
223

CAPTCHA-based Code Voting

Rolf Oppliger1, Jörg Schwenk2, Christoph Löhr2

1eSECURITY Technologies
CH-3073 Gümligen

rolf.oppliger@esecurity.ch

2Ruhr-University Bochum
D-44780 Bochum

{joerg.schwenk|christoph.loehr}@rub.de

Abstract: Code voting provides an appropriate technology to address the secure
platform problem of remote Internet voting, but it is not particularly user-friendly.
In this paper, we propose the use of CAPTCHA- an acronym standing for
Completely Automated Public Turing tests to tell Computers and Humans Apart -
to improve the user-friendliness of code voting, discuss the security of CAPTCHA-
based code voting, and elaborate on a possible implementation.

1 Introduction

Elections and votes are fundamental processes for the proper operation of democratic
states and their (democratically legitimated) governments. In the literature, the term
electronic voting (or e-voting in short) is used to refer to elections and votes that are
supported by electronic means. With the proliferation of the Internet, its use for e-voting
has been proposed by many people (mainly politicians) as a way to make voting more
convenient andas it is hopedto increase participation in elections and votes. The term
Internet voting is therefore used to refer to election or voting processes that enable voters
to cast their ballots over the Internet. This basically means that the ballots must be
represented electronically, and that the electronic ballots must be transmitted to election
officials using the Internet as a transport medium.



224

There are many possibilities to implement Internet voting, and poll-site Internet voting,
Kiosk voting, and remote Internet voting are usually distinguished in the literature (e.g.,
[Cal00]). In this paper, we only focus on remote Internet voting, i.e., Internet voting
where the voter (or a third party acting on behalf of the voter) uses his personal computer
(PC) to cast a ballot over the Internet. From a security viewpoint, remote Internet voting
is the most challenging possibility to implement Internet voting. In states that support
absentee balloting, such as all-postal voting, any other form of Internet voting (i.e., poll-
site Internet voting and Kiosk voting) is likely to fail. This is because the other
possibilities require the voter to visit a voting place, and this is probably too
inconvenient compared to the simplicity of casting ballots from home. In Europe, for
example, a few states have started to employ remote Internet votingbe it in
geographically restricted pilot projects, such as in three cantons of Switzerland [Ber08],
or for official use, such as in Estland.

Against this background, it is possible and likely that the use of remote Internet voting
tends upwards, and that the security of remote Internet voting will become a major issue.
Security, in turn, has many aspects, and there are several partly complementary security
technologies, mechanisms, and services that can be used to address them. As argued in
[Opp02], code voting, i.e., voting by providing randomly-looking codes instead of YES
or NO in the case of a vote and candidates' names in the case of an election, is an
appropriate technology to address the secure platform problem of remote Internet voting.
Unfortunately, code voting is not particularly user-friendly, and in this paper we exlore
possibilities to use Completely Automated Public Turing tests to tell Computers and
Humans Apart (CAPTCHAs) also known as Reverse Turing Tests (RTTs) or Human
Interactive Proofs (HIPs) to improve the user-friendliness of code voting. We think that
CAPTCHA-based code voting provides an interesting possibility to implement code
voting in a real-world setting.

The rest of the paper is organized as follows: The security requirements of (remote)
Internet voting are summarized in Section 2. Code voting and CAPTCHA-based code
voting are introduced and discussed in Sections 3 and 4. A preliminary security analysis
is given in Section 5. Finally, conclusions are drawn and an outlook is given in Section
6.

2 Security Requirements

There are many investigations and studies that elaborate on the security of Internet
voting in general, and remote Internet voting in particular (e.g., [Cal00, Rub01]). The
results all give evidence that security (including privacy and reliability) is among the
most important preconditions for the successful deployment of Internet voting. The
current paper ballot systems set a standard that is adopted as a security baseline for
Internet voting. They represent certain tradeoffs between voter convenience and
protection against fraud and abuse. It is generally required that elections and votes
conducted over the Internet are at least as secure as the current paper ballot systems. In
states that support absentee balloting in the form of all-postal voting, however, it is this
voting technology that sets the security standard for Internet voting.



