
Using RenderScript and RCUDA for Compute Intensive
tasks on Mobile Devices: a Case Study

Roelof Kemp, Nicholas Palmer, Thilo Kielmann, Henri Bal
VU University

De Boelelaan 1081A
Amsterdam, The Netherlands

{rkemp, palmer, kielmann, bal}@cs.vu.nl
Bastiaan Aarts, Anwar Ghuloum

NVIDIA
2701 San Tomas Expressway

Santa Clara, CA, USA
{baarts, aghuloum}@nvidia.com

Abstract: The processing power of mobile devices is continuously increasing. In this
paper we perform a case study in which we assess three different programming models
that can be used to leverage this processing power for compute intensive tasks. We use
an imaging algorithm and compare a reference implementation of this algorithm based
on OpenCV with a multi threaded RenderScript implementation and an implementa-
tion based on computation offloading with Remote CUDA. Experiments show that on
a modern Tegra 3 quad core device a multi threaded implementation can achieve a 2.2
speed up factor at the same energy cost, whereas computation offloading does neither
lead to speed ups nor energy savings.

1 Introduction

Over the last two years we observed that mobile processors not only increased in clock
speed, but also made the step to multicore. With the introduction of dual core processors
for mobile devices in 2010 and quad core processors in 2011, the available raw compute
power increased significantly. When hardware shifts the horizon of compute power, there
is always software that takes advantage of it. Today, for example, high end mobile devices
offer a gaming experience near or better than console quality.

With the increase of processing power came also an increase in complexity of the mobile
hardware, such as the aforementioned multicore processors, but also dynamic frequency
and voltage scaling, power gating and more. Whereas some complexity is transparent to
software, others require software to be rewritten in order to take full advantage of it, which
in turn adds complexity to the software.

This is especially true for multicore processors, that can only unleash their processing
power if applications are written to execute in multiple threads. While the default pro-
gramming languages on the major mobile platforms (Android: Java, iOS: Objective-C,

305

Windows Phone: C#) offer multi threading by default, it is still up to the developer to use
it. Moreover, it is likely that if a certain app really needs performance it will be using
either a lower level language – such as C – or a specialized high performance language
such as Google’s RenderScript [Ren].

Next to performance gains through the use of multi threading and specific languages, it
has been noted that over the years the gap in computation power between mobile and
non mobile devices got smaller. Despite this improvement, the fundamental constraints
of a mobile device with respect to size, heat dissipation and power supply remained and
therefore non mobile devices continue to offer more processing power than their mobile
counterparts. A technique that takes advantage of this difference is computation offloading
where heavy computation is transferred to non mobile devices to decrease execution time
and/or save energy [LWX01].

In this paper we assess three different programming models; low level language, special-
ized language and computation offloading, using a case study for a High Dynamic Range
photography app on a quad core mobile device. We compare the resulting implementations
based on execution time and energy usage.

We find that the specialized compute language implementation leads to speed ups of max
2.2 times on a quad core device at the same energy cost; the use of computation offloading,
however, has no benefits both in execution time and energy usage.

The remainder of this paper is organized as follows. Section 2 discusses the hardware and
software as well as the programming models that we use in our case study. Then in Section
3 we detail the implementations for multicore and computation offloading, after which we
discuss the methodology of our experiments in Section 4. Then in Section 5 we discuss
the results of the experiments and we conclude in Section 6.

2 Background

2.1 Hardware

For this study we use the NVIDIA Tegra 3 Developer tablet, the only available mobile quad
core processor during our study. The Tegra 3 SoC has a 4-PLUS-1 architecture which has
either a low power core active if the load is low, or 1-4 normal cores if the load is higher.
The maximum clock speed – 1.4 GHz – of the device can only be reached when one of the
four normal cores is active; as soon as multiple cores are active the clock speed is reduced
to 1.3 GHz.

On the developer device it is possible to explicitly turn cores on or off with hotplug. Fur-
thermore, the device has several power rails on which different components are placed. For
each power rail the amperage and power consumption can be read out in real time, both
in software and with a special breakout board that can be connected to a regular computer.
The NVIDIA Tegra 3 Developer tablet runs the Android 4.0.3 operating system.

