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Abstract: This paper underlines the importance of security awareness whilst pro-
gramming Java applications. Several problems in current JDK implementations are
demonstrated that allow to undermine the security of Java applications. Coding errors
and quality problems in current Java distributions create possibilities to create covert
channels, cause resource blocking and denial-of-service attacks. To make things worse
Java components are often deployed according to the AllPermissions antipattern with
non-restrictive security settings, which allows bugs on the system layer to be exploited
by attackers. Coping with this antipattern from the user side is connected with the
definition of adequate permission sets. A tool that automates this time consuming task
is presented as a refactoring for the AllPermission antipattern.

1 Introduction

Java is one of the few programming languages that was designed from the beginning with
security goals in mind[Go99b]. In the first versions (1.0 and 1.1) a simple sandbox model
was available that allowed containment for remote code. Current editions of Java extend
this model to a fine-grained architecture that extends the locality based approach of the
first sandbox model with more trust-establishing parameters such as the codebase of the
current instruction, the signature of the code signer and with the Java Authentication and
Authorization System (JAAS) framework also the identity of the current user. An applica-
tion can be secured with a policy file to define what actions are allowed according to the
actual trust level of the current user and executed code parts.
As with all security architecture specifications, hackers typically do not try to attack the
system through the front door, they seek errors in the implementations and try to exploit
covert channels and triggers to the layer below[Go99a] to bypass security mechanisms.
The following sections will show that although equipped with language based security
features such as type safety, antipatterns such as covert channels can be found in the Java
architecture that allow to exploit logical errors in the code of trusted libraries. In addition
false assumptions in the packaging the of the classes in the trusted system libraries of the
JDK offer a harmful range of ready-to-call functionality to the attacker.
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2 Java Security

Traditional requirements towards programming languages are reliability, performance,
flexibility, abstraction and broad applicability. Induced by the growing importance of
distributed middleware models like CORBA[Ob01] and the Java 2 Enterprise Edition
(J2EE[Sh]) the requirements towards security gained importance. This is due to the fact,
that code could not be considered as trusted as it is downloaded on demand from unknown
remote sites which trustworthiness is typically unknown.

The experiences with traditional programming languages like C and C++ were the basis
to design Java [GJSB00]from scratch with security goals in mind and avoid the potential
vulnerabilities of direct memory access, pointer arithmetic and arbitrary type casts. Such
concepts are found with an emphasis on system security in the Java 2 Standard Edition
(J2SE[Sua]) as platform independent framework for desktop applications as well as with
an additional emphasis on access control in J2EE. Java is based on the principles of lan-
guage based security which is enforced by the trusted kernel to provide code safety. These
principles are control flow safety, memory safety, stack safety which support safety of the
Java type system [Ko99]. Java code is stored in platform-independent bytecode format
that is verified in accordance to the subdisciplines of type safety by the trusted kernel.

2.1 Secure Coding and Antipatterns

As the maintainer of the Java programming language Sun Microsystems has published a
set of coding guidelines for secure Java programming [ Suc]. The coding guidelines give
hints when dealing with the following issues:

R1 Refrain from using non-final public static variables

R2 Reduce scope

R3 Refrain from using public variables

R4 Protect packages

R5 Make objects immutable if possible

R6 Never return a reference to an internal array that contains sensitive data

R7 Never store user-supplied arrays directly

R8 Serialization

R9 Native methods

R10 Clear sensitive information
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Violation of these guidelines typically results in security antipatterns. The negative effects
of ignoring the guidelines R1, R2, R3, R4 , R9 and combinations of them is discussed the
following sections.

According to Brown et al. [BMIM98]

the essence of an AntiPattern is two solutions, instead of a problem and a so-
lution for ordinary design patterns. The first solution is problematic. It is a
commonly occurring solution that generates overwhelmingly negative conse-
quences. The second solution is called the refactored solution. The refactored
solution is a commonly occurring method in which the AntiPattern can be
resolved and reengineered into a more beneficial form.

In the following the negative consequences of the integration of the org.apache.*
classes into JDK 1.4.x are demonstrated.