225

There are many lists of security requirements for (remote) Internet voting that can be
found in the literature55. There is even an e-voting protection profile for the Common
Criteria drafted in Germany56. The following list of security requirements is not intended
to be complete or comprehensive:

• Completeness and soundness of the Internet voting protocol(s);

• Correctness of the results;

• Authenticity of both the voter (or the voting client acting on behalf of the voter,
respectively) and the voting server;

• Secrecy of the ballots (including, for example, anonymity of the voter);

• Integrity of the ballots (including, for example, protection against malicious
software);

• Non-duplication of the ballots;

• Availability and reliability of the voting process (including, for example,
protection against denial-of-service attacks).

Some security requirements are complementary and don't interact with each other (e.g.,
integrity and non-duplication of the ballots). Other security requirements, however, are
(or at least seem to be) contradictory in some sense. For example, one way to attest the
correctness of a voting process is auditability, meaning that the entire voting process can
be audited in some reasonable way. Auditability, however, sometimes contradicts to the
secrecy of the ballots. In fact, there is a lot of research going on in the cryptographic
community to address this apparent contradiction and to guarantee ballot secrecy and the
correctness of the results simultaneously. Most of this research elaborates on schemes
and protocols for verifiable secret sharing and secure multi-party computation as
pioneered by Yao [Yao82].

55 In 2004, for example, the Committee of Ministers of the Council of Europe adopted Recommendation
Rec(2004)11 that specifies “legal, operational and technical standards for e-voting.” These standards, among
other things, also comprise security requirements.
56 http://www2.dfki.de/fuse



226

Many security requirements of (remote) Internet voting can be addressed with existing
technologies, mechanisms, and services. For example, there are many technologies that
can be used to secure the server side. Examples include firewall technologies and
intrusion detection systems (IDS) or intrusion prevention systems (IPS). The authenticity
of the voter and the voting server can be addressed with public key certificates.
Similarly, the secrecy and integrity of the ballots can be guaranteed with a cryptographic
protocol, such as the Secure Sockets Layer (SSL) [FKK96] or Transport Layer Security
(TLS) [DR06] protocol. It is, however, important to note that the use of the SSL/TLS
protocol protects the secrecy and integrity of the ballots only during the transmission
over the Internet. The ballots are not automatically protected on the client or server side.
In fact, additional security technologies, mechanisms, and services are required to
protect the secrecy and integrity of the ballots before and after they are transmitted over
the Internet. There are additional risks for the secrecy of the ballots (i.e., privacy risks)
related to the use of spyware (in the home setting) or remote system administration tools
(in the institutional setting).

Due to the fact that a remote Internet voter uses his PC to cast a ballot and that this PC
may be subject to malware, the insecurity of the client-side platform represents the major
vulnerability (and Achilles heel) of remote Internet voting. Rivest coined the term secure
platform problem to refer to the problem of protecting an inherently insecure client-side
platform against malicious software and corresponding attacks [Riv01].

Due to the fact that the secure platform problem is hard and difficult to solve, there are
several e-voting research and development projects that don't even address it. For
example, in the FAQ document of the European CyberVote project57, the question “Can
a virus or Trojan horse attack CyberVote?” is answered in the following way:

“Yes, like any other client software in an insecure PC environment.

Anti-virus software should be used and strict security guidelines followed to limit the
risk of a virus or Trojan horse attack.

Secure user interface techniques can be applied to the CyberVote client to prevent
Trojan horses.”

Unfortunately, the FAQ document does not further explain the term “secure user
interface techniques.” It turns out that there are not many security technologies,
mechanisms, and services that can be used to effectively address the secure platform
problem of remote Internet voting. In fact, we think that code voting as introduced next
is one (if not the only) technology that may work in a real-world setting.

57 http://www.eucybervote.org/faq_security.html#q35



227

3 Code Voting

The term code voting is used to refer to an e-voting technology in which the voter casts
his ballot by providing a voting code instead of YES or NO (in the case of a vote) or a
candidate's name (in the case of an election). The voting code, in turn, looks like a
random string. If the alphabet consists of all decimal digits 0...9, then the voting code
basically represents a number. In general, however, any alphabet can be used and the
voting codes can be arbitrarily long.