306

Figure 1: Example of three input images with different exposure levels and the resulting HDR image.
Images from http://en.wikipedia.org/High dynamic range imaging

2.2 Software

The application that we focus on during the case study is a demo Camera app – similar to
the standard Android 4.0 Camera app – with enhanced photography functionality, such as
Negative Shutter Lag and High Dynamic Range (HDR) photography.

More specific, we focus on exposure fusion, a computer vision algorithm within the HDR
process. This algorithm performs the computationally expensive operation of fusing to-
gether multiple images taken from roughly the same spot and the same time with different
exposure levels, in such a way that the result image shows details in both dark and bright
regions, which can greatly improve the end-user experience of capturing images in scenes
with details in both the darker and brighter areas. An example of such a scene and the
resulting HDR image is shown in Figure 1.

A detailed specification of the algorithm can be found in [MKVR07]. Relevant for this
paper is that the computation in this algorithm is based on matrix, filter and pyramid oper-
ations, are all data parallel operations. We use a control script around these operations to
control how the output of one operation is used as input for another operation.

2.3 Programming Models

Android suppports multiple programming models and languages (see Table 1). Using the
Android’s Software Development Kit (SDK) Java is the default language, but one can
switch to the Native Development Kit (NDK), which uses C/C++ through the Java Native
Interface (JNI) for better performance.

Furthermore, with the introduction of multicore processors and the expectation of GPGPU
computing becoming available on mobile devices the RenderScript programming model
was introduced. RenderScript allows programmers to write kernels that at runtime are
automatically run in parallel on the hardware selected by the RenderScript runtime. Until
recently RenderScript could only execute code on CPUs, but the Nexus 10 now supports

307

Table 1: Programming Models on Android
Language OpenCV Automatic Parallelism

SDK Java Yes No
RenderScript No Yes

NDK C/C++ Yes No
OpenGL No Yes

Computation Offloading RCUDA Yes Yes

execution on the GPU. Before there was hardware available on which RenderScript can
run on the GPU, it was already possible to do general computational jobs on the GPU by
writing OpenGL shaders, provided the algorithm and data can be expressed in graphics
operations and graphics data.

In addition to the programming models provided by the Android platform that ultimately
execute code on the device itself, one can also use a programming model that uses the
communication means of a mobile device to offload computation to another better suited
device, such as a desktop machine. An example of such a programming model is the
Remote CUDA (RCUDA) computation offloading framework.

Of major importance for the subject of our field study, the HDR algorithm, is the avail-
ability of the common open source imaging library OpenCV [Ope]. The OpenCV library
is written in C++, and has Java wrappers so that it can be used from both the SDK and
the NDK on Android. OpenCV is not only used on mobile devices, but also on desktop
systems. On desktop systems there are many kernels, for which OpenCV has GPGPU
implementations written in CUDA[CUD] to employ data parallelism on the imaging data.
With OpenCV’s default Android build however, data parallelism is turned off, because no
current mobile hardware running Android supports CUDA. However, with the RCUDA
computation offloading framework we are able to run the OpenCV library with CUDA
support on Android in combination with a CUDA enabled device hosting a server. The
implementation of RCUDA that we used is similar to the framework described by Duato
et al. [DIM+10], however their framework is targeted at HPC cluster systems.

The demo Camera application we use in our field study comes with an implementation
built on top of OpenCV in the NDK, which has the drawback of being single threaded.
We use this implementation as reference to two new implementations: an implementation
with RenderScript that should automatically use all the available cores on the Tegra 3 and
an implementation with RCUDA to study the impact of computation offloading. 1

The focus of the remainder of the paper is on execution times and energy usage of the
various implementations. A more qualitative comparison between the SDK, NDK and
RenderScript can be found in [QZL12].

1Although we have an OpenGL implementation of the algorithm, the mapping of the algorithm to graphics
primitives and the limited memory of the GPU resulted in an OpenGL algorithm that does not produce the
same results as the others, so we chose to leave this out in the remainder of the paper. We did not make an
implementation in Java, because it is essentially the same as the native implementation, however with the addition
of overhead due to the Java wrappers in OpenCV if used from the SDK.