2.2 Non-final public static methods and fields in the JDK-Packages

The packages in the JDK are subdivided in the classes that form the core Java language
(java.lang.*), supporting classes (java.*), implementation dependent sun.* pre-
fixed classes and other packages. Beginning with version 1.4.x of the JDK the ”other”
packages contain several classes from the Apache Xalan and crimson libraries to pro-
vide functionality to process XML and XSLT data [Sub]. A typical Java class consists
of instance related methods and fields and of class related methods and fields, which
are identified via the static keyword. It is common that data structures that are de-
signed to be available globally are implemented with public static final mod-
ifiers, which makes them available throughout the application (public), binds them to
the class (static) and makes them writable only once (final).

According to secure coding guideline R1 declaration of non-final public static methods
and fields is harmful, this is especially true when executing code from untrusted sources.

The Java Plugin [Su03a] from Sun Microsystems is designed to execute Java code from
untrusted sources in an Internet browser like the Microsoft Internet Explorer or Mozilla. It
starts a single JVM and creates an instance of the applet classloader class for each loaded
applet. The Java virtual machine uses private ClassLoaderobjects to create separate
address spaces between processes to provide an environment of code confinement. Any
user class may be loaded multiple times if it is loaded by private class loaders. In con-
trast classes residing in the rt.jar (JDK boot system classes) are loaded once and their
static variables are strict singletons[GHJ95]. The classes of the Apache XML and XSLT
utility packages (org.apache.*) expose several public static fields and property values
that can be set from untrusted user code. These static variables become risk and threat to
integrity when they can be modified by untrusted code in such a way that they modify sys-
tem behavior. As Sun did not rename these packages with a sun.* prefix the XML utility
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classes technically became part of the public Java interface available to all code types in-
cluding applets, although the org.apache namespace is not mentioned in the official
JDK documentation. The applet sandbox[Go99b] permission set allows access to pack-
ages and classes of the public interface, which enables class loaders to define and access
these classes, in contrast to the unaccessible classes in private sun.* packages as such
as sun.security.util.PropertyExpander class. These classes are restricted
from definition and direct access by the default security manager policy settings located in
jre/lib/security/java.policy.

2.3 Covert Channel and Triggers Antipatterns

According to Bishop[Bi00] a Covert channel is

a path of communication that was not designed to be used for communication

An attacker can find out potential covert channels in the JDK classes by analyzing the
communication and calling paths between the classes. Those classes are packed in a Java
archive (jar file), which is an extension of the Zip-Format by a manifest which holds Java
specific meta information.

An attacker may use bytecode engineering techniques [ Sc02] to perform the following
analysis while scanning the jar file:

1. Acquisition of a list of the public classes in the jar file as these are accessible via
the reflection API to outer Java scripting such as Beanshell, Javascript or stored
procedures in several JDBC drivers.

2. Scan these classes for public, static non-final fields and methods. The acquired
fields can be used to establish covert channels for processes running inside the same
VM. The acquired methods can be used to trigger actions in the mentioned script
environments.

3 Covert channels and triggers

Two misuse cases will be shown that exhibit the danger of exploiting these shared re-
sources and functionality. The scenarios are:

1. Covert channels that allow unsigned applets to communicate to other signed and
unsigned applets

2. Covert triggers that allow to execute arbitrary programs on the machine running
the VM via remote JDBC calls



Anti-Patterns in JDK Security and Refactorings 179

According to the security pattern framework by Yoder and Barcalow[ YB97] a single ac-
cess point limits the entrance to critical functions and resources of applications. This pat-
tern is typically undermined by covert channels that bypass the ”single entrance” premise.
The Java security manager concept that enforces the applet sandbox is an implementation
of such a single access point. It technically intercepts the critical calls by referring to the
policy in place prior to resource access. The strict default applet policy to protect the in-
tegrity of the users workplace when working with mobile contents loaded from untrusted
sources.

3.1 Covert channels in the JDK

3.1.1 Applet covert channel

One of the restrictions enforced by the default applet security manager is the limitation of
package access, limiting access to methods and fields of classes from a package that not
prefixed by a sun top-level package name.

