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An Anthropomorphic Approach to Establish an
Additional Layer of Trustworthiness of an AI Pilot

The Concept
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Abstract: AI algorithms promise solutions for situations where conventional, rule-based algorithms
reach their limits. They perform in complex problems yet unknown at design time, and highly efficient
functions can be implemented without having to develop a precise algorithm for the problem at hand.
Well-tried applications show the AI’s ability to learn from new data, extrapolate on unseen data,
and adapt to a changing environment — a situation encountered in flight operations. In aviation,
however, certification regulations impede the implementation of non-deterministic or probabilistic
algorithms that adapt their behaviour with increasing experience. Regulatory initiatives aim at defining
new development standards in a bottom-up approach, where the suitability and the integrity of the
training data shall be addressed during the development process, increasing trustworthiness in effect.
Methods to establish explainability and traceability of decisions made by AI algorithms are still under
development, intending to reach the required level of trustworthiness. This paper outlines an approach
to an independent, anthropomorphic software assurance for AI/ML systems as an additional layer
of trustworthiness, encompassing top-down black-box testing while relying on a well-established
regulatory framework.
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1 Introduction

Artificial intelligence (AI) may be defined as ”any technology that appears to emulate
the performance of a human” [EASA-AIRM], ”the capacity of an agent to select the
appropriate strategy in relation to its goals” [Baeldung], or ”acting humanly, thinking
humanly, thinking rationally, and acting rationally” [AIModernApproach].

In the past, AI experienced quite some springs and winters, periods of excitement followed by
rather long stretches of disappointments. Recently, however, AI-based software demonstrated
remarkable capabilities. The massive increase in computing power, new sophisticated
algorithms, and the explosion in the amount of available data drove significant and tangible
advances, heralding another AI spring [AISpring]. Nowadays, ubiquitous applications, e. g.
in neural language processing or image recognition, provide a glimpse of the potential of
AI, exciting the imagination of humankind of what else might be possible.

Data-driven machine learning methods, a subset of AI, are algorithms whose performance
may improve as they are exposed to data, with the ability to continue self-learning even after
deployment [EASA-AIRM]. Several experiments that led to media attention showed the
potential of deep reinforcement learning, a specific class of data-driven machine learning
methods [DeepReinforcementLearning], e. g. IBM’s Deep Blue beating the world chess
champion in 1997 [IBM-DeepBlue] or DeepMind’s AlphaGo defeating a Go champion
[Deepmind-AlphaGo], algorithms autonomously driving vehicles [AutonomousDriving]
or playing video games [VideoGames].

Throughout this document, the generic term AI will be used, implicitly including machine
learning with deep neural networks [DeepLearning].

The Potential of AI in Aviation

For the aviation sector, [EASA-AIRM], [FlyAI] and [AIClassification] list some potential
applications, like flight automation, flight controls, natural language processing, cyber-
security, predictive maintenance or development assistance. The aviation industry even offers
concrete products or publishes ongoing projects, e. g. [Airbus], [Acubed], [Daedalean],
or [Paladin].

By envisaging the holy grail [HolyGrail] of AI in aviation, i. e. the fully autonomous flight,
quite some challenges lie ahead (refer to section The Challenges of Certifying AI below).
Even though the current regulatory framework does not allow for AI applications in aviation
as of today, a multitude of applications related to an AI-based pilot with different levels
of automation can be identified as intermediate milestones, potentially yielding inspiring
insights and results:

Coping with complexity The range of use of pilot assisting and automation systems could
be expanded by the potential of AI to learn non-linear and complex relationships,
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infer new relationships, generalize, predict on unseen data, and perform adaptively in
complex and highly dynamic environments with uncertainties.

Informed monitoring/assisting layer Statistical safety evidence may be required for the
final certification of AI systems. While acting in shadow mode, an upcoming AI
system could acquire experience and, later on, provide hints and suggestions to
human pilots in the sense of an additional monitoring/assisting layer. Unlike a human
pilot, an AI system is neither subject to emotions nor imperilled by startle effects
[StartleEffect].

Dehumanizing If there is eventually a way to certify an AI-based pilot, an AI flight
instructor or flight examiner could as well be feasible. Such systems could train and
check human pilots, allowing an unbiased comparison amongst the pilots’ corps, or
train and check AI pilots. Taking this idea even further, a flight examiner routine could
continuously run in the background, flagging any decrease in the pilot’s performance
— or an AI pilot could have to pass several check flights even concurrently to an actual
flight mission.