To the best of our knowledge, the first code voting system was proposed by Chaum
[Cha01]. In such a system, each voter is equipped with a code sheet (i.e., a sheet that
itemizes all voting codes) and he must enter the appropriate voting codes to cast his
ballot. An exemplary code sheet for an election is illustrated in Table 1. If the voter
wants to vote for Bob, then he must enter 990234 (instead of “Bob”).

Candidate Voting code
Alice 236412
Bob 990234
Carol 141290
Dave 782755
Eve 774892
… …

Table 1: A code sheet with voting codes

Due to the fact that voting codes look like random strings, code voting effectively
protects against passive and active attacks:

• In a passive attack, the adversary sees a voting code sent over a network (using,
for example, a network management or system administration tool), and must then be
able to tell whether this code represents YES or NO (in the case of a vote) or to which
candidate the code actually refers to (in the case of an election). If the voting codes are
chosen with a good random bit generator or a cryptographically secure pseudorandom bit
generator (PRBG), then the best the adversary can do is guessing. In this case, seeing the
voting codes sent over the network does not help the adversary.

• In an active attack, the adversary does not only see a voting code sent over a
network, but he can also manipulate it. For example, the adversary may employ malware
or a client-side remote system administration tool to turn a voting code representing YES
into a voting code representing NO (in the case of a vote) or a voting code of one
candidate into a voting code of another candidate (in the case of an election). Again, if
the voting codes are chosen with a good random bit generator or a cryptographically
secure PRBG, then the adversary does not know the other voting codes, and hence the
best he can do is again guessing.



228

In either case, the success probability of an adversary is not better than guessing,
meaning that the best an adversary can do is guessing. This is indepedent from the
adversary’s computational resources and available time. Consequently, the security that
is achieved is unconditional or information-theoretic. There are, however, two conditions
that must be fulfilled to achieve this level of security:

• As mentioned before, the voting codes must be random, i.e., they must be
chosen with a good random bit generator or a cryptographically secure PRBG;

• The code sheets must be personal and distributed out-of-band58, using, for
example, a trustworthy postal mail delivery service.

Also, it is important to note that code voting requires a modified voting behavior, and
that there may be some legal constraints to consider (not addressed in this paper).

In spite of the fact that code voting as discussed so far is able to provide unconditional or
information-theoretic security, it may still be the case that an (active) adversary simply
deletes a voting code in transit. To protect against this attack, it may be worthwhile to
have the server send back a verification code and have the voter verify this code.

Table 2 illustrates an exemplary code sheet with voting and verification codes. Again, if
the voter wants to vote for Bob, then he must enter 990234 and wait for the server to
send back the verification code 672345. If another verification code is sent back, then
something illegitimate is going on and the voter is well advised to stop voting (needless
to say that some dispute-resolving mechanisms must also be put in place here).

Candidate Voting code Verification code
Alice 236412 124355
Bob 990234 672345
Carol 141290 045686
Dave 782755 687432
Eve 774892 234115
… … …

Table 2: A code sheet with voting and verification codes

If the voter verifies the verification code, then it makes a lot of sense to communicate the
result of the verification step to the server (otherwise, the server does not know whether
the result is correct). This is where the confirmation code comes into place. Table 3
illustrates an exemplary code sheet with voting, verification, and confirmation codes. In
our toy example, the voter would confirm the successful verification of the verification
code 672345 by sending the confirmation code 574546 to the server. At this point, there
is no need to continue the recursion (and send more codes back and forth).

58 It is important that the code sheets must be provided outside the voter's PC (i.e., the PC that is used by the
voter to cast his vote). If the code sheets were inside the PC, then malicious software could get and use them to
change the ballots. Also, the voting codes must be randomly or pseudo-randomly chosen from a sufficiently
large set of possible values to make the probability that malicious software can correctly guess them
sufficiently small (i.e., negligible).



