
cba

Herausgeber et al. (Hrsg.): Software Engineering 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 1

CiFi: Versatile Analysis of Class and Field Immutability

Tobias Roth, Dominik Helm, Michael Reif, Mira Mezini1

Abstract: This paper was accepted in 2021 at the 36th IEEE/ACM International Conference on
Automated Software Engineering and proposes a model for immutability analysis. Reasoning about
immutability is important for preventing bugs, e.g., in multi-threaded software. Static analysis to infer
immutability properties has mostly focused on individual objects and references. Reasoning about
fields and entire classes, while significantly simpler, has gained less attention. A consistently used
terminology is missing, which makes it difficult to implement analyses that rely on immutability
information. We propose a model for class and field immutability that unifies terminology for
immutability flavors considered by previous work and covers new levels of immutability to handle
lazy initialization and immutability dependent on generic type parameters. Using the OPAL static
analysis framework, we implement CiFi, a set of modular, collaborating analyses for different flavors of
immutability, inferring the properties defined in our model. We propose a benchmark of representative
test cases for class and field immutability. We use the benchmark to showcase CiFi’s precision and
recall in comparison to state of the art and use CiFi to study the prevalence of immutability in
real-world libraries, showcasing the practical quality and relevance of our model.

Keywords: class and field immutability; static analysis; lattice; Java

1 Summary

Immutability brings important guarantees and is, e.g., recommended for secure coding [Or20].
Intuitively, immutability means that a program element is unchangeable or not changed
after its creation [Po13]. While there are multiple flavors and levels of immutability, current
approaches only focus on a restricted set of immutability levels and additionally cannot
handle lazy initialization and immutability in combination with generic types properly.
Furthermore, there is not only no common terminology yet for different immutability levels,
but also existing terminology is used inconsistently [Co17, Po00, NPN12, Po13].

To solve this problem,we propose a unified terminology and present it in our latticemodel that
focuses on class and field immutability. Analyzing class immutability is much simpler than
analyzing object immutability while remaining sound [Co16, Co17]. The model is divided
into four different lattices for field assignability, field immutability, class immutability, and
type immutability. Because current approaches cannot handle lazy initialization of fields
and immutability in combination with Java generics precisely, we introduced the novel
immutability levels (unsafe) lazy initialization and dependent immutability. (Unsafe) lazy
1 Technische Universität Darmstadt, FG Softwaretechnik, Germany
{roth,helm,mezini}@cs.tu-darmstadt.de,mi.reif.mr@gmail.com

cba

Lars Grunske, Janet Siegmund, Andreas Vogelsang (Hrsg.): SE 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 81

https://creativecommons.org/licenses/by-sa/4.0/


2 Tobias Roth, Dominik Helm, Michael Reif, Mira Mezini

initialization describes whether all reads of a field always return the same value. Dependent
immutability describes cases where the immutability of a type, class or field depends on the
concretization of a generic type. This model allows for modular immutability analyses for
field assignability and field, class, and type immutability.

Based on our model, we implemented CiFi that encompasses four different analyses
for field assignability, field, class, and type immutability in the Java Bytecode analysis
framework OPAL [He20]. OPAL’s blackboard architecture supports the composition of
multiple decoupled interdependent analyses. In our evaluation, we show the expressiveness
of our model and challenge CiFi with our CiFi-Benchmark for field and class immutability,
which we created based on our immutability research. We show that CiFi handles most of
the test-cases precisely and over-approximates remaining corner-cases soundly. The results
of analyzing several real-world libraries with CiFi show the applicability and relevance of
our immutability model in the real world. Furthermore, CiFi outperforms the state of the art
in class- and field-immutability enforcement, Glacier [Co17].

2 Data Availability
CiFi: https://github.com/opalj/opal/tree/feature/classFieldImmutability
CiFi-Benchmark: https://github.com/opalj/CiFi-Benchmark
Artifact: https://doi.org/10.5281/zenodo.5227231

Bibliography
[Co16] Coblenz, Michael; Sunshine, Joshua; Aldrich, Jonathan; Myers, Brad; Weber, Sam; Shull,

Forrest: Exploring language support for immutability. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE). pp. 736–747, 2016.

[Co17] Coblenz, Michael; Nelson, Whitney; Aldrich, Jonathan; Myers, Brad; Sunshine, Joshua:
Glacier: Transitive class immutability for Java. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, pp. 496–506, 2017.

[He20] Helm, Dominik; Kübler, Florian; Reif, Michael; Eichberg, Michael; Mezini, Mira: Modular
collaborative program analysis in OPAL. In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE’20, pp. 184–196, 2020.

[NPN12] Nelson, Stephen; Pearce, David J; Noble, James: Profiling field initialisation in Java. In:
International Conference on Runtime Verification. Springer, pp. 292–307, 2012.

[Or20] Oracle: Secure Coding Guidelines for Java SE.
https://www.oracle.com/java/technologies/javase/seccodeguide.html, September 2020.

[Po00] Porat, Sara; Biberstein, Marina; Koved, Larry; Mendelson, Bilha: Automatic detection of
immutable fields in Java. In: CASCON. p. 10, 2000.

[Po13] Potanin, Alex; Östlund, Johan; Zibin, Yoav; Ernst, Michael D.: Immutability. In: Aliasing in
Object-Oriented Programming, pp. 233–269. Springer-Verlag, Berlin, Heidelberg, 2013.

82 Tobias Roth, Dominik Helm, Michael Reif, Mira Mezini