Sophisticated training devices Certified FNPTs3 or desktop-based flight simulators could
profit from AI algorithms. Such algorithms could assist the flight instructor, profit
from the flight instructor’s experience, or even coach training sessions or parts thereof
autonomously. In effect, such training devices could lead to cost reductions in training
or more sophisticated training assistance for (non-certified) desktop-based flight
simulators for the interested public.

Sharing experience Upon the retirement of a human pilot, the experience acquired during
the aviation career is lost, at most partially divulged to trainees if still engaged
as a ground or flight instructor. There is ongoing research about conserving and
disseminating the experience of individual AI systems, with federated or collaborative
learning methods [FederatedLearning]. Driving this idea to its ultimate end, an AI
pilot could look back to an experience of millions of flight hours, compared to maybe
20k hours in a career of a full-time airline pilot — a proliferation of experience gained
by a large number of AI pilots to other AI pilots, multiplying the accumulated flight
experience.

New approaches Depending on the definition of the term creativity, AI could lead to
insights on creative yet unknown approaches [Creativity]. Indeed, the board game ex-
perimentsmentioned above ([IBM-DeepBlue], [Deepmind-AlphaGo]) revealed new
or unusually focused strategies for winning the game. Research papers about artificial
curiosity and creativity have been published, e. g. [Creativity1] or [Creativity2].

3 Flight and Navigation Procedures Training devices
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The Challenges of Certifying AI

While exploring that potential of AI, several challenges with respect to certification have to
be tackled, e. g. in the development process, in the requirements engineering, in predictability,
explainability, robustness, and validation [EASA-AIRM-Trustworthiness].

Predictability Adaptive systems may change their behaviour depending on their experience.
AI algorithms with enabled self-learning (on-the-fly learning) may act differently
under the same preconditions, manifesting a non-deterministic or a probabilistic
behaviour [EASA-AIRM], depending on what the system has learned so far. This
acquired experience may improve the system performance or worsen it.

Explainability Accidents and incidents in aviation are subject to investigation for the
purpose of prevention of accidents and incidents [ICAO-13]. Consequently, AI
systems involved in accidents or incidents as well would have to be examined so
that an upgrade will hopefully prevent future occurrences. But AI systems are rather
black boxes with an enormous number of parameters, making it difficult to retrace
the proceedings in hindsight. — [EASA-AIRM] features Explainability of AI as
one of the AI Trustworthiness Building Blocks and lists research initiatives in that
context, e. g. [DARPA]. In addition, explainable AI is a wide-spread research topic,
e. g. [ExplainableAI] or [Google].

Insurance Going even beyond the certification requirements, operational systems must
be insured, as failures may lead to cost-intensive efforts. Insurance companies may
impose additional requirements for their insurance cover, e. g., in manned aviation,
postulate a particular flight experience of pilots, exceeding the licencing requirements
stipulated by the regulatory framework. Such additional requirements have to be
anticipated when dealing with AI systems. [AIInsurance] elaborates on that issue.

Social acceptance The operational use of advanced automation systems, e. g. a fully
autonomous flight, will have to be publicly accepted. Non-representative surveys
conducted during the writing of this paper show divergent acceptance, depending
on the age or the subject knowledge of the surveyed persons, among other things.
Furthermore, social acceptance is influenced by the fear of job losses, the fear for AGI4
— research topics in economy (e. g. [Forbes]) and psychology (e. g. [Frontiers]),
amongst others.

The current certification standards stipulate deterministic behaviour and explainable sys-
tems [RTCA-DO178C], encompassing some of these challenges. Moreover, certification,
insurance and social acceptance rely on a certain trustworthiness of the system in question
[EASA-AIRM], rendering trust as the central issue for AI in safety-critical areas like
aviation.
4 Artificial General Intelligence; the hypothetical human-like general intelligence, not narrowed to a specific task
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The Anthropomorphic Approach

Seen from a distance, however, the overarching issue of trust crystallizes as well-known and
daily encountered, as there is already another element in the aviation system that is self-
learning, non-deterministic or probabilistic, occasionally even lacking its own explainability:
The human being.