229

Candidate Voting code Verification code Confirmation code
Alice 236412 124355 252435
Bob 990234 672345 574546
Carol 141290 045686 124145
Dave 782755 687432 243521
Eve 774892 234115 967468
… … … …

Table 3: A code sheet with voting, verification, and confirmation codes

The bottom line is that there are many possibilities to implement code voting. In addition
to casting a vote by simply entering a voting code, the voter may verify a verification
code sent back from the server (to verify that he has casted the vote to an authentic
server, and that the vote has been properly registered by the server). Also, the voter may
acknowledge proper verification of the verification code by sending out a confirmation
code.

In Table 4, we summarize the 23-1=7 possibilities to implement code voting. Among
these possibilities, we think that the following four possibilities are meaningful in
practice:

• Voting code-only implementation;

• Verification code-only implementation;

• Voting and verification code implementation;

• Full implementation (i.e., voting, verification, and confirmation codes).

Possibilities Voting
code

Verification
code

Confirmation
code

Voting code-only implementation X
Verification code-only implementation X

X
Voting and verification code implementation X X

X X
X X

Full implementation X X X

Table 4: Possibilities to implement code voting



230

In a voting code-only implementation, the voter casts his ballot by simply sending a
voting code to the server. In a verification code-only implementation, the voter casts his
ballot as usual, but waits for a verification code sent back from the server. It is then up to
the voter to verify this code. A verification code-only implementation is particularly
interesting, because the voter has to minimally change his behaviour (i.e., he can still
enter YES or NO and only validate the verification number sent back from the server).
This advantage, however, may also be disadvantageous, because it is possible and likely
that some voters don't care about the validity of verification codes sent back. As its name
suggests, a voting and verification code implementation employs voting and verification
codes. Last but not least, a full implementation employs voting, verification, and
confirmation codes. It goes without saying that this is the preferred choice from a
security viewpoint, and that all other choices represent tradeoffs.

A practically relevant question refers to the length of the various codes. Obviously, the
length must make the probability to correctly guess a code sufficiently small. For
example, if the number includes 10 binary digits (bits), then the probability of correctly
guessing a code is 1/210 = 1/1,024 = 0.000975562. Due to the fact that the numbers
cannot be verified off-line (without access to the code sheets), this seems to be sufficient.
10 bits can be represented with log 210 = log10 1,024 decimal digits which is slightly
more than 3 digits. Consequently, 4 decimal digits can be used to encode a code and
some redundancy to detect errors (error detection is particularly important for voting and
confirmation codes that are entered by the user).

In theory, 10-bit code numbers can be randomly generated, using a random bit generator.
In practice, however, the code numbers are more likely generated with an appropriately
seeded pseudorandom bit generator (PRBG) or a construction that employs a keyed hash
function, such as the HMAC construction [KBC97]. In either case, the generation of the
code numbers is not further addressed in this paper.

Last but not least, we note that a guessing attack may have an equalizing effect on the
outcome of an election or vote. If, for example, a candidate only gets a few votes under
“normal” circumstances, then he may get an average number of votes under a guessing
attack. This is because it is equally likely to guess a voting code for an unpopular
candidate as it is to guess a voting code for a popular candidate. Hence, the outcome of
an election or vote that is subject to a guessing attack may be equalized to some extent.
Because we do not further address guessing attacks, this point is not further discussed in
this paper.



231

4 CAPTCHA-based Code Voting

The potential difficulty of differentiating humans from computers pretending to be
humans was addressed already in 1950, when Turing described his now-famous test. In
short, the Turing test is a proposed test for a machine to demonstrate intelligence
[Tur50]. It proceeds as follows: a human judge engages in a natural language
conversation with one human and one machine, each of which are trying to appear
human. If the judge cannot reliably tell which is which, then the machine is said to pass
the Turing test. In order to keep the test setting simple and universal (to explicitly test
the linguistic capability of the machine instead of its ability to render words into audio),
the conversation is usually limited to a text-only channel such as a teletype machine as
Turing suggested, or, more recently, Internet-based messaging.

