analytically
evaluate the different choices.

5.1 Distributed Anomaly Detection

In the centralized approach, we consider the costs for transmitting data. The costs for pro-
cessing at the central server are not the focus of this work, because we assume a powerful
machine with external power supply for that. Usually, not every node is in radio range to
the central server. Thus, messages are routed in a multi-hop manner using the hierarchy
of nodes. Sending a message always results in a constant overhead cmsg due to header
information etc. Additionally, costs depend on the size of the data contained, measured in
bytes (cbyte for each byte). Receiving a message results in energy consumption as well. In
our experiments, we observed that this is about the same costs as sending a message. See
Section 6 for more details on this. A single measurement can be expressed using 2 bytes.
Thus, we obtain the following costs for data transmission in the centralized approach:

Ccentr = h · rm · (cmsg + 2 · cbyte) ·m︸ ︷︷ ︸
send measurements

+(h− 1) · rm · (cmsg + 2 · cbyte) ·m︸ ︷︷ ︸
receive measurements

Even if there exist techniques for collision prevention (based on time slots or ready/clear
signals), there is a small probability of colliding messages. For convenience we omit this in
our cost function, as it would only result in a small fraction of resent messages. Further, we
assume all sources have the same periodicity, i.e., all sensors produce new measurements
at the same frequency, and that messages are forwarded directly without collecting them
at intermediate peers.

Several detection algorithms can be directly mapped to the data sources (of course, assum-
ing that respective processing capabilities exist on the sensors). This holds, for instance,
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for the introduced burst detection algorithm and the outlier detection if no information
about the neighborhood is involved. For anomaly detection on the individual sensors, we
obtain the following costs:

Canomaly = rm · ccpu(update) ·m︸ ︷︷ ︸
update at sources

+h · ra · (cmsg + 2 · cbyte) ·m︸ ︷︷ ︸
send anomalies

+(h− 1) · ra · (cmsg + 2 · cbyte) ·m︸ ︷︷ ︸
receive anomalies

Obviously, this can only help reducing energy consumption if ra is significantly lower than
rm, which should be the usual case, as we are dealing with anomalies rather than normal
situations. For popular sensors, ccpu is orders of magnitude lower than cmsg .

If we take information about neighboring sources into account when determining anoma-
lies, we make leader nodes responsible for detecting anomalies in each neighborhood.
Sensors send messages containing single measurements to the leader nodes of their neigh-
borhood and processing is done there. Then, we have

Clead = rm · 2 · (cmsg + 2 · cbyte) · (m−ml)︸ ︷︷ ︸
send and receive measurements

+ rm · ccpu(update) ·m︸ ︷︷ ︸
update at leader nodes

+(h− 1) · ra · (cmsg ·ml + 2 · cbyte ·m)︸ ︷︷ ︸
send anomalies

+(h− 2) · ra · (cmsg ·ml + 2 · cbyte ·m)︸ ︷︷ ︸
receive anomalies

As this assumes uniform distribution of all ra ·m anomalies over the ml leader nodes, the
costs Clead represent an upper bound on the cost of anomaly detection at leader nodes.

The approaches for anomaly detection introduced in this work have no requirements re-
garding how much processing should be pushed into the in-network hierarchy. In fact, the
processing can be totally distributed or is done at the individual leader nodes in case we
have to handle neighborhoods. This does not hold for distributed region detection, where
communication between leader nodes is mandatory. Depending on the structure and extent
of a detected anomaly region, this can result in completely traversing a hierarchy of leader
nodes potentially up to the central server on the very top of it. We discuss this approach of
distribution and the corresponding costs in the following subsection.

5.2 Distributed Region Detection

At time t, the AD values of all sensors in one cell are collected at the cell’s leader node.
Then, threshold propagation is conducted as shown in Algorithm 2. At leader nodes of
the lowest level, this algorithm works very similar to the centralized approach described
in Algorithm 1, as can be seen in the comments below line 1 and line 22 as well as in
lines 23–25 of Algorithm 2. Here, I contains only the outliers contained in the cell, not
all outliers in the sensor network. All nodes that are direct neighbors of nodes in O but
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Input: ϕ [, sets O,P, Smarked, I from sub-cells]
Output: set of line segments, ⊥ if delegated to next level
if P = ∅ then /* only possible at leader nodes lowest in hierarchy */1