308

$""97 6426 $""97 6426

046/ 046/

5$"310 .-

,4/+46*761)2

($2134 726" 726" 726"

046/ 046/

5$"310 .-

,4/+46*761)2

($2134

726" 726" 726"

046/

6426$""97

046/ 046/

5$"310 .-

,4/+46*761)2

($2134

726" 726"

046/

6426$""97

046/ 046/ 046/ 046/ 046/

5$"310 .-

,4/+46*761)2

($2134

726" 726"046/

6426$""97

046/ 046/ 046/

'$& /$134 1%)"4%4/2$219/ '#& 79/269" 1/ !$3$

'7& 046/4": %4684+ '+& 79/269" 1/ ,4/+46*761)2

Figure 2: Schematic overview of the optimizations of the RenderScript implementation. ctrl: control
script, alloc: memory allocation, kern: execution of a kernel, retr: retrieval of the results. The
vertical boxes indicate context switching (JNI) overhead. The boxes are not proportional to the
actual execution time.

3 Implementations

3.1 RenderScript

RenderScript is a host/device language similar to languages such as OpenCL and CUDA.
RenderScripts host code is written in Java, whereas the device code is written in C99.
Memory allocations can only be done in host code. Device code can be started single
threaded or multi threaded. If device code is multi threaded it executes a particular kernel
for each element of a 1, 2, or 3 dimensional array. RenderScript automatically distributes
the elements over the available processors and also does load balancing. While the kernel
code is written in C99, it is compiled to an intermediate byte code which, at runtime, gets
compiled to the appropriate instructions for the hardware that the RenderScript runtime
selects.

To port the reference implementation to RenderScript we initially replaced the OpenCV
calls with RenderScript equivalents, while leaving the control code as is. This naive port
allowed for easy debugging of the RenderScript kernels because we could switch between
OpenCV and RenderScript at kernel level and therefore debug kernels individually instead
of debugging the entire algorithm.

Once all kernels were correctly ported we started optimizing the code. The first naive port
suffered from the overhead of continuous transitions to different execution environments
(see Figure 2-(a)). Each kernel invocation starts in the native environment, then goes to
the virtual machine using JNI where Java code is used to retrieve the data from the native
environment and allocate it for the RenderScript environment. Once the data is available
to RenderScript, the kernel executes (in parallel) and afterwards the Java code retrieves the
resulting data from the RenderScript environment and passes it to the native environment.
Then the control code selects the next operation and the same process happens over again,
until the control code is finished and the final HDR picture is computed.

309

To reduce the overhead related to the transition from native to Java and back with JNI, we
moved the control code to Java such that we only have a single transition to Java at the start
of the control function. Then the entire control code is executed in Java and only when
the result is computed the program goes back to the native environment (see Figure 2-(b)).
By using references to the memory allocations, this implementation did not have to copy
intermediate data back and forth to RenderScript, except from the initial input images and
the final output image.

We noticed that the transition from Java to RenderScript also added overhead to the algo-
rithm and therefore we started to merge as many kernels together as possible (see Figure
2-(c)). As an example, instead of executing an add kernel followed by a multiply kernel
one can create a single add-multiply kernel. This optimization enabled the reduction of the
number of kernel invocations drastically, albeit that the kernels themselves are larger.

Finally, we further reduced the transition overhead from Java to RenderScript by moving
the control script to RenderScript (see Figure 2-(d)). While the Java code still does all the
memory allocations, it will transfer the control to RenderScript which starts computing
until the final image is computed without any context switches.

The comparison of the resulting optimized RenderScript implementation versus the refer-
ence NDK implementation is discussed in Section 5.

3.2 RCUDA

Next to an implementation with RenderScript that exploits data parallelism on the device
itself, we also implemented exposure fusion with computation offloading using Remote
CUDA. RCUDA does classic computation offloading by offering a proxy on the client
side that forwards calls to a server. RCUDA operates at the CUDA abstraction layer and
therefore executes computation on the GPGPU of the host in parallel.

On the mobile device there is a modified version of the CUDA shared library (libcuda.so)
that can communicate over TCP with a remote cudaserver. On top of libcuda.so the regular
CUDA runtime (libcudart.so) and CUDA libraries can be run (cufft, NPP, etc.).

Porting the exposure fusion algorithm from the reference NDK implementation to a RCUDA
implementation is trivial. All the OpenCV kernels that are used in the NDK already have a
CUDA based implementation, only the package names differ between the regular and the
GPGPU implementation – cv::<kernel> for the regular and cv::gpu::<kernel> for the
GPGPU implementation. Furthermore, the data type of the matrices the kernels operate
on have to be changed from cv::Mat to cv::gpu::GpuMat and these matrices have to be
initialized somewhat differently using a function called upload, because data now resides
in GPU memory. Data can be retrieved from a GpuMat using the download function.