Well-defined and well-proven standards and processes aim to ensure the required level of
safety and trustworthiness of systems where humans are involved, ’certification’ is replaced
by ’licencing’, insurance as well is based on a certain trustworthiness, and social acceptance
can be regarded as given in most cases.

In short, the general idea of the anthropomorphic approach is to apply the regulatory
framework for (human) pilot training and checking [EASA-FCL] to AI pilots. In future, the
certification of a machine might be replaced, but could for sure be extended by a licencing
of a machine — the issuing of a pilot licence in analogy to manned aviation, as an additional
layer of trustworthiness.

The fictitious scenario starts with a given black box — of unknown origin — claiming to be
able to fly an aircraft5. This leads to the central research question:

How is it possible to gain trust in an AI pilot?

2 State of the Art

According to the EASA AI Roadmap, first approvals of AI/ML algorithms are expected in
2025, and roadmaps of major players foresee single-pilot commercial air transport operations
in 2030 and autonomous commercial air transport operations in 2035 [EASA-AIRM]. The
EASA AI Task Force currently is, together with experts from the industry, working on
CoDANN6 [EASA-CoDANN]. In addition, guidance material for level 1 ML applications
(assistance to human) has been published [EASA-CoDANN].

One of the main contributions of the CoDANN approach is to integrate learning assurance
into the development process, extending the traditional development assurance framework,
ensuring the integrity of the training data. This approach may be regarded as bottom-up as
it concerns the development process.

In addition, and on a more strategic level, the European Commission (EC) produces
a coordinated plan on artificial intelligence, a proposal for a regulation on artificial
intelligence, a strategy and a white paper on artificial intelligence [EC], as well as ethic

5 as an autonomous level 3 system according to the EASA classification [EASA-AIRM], setting the investigation
focus on the AI system, excluding the human element

6 Concepts of Design Assurance for Neural Networks
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guidelines for trustworthy AI [EC-Guidelines]. These guidelines call for lawful, ethical,
and robust AI systems and list corresponding key requirements. The proposed Regulation on
Harmonized Rules on AI covers, inter alia, AI systems that continue to learn in the productive
environment, stipulating a post-markedmonitoring system (title VIII), embedded as a test and
validation process into the model governance framework, according to [KI-Regulierung]
and [AIRequirements].

Industry-driven initiatives try to follow the standard certification framework by disabling the
post-deployment self-learning feature of AI algorithms in order to achieve a deterministic
system that is testable under the current regulations. The intention is to train the AI model
in a standard way, then to freeze the model and to test it conventionally [Acubed]. However,
this approach prevents the system from improving its performance after deployment — one
of the key features of AI systems is sacrificed.

Academic papers report on early successes with AI trained to fly simulated aircraft with
behavioural cloning and reinforcement learning [LearningToFly]. However, no concrete
approach to certify such systems under the current regulation is mentioned.

In a short paragraph of an early NASA paper [NASA-Adaptive], the idea of a paradigm shift
from certification to licencing has been mentioned as one option to gain trust in adaptive
systems. However, no evidence is available whether this approach has been followed up.

This is where the present paper steps in, not intending to illustrate a complete shift from
certification to licencing, but in an effort to try to combine the two pillars of certification
and licencing, with the noble goal to achieve, if possible at all, a trustworthy system —
pending a formal and applicable definition of the term trustworthiness.

3 The Anthropomorphic Method under Investigation

The approach discussed in this paper encompasses a top-down, black-box testing/verification
approach, intending to provide an additional level of trustworthiness. It shall not replace
but complement any bottom-up initiative like [EASA-CoDANN] e. g., in order to increase
trust and — in effect — social acceptance of AI systems in aviation.

The approachmay be compared to theTuring Test [ComputingMachineryAndIntelligence].
Originally called the Imitation Game, the Turing Test is a test of a machine’s ability to
exhibit intelligent behaviour equivalent to, or indistinguishable from, that of a human, by a
human evaluator.

In addition, the method contains elements of the performance-based environment promoted
by [EASA-PBE]. In contrast to prescriptive requirements specifying required methods of
compliance, performance-based regulations focus on the desired, measurable outcome.
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Introducing Trustworthiness Anchors

Trustworthiness lacks a generic, mathematical definition that can be used to test a system.
Trust seems to be more a subjective impression that builds up over time, depending on
experience and a minimized divergence between expectation or hope and the system’s
output. As a corollary, a diverse compilation of trustworthiness anchors seems to be
required to rationalize trust. Applied to aviation systems, this compilation e. g. includes
software certification, hardware certification, systems certification, formal methods, FMEA7,
statistical evidence, training and checking (and licencing) of humans, amongst many others.