3.1.2 Detection techniques

In order to find the potential covert channel and triggers inside the JVM, the class files
residing in the Java runtime libraries (rt.jar) were inspected. This was done with the
help of the Bytecode Engineering Library (BCEL) which is part of the Apache Jakarta
project[Daa]. Scanning the public classes in rt.jar of the Java version 1.4.2 03 resulted
in 91 public static non-final fields and 4286 public static methods. These were exported to
XML files via an XMLEncoder object to allow optional further automatic processing.

3.1.3 Proof-of-concept

In order to demonstrate the danger of covert JDK channels with a proof-of-concept imple-
mentation the public and static field LANGUAGE from the XSLTProcessorVersion
class inside the org.apache.xalan.processorpackage was chosen, which resides
in rt.jar. Then an applet was constructed that tested read and write access this field.
This applet was distributed to three different remote web sites. The three identical ap-
plets were then loaded into a single web browser in different frames, which means sharing
the same VM by all applets. During runtime applet access to the variable from the three
applets was tested. As expected all three applets were allowed to modify this static vari-
able and exchange data and serializable (Guideline R8) objects which were serialized via
an ObjectOutputStream in String object and therefore violated the sandbox re-
strictions. The risk potential for this behavior ranges from denial-of-service of the XSLT
functionality to sandbox escape by bypassing containment through covert channel com-
munication. Additionally signed applets may leak information to unsigned applets which
may circumvent the Bell LaPadula[BL] privacy considerations intended by the applet de-
veloper.
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To improve quality of the Java runtime environment the issue was submitted to the Java
bug database and was labeled with the internal number 236774. The bug was considered
to be new and will be made visible to the public in the database after a refactored version
is available, which will be case with the 1.4.2 05 version of the Sun JDK.

3.1.4 Memory reading applet

A covert channel to physical system memory was found by the author [ Su03b] in the Java
Media Framework (JMF), which is a toolset that allows to play multimedia elements such
as music, movies and other stream data within pure Java applications. As the JMF is con-
cerned with access to system hardware functionality such as the sound card and graphics
equipment and uses several native codecs, performance-oriented and therefore platform
dependent code has to be accessed by the JMF libraries. The JMF libraries are installed
as endorsed library to the lib/ext directory of the JRE. Libraries in this directory are
loaded by the boot class loader and are trusted fully by the applet security manager (which
equals an AllPermission setting). A result of bytecode analysis of the classes of the
jmf.jar in version 2.11.c a covert channel was identified that allowed indirect access to
the system memory which is a violation of the strict containment premise enforced by the
permission sets of the Java sandbox. The NBA class (NativeBlockAccessor) is responsible
to provide a specified communication area between the components in pure Java and the
native memory storage. The cause for the problem is the inappropriate guarding of an
internal variable of the NBA class inside the JMF. This is a violation of the R2 (reduce
scope) secure coding guideline and causes the memory access antipattern. The field data
holds the pointer to a native memory block. By subclassing the NBA class, the information
stored in data was made available to arbitrary Java applets, which after using conversion
routines were able to map Java byte values to the exposed system memory.

3.2 Covert trigger

A covert trigger in analogy to covert channels is defined here as

A trigger of actions that was not designed to trigger actions

3.2.1 Applet floppy hardware attack antipattern

A containment problem can be raised with a covert trigger. Due to a implementation
logic error in the Java virtual machine for the Windows platform, the security manager
check is called after the physical check whether a floppy drive is available in the disk
drive. When running the createXmlDocument of the XmlDocument class of the
org.apache.crimson.tree package in an endless loop the machine (tested with
the Java Plugin in IE6) stops working because the floppy drive is busy with antagonistic
accesses to the disk. The hardware stress applet can lead to overheating in the floppy drive
which might cause physical damage to the drive and the other components of the affected
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PC,but even on systems without floppy drives the applet allows a simple denial-of-service
attack by accessing other blocking device types via their file names. This antipattern was
created by executing privileged code (triggering physical floppy access) without proper
access control checks (FilePermission).