The exposure fusion algorithm is the first algorithm of substantial size that has been used
with RCUDA and therefore we expected to identify performance bottlenecks in RCUDA.
Because the computation offloading in RCUDA is at the CUDA call abstraction level,
a reasonably sized algorithm, such as our exposure fusion algorithm, can easily include

310

thousands of calls. For each call a synchronous request is sent to the server that, depending
on the call, immediately returns a response and executes the request asynchronously, or
first executes the request and thereafter returns a response. Either way the client blocks
until the response arrives.

Because of the sheer number of calls, even a low network latency of 1 ms would add
communication overhead of multiple seconds to the process. Therefore we changed as
many requests as possible from synchronous to asynchronous, we cached the results of
some calls that were called repeatedly on the client side, thereby reducing the number of
CUDA calls over the network and the overhead of the calls. Furthermore we noticed that
for the remaining synchronous calls, Nagle’s algorithm [Nag84] in TCP – buffering small
messages into a large message for a certain time – caused much overhead, as described in
[DIM+10]. Turning this off with TCP NODELAY increased performance dramatically.

In addition to the above latency based optimizations to RCUDA we also introduced com-
pression to the client-server protocol, to reduce the amount of data that needs to be trans-
ferred at the cost of a additional computation. We use the zlib compression library, which
supports 10 different compression levels, ranging from easy compression at a low cost to
very complex compression at a high cost.

In the experiments section (Section 5) we assess the impact of latency, bandwidth and
compression on the execution time and energy usage of the RCUDA implementation of
the exposure fusion algorithm on a Tegra 3 device.

4 Methodology

4.1 Targets and Variables

The key targets of our experiments are the execution time and the energy usage of a par-
ticular implementation under particular circumstances. Next to these main targets, we
also collect data about the CPU load, the CPU frequency and the temperature, to be able
to investigate unexpected results. With this information we can for instance see if using
multiple cores indeed leads to all processors being active, or if temperature causes the
frequency to be scaled down thereby lengthening execution time.

Next to a specific implementation there are several other variables that will impact the
execution time and energy usage of the exposure fusion algorithm. The more pixels an im-
age has, the longer the execution takes; the higher the latency or the lower the bandwidth,
the longer computation offloading takes. The more complex the compression, the more
computation is required, but also the less data has to be sent.

For varying the latency we artificially increase the latency on the server side using netem
[H+05]. With trickle [Eri05] we manipulated the bandwidth for both the up and downlink
of the server. We used the hotplug feature of linux to measure the impact of the number of
active cores for the multicore implementation.

For each combination of settings we repeated the experiment 30 times. Whereas the results

311

in general are very consistent, we inspect the data for explainable outliers. We use the
additional information such as temperature, CPU usage and CPU frequency to determine
whether we discard the outlier for the final results. In all experiments we have at least 26
valid data points.

For the RCUDA experiments we remove the result of the first execution, because it in-
cludes a one time overhead of initializing the libraries. Furthermore, for the RCUDA
experiments we use ethernet over USB to connect the mobile device to the network, to
prevent interference artifacts from the wireless network and make the experiments repeat-
able.

The Tegra 3 Developer Tablet supports hardware monitoring through various monitoring
applications in combination with a PM292 breakout board. The main advantage of hard-
ware monitoring is that it does not interfere with a running application, it does not take
cycles from the CPU nor consumes energy from the battery. The main disadvantage of
using hardware monitoring is that we cannot easily correlate the data we gather with the
execution of a particular part of an application, because the gathered data will be times-
tamped with the time on the external machine, not the tablet. To overcome this issue we
can use software monitoring, such as Power Tutor [ZTQ+10]. In our experiments we use
software monitoring where we read out the current power consumption values from the
power rail that hosts the quad core.