/* fill I,O and Smarked as in lines 1-3 of Algorithm 1 */
P = ∅; /* p ∈ P := [SID1, SID2, Δ, lvl] */2

else3
merge sets O,P, Smarked and I from all sub-cells;4

level = 0;5
while ∃o ∈ O ∪ P : o.lvl ≥ level do6

Schecked = ∅;7
foreach p ∈ P : p.lvl = level do8

/* only possible at intermediate nodes at higher hierarchy levels */
if p.SID2 /∈ Smarked then9

if 1 ∃s ∈ I : s.SID = p.SID2 then10
if p.SID2 ∈ LocalCell then11

request I and Smarked from corresponding sub-cell and merge locally;12

else13
continue ; /* p is kept in P → one level up */14

df = get-damping-factor(p.SID1, p.SID2);15
if ∃op ∈ O : op.SID = p.SID2 then16

if op.Δ < p.Δ − df then17
op.Δ = p.Δ − df ;18

else19
O = O ∪ {[p.SID2, p.SID2.AD, p.Δ − df, level]};20

Schecked = Schecked ∪ {p.SID2};21

P = P \ {p};22

/* expand current level as in lines 7-15 of Algorithm 1 */
/* all nodes not in LocalCell go into P: [o.SID, n.SID, o.Δ, level + 1] */
O = O \ {o ∈ O|o.AD < o.Δ};23
Smarked = Smarked ∪ Schecked;24
level = level + 1;25

if P = ∅ then26
return get-line-segments(O);27

else28
delegate ϕ,O,P, Smarked, I hierarchy upwards;29
return ⊥;30

Algorithm 2: Distributed threshold propagation and region detection algorithm

are not in the local cell are collected in the set P , which is later propagated upwards in the
network hierarchy and the next higher leader node will attempt to determine the threshold
for these nodes.

If P in the output of Algorithm 2 is empty, i.e., P = ∅, propagation terminates and
anomaly regions can be detected on this level of the network hierarchy. Otherwise, ϕ,
O, P , Smarked, and I of the current leader node are sent upwards to the leader node of
the next higher level. There, the incoming data sets from all sub-cells are merged (line 4).
Then, all nodes that have been collected in P on lower levels are considered for insertion
into O. It is possible that the AD value of a node p ∈ P is not known to the leader node,
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because either p is in a different cell on this level (line 14), or the sub-cell containing p did
not send any data upwards. In the latter case, information about p is requested from the
corresponding sub-cell (line 12). Generally, nodes in P are only considered for insertion
into O if they have not been previously considered, i.e., if they are not in Smarked. In the
distributed algorithm, this property results in a feature we call “neighborhood preserving”.
It means that if a node has been checked by a leader node on a lower level already, and is
thus in Smarked, it will not be checked again at higher levels, even if this node appears in P
with a lower level than in Smarked. This way, decisions made by sub-cells, i.e., the closer
neighborhood of this node, about this node are not overwritten at higher levels. Insertion
of nodes from P into O is similar to what happens in the centralized approach (lines 15–
22 in Algorithm 2). As we stored the potential level for each node in P , the nodes can
be inserted at the appropriate level in O. To propagate the threshold from nodes that have
been newly inserted into O from P , all nodes in the current level of O are checked again
(comment below line 22).

For approximating the costs of in-network region detection, we have to introduce some
more cost factors:

• L: average number of hierarchy levels involved in region detection

• mlR: average number of nodes over all levels where (parts of) anomaly regions are
handled

• maR: average number of anomalies handled over all levels

• mfR: average number of anomaly regions detected and finalized over all levels –
information about these regions is only forwarded following the multi-hop protocol

• sizeR: average size of anomaly regions in bytes

• size{O,P,I}: average size of information needed to propagate regions upwards in
the network hierarchy

This way, the number of regions is modeled by maR, mlR and mfR. The size of regions is
modeled by maR, mlR and L. Further, we assume that the anomaly regions are distributed
uniformly over all cells. Based on these assumptions and the algorithm described above,
we obtain:

Cregion = rm · ccpu(anomalies) ·m︸ ︷︷ ︸
anomalies at sources

+ ra · 2 · (cmsg + 2 · cbyte) · (m−ml)︸ ︷︷ ︸
send and receive anomalies

+ ra · L · (ccpu(detect) ·maR + 2 · (cmsg + size{O,P,I} · cbyte) ·mlR)︸ ︷︷ ︸
update and propagate regions

+ ra · (h · (cmsg + sizeR · cbyte) + (h− 1) · (cmsg + sizeR · cbyte)) ·mfR︸ ︷︷ ︸
forward finalized regions