3.2.2 JDBC macros and covert triggers via remote command injection

JDBC is a Java centric standard to establish client-server database applications. Java
clients use services of a database server via remote JDBC calls. Three 100% pure java
databases were tested for vulnerabilities in regards of the remote command injection an-
tipattern. The databases were:

HSQLDB aka Hypersonic SQL[HS], an open-source SQL database bundled with JBOSS
3.x

Pointbase DB 4.6 [Dab], a commercial SQL database system, is bundled with the J2EE
1.4 reference implementation

Cloudscape SQL [IB] from IBM is a standalone 100% pure java database and is also
available bundled with the Websphere application server

By the time period of penetration testing local installations of all three databases, these
products were not designed to run with a Java security manager. As a consequence they
have been found to be vulnerable to remote command injection, information disclosure.
A simple JDBC SQL statement was sufficient to start an arbitrary executable on the host
running a SQL database, which open a covert trigger. With a SecurityManager in place
this would only be feasible with an explicit ”execute”FilePermission.

As a demonstration the following SQL statement injects Java code in the address space of
the server VM.
�
CREATE FUNCTION COMPDEBUG (IN P1 boolean) returns VARCHAR(100)
LANGUAGE JAVA NO SQL EXTERNAL NAME
"org.apache.xml.utils.synthetic.JavaUtils::setDebug"
PARAMETER STYLE SQL;
SELECT COMPDEBUG(true) FROM SYSUSERS;
CREATE FUNCTION SETPROP (IN P1 VARCHAR(100),
IN P2 VARCHAR(100)) returns VARCHAR(100)
LANGUAGE JAVA NO SQL EXTERNAL NAME
"java.lang.System::setProperty" PARAMETER STYLE SQL;
SELECT SETPROP(’org.apache.xml.utils.synthetic.javac’,
’cmd.exe’) FROM SYSUSERS;
CREATE FUNCTION COMPILE (IN P1 VARCHAR(100),
IN P2 VARCHAR(100)) returns VARCHAR(100)
LANGUAGE JAVA NO SQL EXTERNAL NAME
"org.apache.xml.utils.synthetic.JavaUtils::JDKcompile"
PARAMETER STYLE SQL;
SELECT COMPILE(’’, ’/c notepad.exe’) FROM SYSUSERS;

�� �
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The example (in Pointbase SQL syntax) starts a notepad.exe on the host executing the
JDBC database as a proof of concept. As every other more harmful executable such as a
remote shell could be started as well. The SQL statement is equal in functionality to the
following Java code:
�
{
org.apache.xml.utils.synthetic.JavaUtils.setDebug(true);
System.setProperty("org.apache.xml.utils.synthetic.javac","cmd.exe");
org.apache.xml.utils.synthetic.JavaUtils.JDKcompile("","/c notepad.exe");

}
�� �

The syntax between the databases differ in small details but the possibility of injection was
shown for HSQLDB, Pointbase and Cloudscape SQL, when running on a Sun JDK 1.4.x
virtual machine.

The code does the following:

• It sets a debug mode

• Then an internal variable of the Xerces classes is set that defines the default Java
compiler to an arbitrary executable program

• Finally it calls the compile function, which invokes an executable file (cmd.exe).

Due to the individual mapping mechanism of the SQL data types to the Java data types
which is different for each database product. The smallest set of available functionality
was restricted by the mapping of HSQLDB. Via bytecode engineering candidate meth-
ods in rt.jar were retrieved that have a public static void signature with primitive
(such as boolean) or java.lang.String input values. This set was scanned whether
the member calls privileged code parts such as file operations and shell execution. Beside
the presented examples other functionality can be called that can be misused for log manip-
ulation or abnormal program termination such as demonstrated in the next SQL statement
which calls a vulnerable JVM routine in the sun packages which causes an immediate
JVM crash in the remote JDBC server. This vulnerability was communicated to Sun by
the author in 2002 but is not fixed until today.
�
CREATE FUNCTION CRASH5(IN P1 VARCHAR(20)) RETURNS VARCHAR(20)
LANGUAGE JAVA
NO SQL
EXTERNAL NAME "sun.misc.MessageUtils::toStderr"
PARAMETER STYLE SQL;