5 Experiments

5.1 Multi Core

In our first experiment we compare the execution times of the NDK implementation and
the RenderScript implementation, while varying the image size and the number of active
cores. The RenderScript execution times include both the (serial) host code and (parallel)
device code. Since the computation scales with the number of pixels we expect a linear
relation between the image size and the execution time. Furthermore, we expect Render-
Script to perform up to 4 times better than the NDK implementation, because it can make
use of all the available cores. We also expect that the RenderScript runtime adds some
overhead, due to the host code that is serial.

Figure 3 shows the results of both the reference and the RenderScript implementation
while varying the image size. We found that indeed the execution time has a linear relation
with the image size for both implementations. Furthermore, RenderScript does not achieve
a 4x speedup, indicating that the usage of the RenderScript runtime introduces overhead.
To get a better idea about the runtime overhead, we performed a second experiment where
we varied the number of active cores for the RenderScript implementation with hotplug.

The results of this experiment are shown in Figure 4, where we normalized the Ren-
derScript execution times with respect to the reference execution time to calculate the
speedup. From this figure we can see that the image size does not impact the scalability of
RenderScript significantly. The overhead of using RenderScript on a single core is 25.9%

312

Figure 3: Execution times for RCUDA, RenderScript (RS) and the reference implementation (NDK)
while varying the image sizes. The RCUDA execution times are measured without any additional
latency and bandwidth constraints.

on average and increases to 45.7% on four cores. Although increasing the number of cores
leads to an increase in overhead, the speedup factor increases too – up to 2.2x on four
cores. This means that we have not yet reached an assymptot in the speedup graph, and
although the current hardware prevents us from running the algorithm on more than four
cores, adding more cores can possibly lead to even lower execution times and thus higher
speedups.

We also perform the same experiment without explicitly turning on or turning off cores
with hotplug, but rather letting the default governor activate cores when needed, such as
would happen in real world scenarios. We find that it takes a constant time period for the
governor to turn on all four cores (about 0.5 seconds). With small problem sizes (such
as VGA resolution), the activation time for the other cores wastes the possible speedup
severely, whereas the the activation time is hardly noticeable for an image size of 5 MP.
A possible solution to improve the execution time with small problem sizes in real world
scenarios is that the governor could offer an interface to applications such that they can
explicitly instruct the governor to turn on multiple cores if some compute intensive job is
about to start.

Now that we have seen that the RenderScript implementation improves the execution time
by using multiple cores, we analyze what the impact of using multiple cores on the energy
usage is. On the one hand we expect RenderScript to consume less energy, because of
the shorter execution time, on the other hand we expect RenderScript to consume more
energy because it uses multiple cores. If we only consider the energy usage of the quad
core, we find that RenderScript’s shorter execution time with a higher power draw results
in energy usage equal to the NDK’s longer execution time with lower power draw (see
Figure 5). This is surprising given the fact that some of the energy of RenderScript is
spent on overhead and one would therefore expect that RenderScript would consume more
energy.

313

Figure 4: Although the RenderScript implementation does not reach linear speedup, adding cores
improves the speedup compared to the native reference implementation.

Further analysis of the measurements reveals that the power draw of the quad core CPU
does scale linear with the number of active cores, but also includes a fixed draw, and can
be roughly approximated by the following formula: Pquadcore = 500mW + n ∗ 500mW

Using more cores therefore results in better power efficiency. In the case of the Render-
Script implementation however, what is won in efficiency due to the use of multiple cores
is wasted on the RenderScript runtime overhead, resulting in an equal energy usage to the
reference implementation.

From the experiments with RenderScript we conclude that the exposure fusion algorithm
benefits from a multicore implementation, leading to a maximum speed up of 2.2x on four
cores, while using an equal amount of energy on the CPU. Although the energy usage for
the CPU is equal, RenderScript will likely lead to device wide energy savings, because
the shorter the algorithm has to run, the shorter other components, such as the screen
have to be turned on. Furthermore, for smaller size jobs the use of RenderScript will not
automatically lead to good speed ups, because it takes some time for the CPU governor to
switch from single core to quad cores.

5.2 Computation Offloading

In this section we turn our attention to the experiments we performed with the computation
offloading implementation based on Remote CUDA. Our primary focus is how latency,
bandwidth and compression level impact both execution time and energy usage.