In this formula, we assume anomaly detection is done at the sources. If this is replaced by
leader node-based detection, the ra in the first line must simply be replaced by rm (each
measurement is sent, not only anomalies). ccpu(anomalies) corresponds to the CPU costs
of the chosen method. Note that all listed cost formulas are worst case approximations, as
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measurement time energy
compute average of 10 values 52.3μs 0.272μJ

compute average of 100 values 245μs 1.274μJ
single addition 2μs 0.010μJ
single division 27μs 0.140μJ

single multiplication 16.2μs 0.08μJ
sending 1 byte 4.85ms(2.33 − 6.95ms) 240.19μJ(121 − 361μJ)

sending 10 bytes 4.9ms(2.8 − 7.4ms) 252.93μJ(146 − 385μJ)

Table 1: Average energy consumption measured on real sensors

we use average values etc. Nevertheless, they are suited for analytically evaluating in-
network processing by comparing the costs of each option. This is done in Section 6.

6 Evaluation

Due to space limitations, we focus the evaluation in this section on the distributed version
of our approach. The centralized region detection approach has been evaluated in [FG08]
and we showed the feasibility of the threshold propagation in Section 4. In the following,
we present an analytical evaluation of the in-network processing options introduced in
Section 5. For this, we instantiate the proposed cost formulas with values measured on
real sensors and vary several cost factors. The purpose of this evaluation is (i) to identify
the sensitive factors that have most influence on the actual choice, and (ii) to determine
the benefits we get from in-network processing and in which situations. We expect the
in-network methods being less energy consuming than the central approach up to a certain
rate of anomalies ra. The detection of anomalies on sources should perform best from
this point of view, followed by the methods using leader nodes and hierarchy-based region
detection.

We measured some typical Tmote Sky sensor nodes running TinyOS-1.x (16 bit microcon-
troller unit (MCU) MSP430F1611, 4 MHz clock rate, IEEE 802.15.4 compatible CC2420
transceiver with 250kBit/s). The MCU works on 16 bit integers, divisions are processed
in software. For the sending operations of the transceiver we used maximal output power
(+0 dBm). We assumed a battery voltage of 2.6 V and neglected any fluctuations that may
occur in reality. All processing was done using the standard packet format of TinyOS-1.x,
which means that for transmitting 1 byte raw data there are 12 bytes sent, due to headers,
checksums etc. This corresponds to a raw sending time of about 0.384ms. Consequently,
with 10 bytes raw data there are 21 bytes sent (about 0.672ms). Table 1 summarizes the
most important results of the tests.

Roughly speaking, local processing is about 1000 times cheaper than communication. But,
energy consumption of MCU operations is much more deterministic than communica-
tion in wireless networks. More complex routing protocols influence processing times and
energy consumption. In our experiments, we did not apply such sophisticated protocols.
Moreover, they would result in an overhead for both, processing and transmitting. The
fluctuations observed for sending messages are due to the used CSMA protocol for radio
transmissions, which uses random backup times among other things. Using TDMA this
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Figure 6: Varying anomaly rate ra (m = 1000, ml = 200(150), h = 3, rm = 1)

would not apply – but in turn there would be more effort on synchronization etc. We also
neglected situations of high load in the network, which could result in transmission de-
lays as well. Further, we did not consider switching between active and idle modes and
techniques for optimizing energy consumption in this case (e.g., by abstaining from the
switch process in certain situations). Summarizing, we measured in a general but practi-
cally meaningful environment, which allows us to identify meaningful differences between
the in-network options.

Based on these observations, we can instantiate the formulas from Section 5 with concrete
values. For this, we derived the average values from Table 1. Interestingly, we observed
that the number of sensors m and the rate of measurements rm have no influence on the
decision of in-network processing. Of course, they influence the total energy consumption,
but all methods scale equally with them. The most influential factor clearly is ra. This is
illustrated in Figure 6. We show the costs in a m = 1000 sensor network, with a hierarchy
depth of h = 3 and one measurement per second (rm = 1). The costs of the central
approach are Ccentr and those of the anomaly detection on source level are Cburst and
Coutlier respectively. The anomaly detection method using leader nodes is referred to by
Clead. Figure 6(a) shows that message costs outweigh processing costs significantly. Only
with highest anomaly rates the in-network costs are above the central costs. Neighborhood-
based anomaly detection on leader nodes is cheaper for all rates. This is due to the implicit
aggregation of sensor messages on the lowest level of the hierarchy.