In the mid-1990s, people came up with the idea of using a reverse Turing test to have a
machine test whether a user is human. For example, in 1995, Lam of The Chinese
University of Hong Kong implemented a reverse Turing test in a voting application
written for Radio Television Hong Kong. The public was able to vote for their favourite
singers and songs online for the first time in the annual “Top Ten Chinese Songs
Award.” To prevent automatic and machined submissions, users were required to
correctly input a 6-digit number that was represented as an image. In 1996, the first
reference of automated tests, which distinguish humans from computers for the purpose
of controlling access to Web services, appeared in a manuscript of Naor [Nao96]. Other
primitive reverse Turing tests seem to have been developed in 1997 at AltaVista to
prevent bots from adding URLs to their search engine.

In 2000, von Ahn and Blum developed and publicized the notion of a Completely
Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA), which
included any program that can distinguish humans from computers. They invented
multiple examples of CAPTCHAs, including the first CAPTCHAs to be widely used on
the Internet (at Yahoo!) [vABL04]. The acronym CAPTCHA is trademarked by
Carnegie Mellon University. Alternatively, a CAPTCHA is sometimes called Reverse
Turing Test (RTT) or Human Interactive Proof (HIP).

In general, there are many possibilities to implement CAPTCHAs, RTTs, or HIPs. A
common type of (visual) CAPTCHAs requires that the user type in the letters of a
distorted image, sometimes with the addition of an obscured sequence of letters or digits
that appears on the screen. Such CAPTCHAs are also used in this paper (as an example).
But there are many other visual CAPTCHAs and CAPTCHAs based on audio or video.
More recently, for example, Microsoft Research has come up with a HIP called ASIRRA
(Animal Species Image Recognition for Restricting Access) that works by asking users
to distinguish between photographs of cats and dogs [E+07]. Audio CAPTCHAs, in turn,
have been developed and are being deployed for handicapped persons. In essence, any
task that can be efficiently solved by a human but is not known to be efficiently solvable
by a machine can be turned into a CAPTCHA, RTT, or HIP. There are many
opportunities for research and development here.



232

In CAPTCHA-based code voting, the voter does not cast his ballot directly by providing
an appropriate voting code, but indirectly by clicking on an appropriate CAPTCHA.
Clicking on a CAPTCHA, in turn, causes a random-looking voting code (representing a
cryptographic hash value) to be sent from the browser to the server. Let us consider an
exemplary (and simplified) election in Germany, in which the voter can select between
five political parties. If, for example, a voter visits http://wahlen.nds.rub.de, then the
voting server sends back a dynamically generated Web page in which the parties'
acronyms are rendered as CAPTCHAs and visually presented to the voter in random
order.

Figure 1: First screen for CAPTCHA-based code voting

Figure 2: Second screen for CAPTCHA-based code voting

Figures 1 and 2 illustrate two possible screens. If, in this example, the voter selected
CDU on the first screen (choice 1), then the voting code sent to the server would be:

705279376d724a6f56316f4b537a5047.



233

Similarly, if the voter selected CDU on the second screen (choice 3), then the voting
code would be:

336667544e67684c2e79486d58632e32.

In either case, the voting code represents a cryptographic hash value and is visible in the
browser's status line. Note that the two codes are different and unlinkable despite the fact
that the selected party is the same. Also note that in CAPTCHA-based code voting, there
is no urgent need to minimize the length of the voting code. The voting codes are sent by
the browser to the server in a way that is transparent to the user, i.e., the user does not
have to type it in. This simplifies things considerably, and the discussion held at the end
of Section 3 is obsolete in this setting. So from a usability perspective, CAPTCHA-based
code voting is perfectly fine. The user experience does not significantly deviate from
what he knows and is accustomed to. In the following section, we address the question
whether CAPTCHA-based code voting is also fine from a security perspective.

5 Preliminary Security Analysis

If one considers the use of code voting to overcome the secure platform problem, then
one is mainly concerned with the possibility of automated client-side attacks mounted by
malware. More specifically, one wants to make it impossible for an adversary to write
malware that can modify a vote in some meaningful way. This must be true even if the
malware has access to all information that is available in the client's operating system or
browser. Note, for example, that such malware has access to the browser's state and
content of Web pages, and hence that it is able to read out the voting codes. But it does
not know what code belongs to what choice, and hence it can only make random
guesses. In the example given above, the malware is likely to be able to read out the
voting code 705279376d724a6f56316f4b537a5047 for the first choice on the first
screen, but it is not able to associate this code to the CDU party (because this association
is done outside the client system in the brain of the voter). Consequently, it cannot
decide whether this selection is the appropriate one, and hence whether it should modify
the vote. Also, in the case of an election with more than two options, if the malware
knew that it should modify the vote, it would still not know which other option to select.