In our first experiment we optimized the circumstances to get the lowest possible execution
times for computation offloading. This means that we did not put limits on the bandwidth
and latency and used compression level 1, as we show in later experiments this turns out

314

Figure 5: Energy used by RenderScript on 4 cores compared to the reference implementation.

to be the optimal compression level value. Figure 3 shows the results of this experiment.
Because of GPU memory limits on our offloading laptop, which has a 512 MB Fermi
based GPU, we could not run the algorithm for images with a size larger than 2 MP. Al-
though the RCUDA implementation for all our measurements is slower than the reference
implementation, we see the difference between the two implementations decreasing when
the image size increases. Future experiments with a host with larger GPU memory have
to prove whether this is a trend and the RCUDA implementation is faster than the NDK
implementation with sufficient large images.

Because the remote GPGPU computation is much faster than the computation of the refer-
ence implementation, much of the total execution time is determined by the communica-
tion. The time spent in communicating depends on the available bandwidth and the latency.
We performed a second experiment with RCUDA in which we vary both the bandwidth
and the latency. The results of this experiment are shown in Figure 6. We observe that in-
creases in the latency and decreases in the bandwidth to real world values lead to dramatic
increases in execution time, well above what is acceptable for an algorithm like exposure
fusion (for instance a latency well above 50 ms is common in 3G networks [HXT+10]).
Therefore we can conclude that for this particular algorithm the RCUDA computation
offloading framework is not a competitive alternative to on device computation. This is
partially due to the abstraction level of the RCUDA framework – a low abstraction level
leads to many messages, sensitive to latency – and partially due to the fact that the al-
gorithm blows up the data, making the algorithm sensitive to bandwidth. For instance,
single 1MP images, which as compressed JPEG images are typically below 200 kB, get
converted to 9 MB float arrays in the algorithm. Other computation offloading frameworks
that operate at a higher abstraction level (such as [CBC+10, KPKB10] that operate on the
method level), could reduce the number of messages to a single response/reply and the
data to JPEG compressed images.

In order to limit the impact of bandwidth on the execution time we added compression to

315

Figure 6: The impact of both bandwidth and latency on the execution time of the RCUDA imple-
mentation on a 1MP image.

RCUDA by using the zlib [ZLi] library. The zlib library supports compression levels from
0 to 9, where a higher compression level makes use of better compression techniques, at
the cost of more computation. Thus with compression we can trade communication for
computation. We performed an experiment where we varied the compression level and
bandwidth. We expect that when there is plenty of bandwidth only simple compression
will contribute to a lower execution time, whereas at low bandwidth it may be worthwhile
to spend additional time on compressing to reduce the data that is sent.

Figure 7 shows the results of this experiment. We find that indeed increasing the com-
pression level in the cases where we have a bandwidth of more than 100 kB/s only slows
down the algorithm, whereas with the lowest bandwidth setting we see that an increase in
compression level – beyond level 2 – leads to slightly lower execution times. However,
compression level 1 is even at low bandwidth an equal choice to compression level 9, in-
dicating that even at the lowest bandwidth that we used in our experiment, putting more
effort in compressing data does not improve execution time. If we shift our focus from
the execution time to the energy usage, we can see clearly that an increase in compression
level, and thus an increase in computation leads to an increase in energy usage of the CPU
(see Figure 8). This gives additional reason to only use simple compression. Whereas we
expected that computation offloading would reduce the energy consumed by the CPU, we
see that without compression RCUDA uses only 5% less energy on the CPU than our ref-
erence implementation and with compression it always uses more energy. Whereas these
figures only compare energy used on the CPU rail, we should not forget that offloading
computation introduces additional energy usage for communication. Since we use Ether-
net over USB in our experiments, we did not include the energy usage for communication,
because in real world settings a wireless variant will be used for connectivity. However,
we can safely conclude that RCUDA computation offloading for the exposure fusion al-

316

* (' & % $ # " ! A
*

*>'

*>%

*>#

*>!

(

(>'

(>%

;852/-2+) EC> @=:741CC-=5

'****
(***
$**
(**

@=:741CC-=5 .1E1,

G
1,
8+
-E
1
F
D1
B?
+-=
5
<-
:
1
+=
. 1
E1
,A

(># '>!

96

3;0C

Figure 7: The relative execution time for a specific bandwidth and compression level compared to
the execution time with maximum compression on a 1MP image.

*(' & %$#$%$"!$
*? <?96%$331?"