The differences in Figure 6(b) show that all methods scale with the window size w, which
is the size of the sliding window on which anomaly detection is done. Only the costs
of the method on leader nodes are significantly affected by w. With ml = 200 leader
nodes the costs of the in-network method are lower than those of the central approach up
to an anomaly rate ra = 0.5 (which is still a very high rate). For larger neighborhoods
(ml = 150) and high values of w, the costs are higher even if there is no anomaly detected
at all.

This indicates that another sensitive factor is the ratio of sensors to leader nodes, i.e., the
size of the neighborhoods. To illustrate this, we vary this ratio in Figure 7. We used an
anomaly rate ra = 0.1. Further, we again show the effect of the window size w. The
figure reveals that only for large window sizes (short terms up to an hour are common in
streaming systems) the central approach should be preferred if neighborhoods are rather
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Figure 8: In-network region detection (m = 1000, ml = 200, h = 3, rm = 1, w = 5000)

large. The plots for different ra with varying ml look similar, but in contrast they are close
for small ml and differ more for large ml – but not as significantly as for different w.

Figure 7 also shows the rather weak effect of increasing the depth of the hierarchy, i.e.,
average hop count. In contrast to Figure 6 we used a hop count h = 4. Clearly, the en-
ergy consumption of the central approach rises, caused by the multi-hop protocol. The in-
network methods rise as well, but significantly slower. With 200 leader nodes, the energy
consumption of the method on leader nodes is at about 1.14 for ra = 0.1 in Figure 6(b).
In Figure 7 the energy consumption for w = 5000 is at 1.17, whereas the central approach
increased about 0.5 Watts.

Finally, we evaluated the in-network processing of anomaly region detection. As this is
based on anomaly detection, we determined costs for both steps in conjunction (as we
already did in the formula in Section 5). This only concerns the CPU costs for each method
and influences performance of region detection negligibly. In our experiments we used the
method for outlier detection on the sources exemplarily. It is rather difficult to identify
suitable values for the used parameters maR, mlR and mfR without running tests on real
data. However, the purpose of the cost comparison is to identify the sensitive parameters
and to deduce the influence of region count and size. Thus, the effect of parameters is
more important than their concrete values. Intuitively, all three depend on each other, and
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all three depend on ra as well. We tested a wide range of concrete relations and concluded
that the most influencing parameters are maR and L. In Figure 8 we illustrate the effect of
both. According to other tests we ran, a common average size of regions is about 6 sensors.
Thus, we set mlR = maR/6. The higher L, the larger are the regions and the smaller is
mfR for constant mlR. We chose to use mfR = mlR

L .

Figure 8 shows that, as expected, energy consumption for in-network region detection is
much higher than for pure anomaly detection. Furthermore, it does not scale linearly and
the point of “break even” concerning the central approach is earlier. However, in-network
processing is still worthwhile for rather small (and thus, usual) anomaly rates. The more
regions occur (larger maR), the smaller these anomaly rates and the larger the increase
of energy consumption (see Figure 8(a)). The size of the regions (larger regions result in
higher values for L) has a significant influence as well, but not as much as the number of
regions (see Figure 8(b)).

Summarizing, in-network processing provides an excellent opportunity to reduce energy
consumption, and thus to increase life time of sensors. Anomaly detection on sources
should be delegated in principle. If leader nodes are used to identify neighborhood-based
anomalies, the choice should depend on the crucial parameters like the window size w. As
expected, region detection can often be better performed at the central instance. But, for
low anomaly rates it is still a good option for saving energy. This effect decreases with
increasing number of regions and their size – due to the hierarchy-based approach.

7 Conclusion

Detecting regions of anomalous phenomena in sensor networks is an interesting and chal-
lenging task. In this paper we presented an anomaly region detection approach that is aware
of the obstacles in the sensor field. The presented algorithm allows us to derive anomaly
regions with meaningful boundaries instead of regions described only by grouping the
measurement points. We use the notion of a damping factor between pairs of sensors to
represent spatial obstacles like buildings or mountains. With the help of the damping fac-
tor we are able to describe the spread of a phenomenon though the sensor field taking the
damping effect of obstacles into account.

Transmitting data within a sensor network is one of the most energy consuming sensor op-
erations. In order to minimize communication costs and consequently improve the network
life time, we also presented an in-network processing strategy for our detection approach.
We developed a formal cost model for both the intuitive centralized approach and the com-
plete in-network computing. Finally, we also showed analytical and experimental results
to evaluate our approaches.
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