The bottom line is that CAPTCHA-based code voting remains secure (in the sense
sketched above) as long as the CAPTCHAs in use remain secure, i.e., cannot be solved
by a machine. If somebody can write a piece of software that can break the security of
the CAPTCHAs, then this software can also be used to trivially break the security of
CAPTCHA-based code voting. So we have to make the critical assumption that the
CAPTCHAs in use are secure. This assumption is critical, because the security of
CAPTCHAs has come under fire and many researchers are trying to compromise them.

Based on the assumption that the CAPTCHAs in use are secure, one can argue that
CAPTCHA-based code voting remains secure as well. But there are still a few subtle
attacks that must be considered with care. Let us briefly elaborate on two examples.



234

1. If an adversary has introduced himself in the communication channel between
the client and the server, then he is representing a man-in-the-middle (MITM) and can
display any CAPTCHA or CAPTCHA-like image. It is then simple for him to
circumvent or bypass CAPTCHA-based code voting (because he can create the
CAPTCHAs and therefore knows what they represent). Consequently, the use of
technologies and mechanisms that protect against MITM attacks seems to be mandatory.
There are a few such technologies and mechanisms available; examples include
ciphersuites for the TLS protocol that support authentication based on pre-shared keys
[BH06], SSL/TLS session-aware (TLS-SA) user authentication [OHB08], the use of
client-side public key certificates, and a few more. Unfortunately, these technologies and
mechanisms are not yet widely deployed, and hence, any currently available
infrastructure for remote Internet voting and CAPTCHA-based code voting is vulnerable
to MITM attacks. It is best to make this vulnerability explicit.

2. Since an increasingly large number of e-commerce application providers
employ CAPTCHAs to make sure that their users are human, an adversary could
collaborate with these providers to exploit the human resources (and capabilities) of their
users. For example, an adversary could set up a free Web-based CAPTCHA service for
e-commerce application providers. If invoked, this service could use CAPTCHAs found
on compromised client systems and provide them to the users of the service. The
responses could then be used by the malware to modify the vote in some meaningful
way. In the example given above, the malware would input the five CAPTCHAs found
on the first screen to the service. The service would dispatch the CAPTCHAs to
individual users, and return the strings representing the names of the parties to the
malware. The malware would then be able to decide if and how to meaningfully modify
the vote. There is hardly anything that can be done technically to protect against such a
distributed attack. Consequently, one must carefully monitor the CAPTCHAs that are
used by service providers, especially during the time frames of the elections and votes
that are supported by CAPTCHA-based code voting. Too many occurrences of strings
that represent political parties or names of politicians should be taken as an alert.

We think that both attacks are relevant and must be considered with care. In particular,
we think that the use of technologies and mechanisms to protect against MITM attacks
and a careful monitoring of CAPTCHAs in widespread use are mandatory in a real-
world deployment of CAPTCHA-based code voting.



235

6 Conclusions and Outlook

The secure platform problem is severe for remote Internet voting. The malware-based
client-side attacks that are currently mounted against Internet banking (e.g., [ORH08])
can easily be turned into attacks against remote Internet voting. The attack vectors are
essentially the same, i.e., it does not matter whether malware manipulates an Internet
banking transaction or a remote Internet voting transaction. In either case, the
manipulation occurs after user authentication and can be made transparent to the user.
This should be kept in mind when people argue about the (in)security of remote Internet
voting.

Against this background, we think that code voting provides an appropriate technology
to address the secure platform problem of remote Internet voting, but that it is not
particularly user-friendly. There are different possibilities to implement code voting, and
these possibilities have specific advantages and disadvantages.