/$-$+)
/$-$+ C
/$-$+ A
/$-$+ >
/$-$+ ;
/$-$+ 8
/$-$+ 5
/$-$+ 2
/$-$+ 0

. ;...)....);... C....

A)2A
A.C.

>.80
>CC2
;.>.
;.5.

8)C.
2CC2

08>0
);.25

)0CC.

<?96%$331?" ,"$%ED B3@E$

,"$%ED B3@E$ =:?7+$4

Figure 8: Energy usage at different compression levels for RCUDA with a 1MP image.

gorithm on a Tegra-3 device does not lead to better execution times nor to lower energy
usage if the additional communication cost is taken into account.

6 Conclusions

In this paper we discussed and evaluated two alternative programming models to a native
implementation for compute intensive tasks on mobile devices using a case study with the
exposure fusion algorithm used for HDR photography. We found that using RenderScript,
a multicore programming model, we can improve execution times up to 2.2 times while
keeping energy usage on the CPU similar and reducing energy usage on the system as
a whole. The other programming model we examined, Remote CUDA for computation
offloading, did not lead to speed ups nor to energy savings, but the case study taught
us several lessons that we applied in optimizing the Remote CUDA environment, such

317

as selecting the right TCP settings as well as improving on caching and asynchronous
execution.

We also found that for short run compute intensive tasks the power of a multicore pro-
cessor is not optimally used, because of the time it takes to switch from single core to
quad core and therefore we recommend additional API calls for developers, such that they
intentionally can turn on multiple cores just before a compute intensive task starts, instead
of waiting on the processor governor to do so.

References

[CBC+10] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and
P. Bahl. MAUI: making smartphones last longer with code offload. In Proceedings of
the 8th international conference on Mobile systems, applications, and services, pages
49–62. ACM, 2010.

[CUD] NVIDIA, C Programming Best Practices Guide, CUDA Toolkit 4.2.
[DIM+10] J. Duato, F. Igual, R. Mayo, A. Peña, E. Quintana-Ortı́, and F. Silla. An efficient

implementation of GPU virtualization in high performance clusters. In Euro-Par 2009–
Parallel Processing Workshops, pages 385–394. Springer, 2010.

[Eri05] M.A. Eriksen. Trickle: A userland bandwidth shaper for unix-like systems. In Proc. of
the USENIX 2005 Annual Technical Conference, FREENIX Track, 2005.

[H+05] S. Hemminger et al. Network emulation with NetEm. In Linux Conf Au, pages 18–23,
2005.

[HXT+10] J. Huang, Q. Xu, B. Tiwana, Z.M. Mao, M. Zhang, and P. Bahl. Anatomizing applica-
tion performance differences on smartphones. In Proceedings of the 8th international
conference on Mobile systems, applications, and services, pages 165–178. ACM, 2010.

[KPKB10] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo: a Compu-
tation Offloading Framework for Smartphones. In MobiCASE ’10: Proc. of The 2nd
International Conference on Mobile Computing, Applications, and Services, 2010.

[LWX01] Zhiyuan Li, Cheng Wang, and Rong Xu. Computation offloading to save energy on
handheld devices: a partition scheme. In Proceedings of the 2001 international con-
ference on Compilers, architecture, and synthesis for embedded systems, CASES ’01,
pages 238–246, New York, NY, USA, 2001. ACM.

[MKVR07] T. Mertens, J. Kautz, and F. Van Reeth. Exposure fusion. In Computer Graphics and
Applications, 2007. PG’07. 15th Pacific Conference on, pages 382–390. IEEE, 2007.

[Nag84] J. Nagle. Congestion control in IP/TCP internetworks. ACM SIGCOMM Computer
Communication Review, 14(4):11–17, 1984.

[Ope] OpenCV. http://opencv.willowgarage.com/wiki/.
[QZL12] Xi Qian, Guangyu Zhu, and Xiao-Feng Li. Comparison and Analysis of the Three Pro-

gramming Models in Google Android. In First Asia-Pacific Programming Languages
and Compilers Workshop (APPLC), 2012.

[Ren] Google RenderScript. http://developer.android.com/guide/topics/renderscript.
[ZLi] ZLib. http://zlib.net/.
[ZTQ+10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mao, and L. Yang. Accurate

online power estimation and automatic battery behavior based power model genera-
tion for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis, pages 105–114. ACM,
2010.

318