SELECT CRASH5(null) from SYSUSERS;
�� �

The SQL statement is equal in functionality to the following Java code.
�
{

sun.misc.MessageUtils.toStderr(null);
}

�� �

The enhanced problem with Hypersonic SQL which was deployed with JBOSS applica-
tion server 3.2.1 was the lack of a security manager. It opened a listing TCP port 1701 that
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accepted anonymous JDBC calls, which allowed to inject arbitrary remote commands into
the J2EE process as the JDBC DB was running in the same VM as the J2EE server process.
By closing the open port and switching default configuration to the internal JVM commu-
nication mode the vulnerability has been fixed by the JBOSS developers after a vendor
notification. The Pointbase DB has also been refactored with version 4.8 after a vendor
notification by deploying an optional security manager. IBM admits that is a good idea
to apply a security manager. As the secure coding guidelines R1, R2, R4 are violated
when allowing JDBC macros,

4 Structural Refactoring of the AllPermission antipattern

Refactorings are a means to turn anti-patterns in a good solution by applying well-known
and scalable patterns. The problems identified above were problems of security unaware
coding which in combination with unlimited access rights is very harmful. This is typically
caused by an AllPermissions or equivalent settings, that is the default case when
there is no instance of a SecurityManager is installed with a virtual machine. Running a
system with a minimal set of privileges is therefore an admirable goal as it enhances the
assurance level. Even when a security manager is installed determining the range of a
minimal permission set is a time-consuming task. Therefore jChains has been developed.
The functionality it provides was first used when a minimal set of rules was needed to
refactor the JDBC macros antipattern.

4.1 jChains

jChains is a custom security manager framework records the permissions needed for the
codebases (jars) of J2SE applications running under the access control enforcement of the
Java security manager. This allows security unaware applications to be run under a secu-
rity manager. The resulting policy file is recorded while running the program and is useful
as a starting point when developing a security policy for a Java application. When run
against libraries when source is not available it is useful for reverse engineering, revealing
the permission needed to use the libraries. This is helpful when a developer does not trust
the jar , and do not want to grant it the AllPermission free ride ticket. jChains is designed
to acquire a policy set from a Java application by doing a training mode and later enforce
this policy set in a production mode.

4.1.1 Refactoring JDBC macros with jChains

A typical use case for jChains was evaluating a useful set of rules for the Pointbase
database when providing the vendor with a possible security-related refactoring sugges-
tion.
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�
grant codeBase "file:${pointbase.lib}${file.separator}-" {
permission java.net.SocketPermission "*:1024-", "connect,resolve,accept";
permission java.io.FilePermission "<<ALL FILES>>", "read,write,delete";
permission java.util.PropertyPermission "*", "read";
};

�� �
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Figure 1: jChains-Architecture

jChains [Sc] is either configurable in a local mode or can communication to a remote
CORBA server. CORBA was chosen in favor of RMI because of it’s independence from
a concrete implementation language. The distributed CORBA mode allows to decouple
permission recording from permission evaluation. This is useful for remote permission
training scenarios, e.g. when there is no direct user access to the system hosting the vir-
tual machine. As benefit inherited from CORBA location transparency jChains may also
operate locally.

5 Conclusion

It has been shown that the Java platform is not free of security related issues although
providing a large scale of default security precautions. But these mechanisms cannot help
in a case when the attacker attacks the system on a semantical level below the mechanism
implementation, which typically is the case when antipatterns such as logical errors and
packaging structures are exploited. These coding related antipatterns are often caused by
circumventing the assumptions of the secure coding guidelines. To provide a refactoring
for the AllPermissions antipattern jChains has found acceptance under developers (is a
published freshmeat project and is hosted at the java.net site. In addition jChains
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was useful for refactoring the permission set of the Pointbase SQL server product and is
currently in evaluation by a major german banking group to adjust the appropriate policy
set for the J2EE thin-clients of a banking client-server system.
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