In this paper, we proposed the use of CAPTCHAs to improve the user-friendliness of
code voting, briefly discussed the security of CAPTCHA-based code voting, and
elaborated on a possible implementation. CAPTCHA-based code voting can only be as
secure as the CAPTCHAs that are used. Alternatively speaking, if an adversary is able to
break the CAPTCHAs in use, then he is also able to break the security of CAPTCHA-
based code voting. Consequently, the current state-of-the-art in breaking CAPTCHAs
should be closely monitored and observed. For example, there is a recently published
low-cost attack on CAPTCHAs employed by Microsoft59. In spite of the progress that
has been made in order to break the security of CAPTCHAs, we still think that
CAPTCHA-based code voting provides an interesting possibility to implement code
voting in a real-world setting, and that it has potential for the future. It is certainly
worthwhile to implement it, and to explore its use (and usability) in a field study.

59 http://homepages.cs.ncl.ac.uk/jeff.yan/msn.htm



236

References

[Ber08] Beroggi, G.: Secure and Easy Internet Voting. IEEE Computer, Vol. 41, Number 2,
February 2008, pp. 52-56.

[BH06] Badra, M.; Hajjeh, I.: Key-Exchange Authentication Using Shared Secrets. IEEE
Computer, Vol. 39, Number 3, March 2006, pp. 58-66.

[Cal00] California Secretary of State, California Internet Voting Task Force, Final Report,
January 2000, http://www.ss.ca.gov/executive/ivote/.

[Cha01] Chaum, D.: SureVote: Technical Overview. Proceedings of the Workshop on
Trustworthy Elections (WOTE '01), August 2001, http://www.vote.caltech.edu/ wote01/
pdfs/surevote.pdf.

[DR06] Dierks, T.; Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.1, RFC
4346, April 2006.

[E+07] Elson, J. et al.: Asirra: A CAPTCHA that Exploits Interest-Aligned Manual Image
Categorization. Proceedings of the 14th ACM Conference on Computer and
Communications Security (ACM CCS 2007), 2007, http://research.microsoft.com/
asirra/papers/CCS2007. pdf.

[FKK96] Freier, A.O.; Karlton, P.; Kocher, P.C.: The SSL Protocol Version 3. Internet-Draft,
1996.

[Nao96] Naor, M.: Verification of a human in the loop or Identification via the Turing Test. 1996,
citeseer.ist.psu.edu/naor96verification.html.

[OHB08]Oppliger, R.; Hauser, R.; Basin, D.: SSL/TLS Session-Aware User Authentication.
IEEE Computer, Vol. 41, Number 3, March 2008, pp. 59-65.

[Opp02] Oppliger, R.: How to Address the Secure Platform Problem for Remote Internet Voting.
Proceedings of the 5th Conference on “Sicherheit in Informationssystemen” (SIS 2002)},
Vienna (Austria), October 3-4, 2002, vdf Hochschulverlag, pp. 153-173.

[ORH08]Oppliger, R.; Rytz, R.; Holderegger, T.: Internet BankingClient-Side Attacks and
Countermeasures. Submitted for publication.

[Riv01] Rivest, R.L.: Electronic Voting. Proceedings of Financial Cryptography '01, February
2001, http://theory.lcs.mit.edu/~rivest/Rivest-ElectronicVoting.pdf.

[Rub01] Rubin, A.D.: Security Considerations for Remote Electronic Voting over the Internet.
Proceedings of the 29th Research Conference on Communication, Information and
Internet Policy (TPRC 2001), October 2001, http://avirubin.com/e-voting.security.html.

[Tur50] Turing, A.: Computing machinery and intelligence. Mind, Vol. LIX, No. 236, October
1950, pp. 433-460.

[vA+04] von Ahn, L. et al.: Telling Humans and Computers Apart Automatically-How Lazy
Cryptographers Do AI. Communications of the ACM, Vol. 47, No. 2, February 2004, pp.
57-60.

[Yao82] Yao, A.C.: Potocols for Secure Computations. Proceedings of 23rd IEEE Symposium on
Foundations of Computer Science, Chicago, Illinois, November 1982, pp. 160-164.