No formal evidence has been found on whether the trust is a transitive relationship. If Alice
(𝑎) trusts Bob (𝑏) and Bob trusts Charlie (𝑐) — does Alice trust Charlie then, or, formally,
for the trust relationship 𝑇 in an arbitrary set 𝑋:

∀𝑎, 𝑏, 𝑐 ∈ 𝑋 : (𝑎𝑇𝑏 ∧ 𝑏𝑇𝑐) ⇒ 𝑎𝑇𝑐?

There is subjective evidence, however, that trust is not a Boolean relationship but rather
nuanced and that Alice might credit some of Charlie’s trust. A certain transitivity factor
might, whereas not directly quantifiable, be attributed to trust. Even if binary transitivity
is not fully given, combining several diverse and accepted trust anchors can eventually
increase the overall level of trust in a system.

For human pilots, trust is built up during the training and checking, under the existing regula-
tory framework, inter alia, [ICAO-01], and [EASA-FCL], with well-defined training syllabi,
training and checking items and pass standards for check flights. — In analogy to Tombstone
Diagrams used in compiler construction and bootstrapping [CompilerGenerator], figure
1 summarizes an extract of the pilot training and checking scenarios, simplified from
[EASA-FCL]:

FE

Pilot FI FI

Any
Person

Student 
Pilot

sFE

FI FE FE

Student 
Pilot Pilot(1) (2)

(4)(3)

Fig. 1: Trustworthiness Propagation in Manned Aviation

(1) The promotion of any person to a student pilot is done by a flight instructor (FI).

(2) A student pilot may become a licenced pilot through a flight examiner (FE).

(3) A pilot can become a flight instructor through a flight examiner.

(4) It requires a senior flight examiner (sFE) to promote a flight instructor to a flight
examiner.

7 Failure Mode and Effects Analysis
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Anthropomorphism vs. Dehumanization

The obvious approach within the anthropomorphic context would be to train AI software
to fly a specific aircraft by human flight instructors and check out the software through
a human flight examiner. This would stipulate a transparent interface8, e. g. via speech
recognition, so that the AI pilot may be instructed like a human pilot — a setup comparable
to the Turing Test [ComputingMachineryAndIntelligence].

Compared to humans, however, AI systems have more extensive training needs; they
require more training data [TrainingData]. Therefore, an aspiring AI pilot will need more
training hours than human pilot aspirants, leading to the demand for automated training.
In the anthropomorphic context, this demand for a so-to-say dehumanizing element rises
widdershins: A flight instructor/flight examiner software component. This component
would guide the AI pilot’s reinforcement learning process and evaluate its performance
automatically. It would highlight areas of improvement and flag tendencies in the wrong
direction. Should the AI performance degrade and/or safe flight envelope parameters be
exceeded, it would trigger adequate contingency measures — preferably in a simulated
environment. Eventually, the flight instructor/flight examiner modules could confirm the AI
student pilot having reached the required standards to pilot an aircraft in the framework of
continuous training and checking. Once in operation, it continues to monitor the AI pilot’s
performance and its experience-based evolution perpetually.

The experience acquired during such monitoring could finally be fed back to the continuing
training and checking — as well in analogy to manned aviation, where the regulatory
framework mandates that operational experiences are fed back into the training design.

The noteworthy side-effect: In the context of an anthropomorphic approach, where machines
shall, in short, be tested like humans (anthropomorphism), the call for automated training
stipulates an antidromic element, the function of a flight instructor/flight examiner taken
over by a machine (dehumanizing).

Figure 2 superimposes this dehumanizing element to AI software:

RB
FI/FE

AI
SW

AI
Pilot

(a)

FE

AI
Student
Pilot

AI
Pilot(2)

RB
FI

AI
SW

AI
Student
Pilot

(1)

(b)

?

AI
Pilot

AI
FI/FE

(c)

Fig. 2: Trustworthiness Anchors with AI Elements

8 An interface that allows the connection and operation of a system with another, without modification of system
characteristics or operational procedures on either side of the interface.
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(a) The flight instructor/flight examiner is supposed to be a rule-based (RB), conven-
tionally certifiable piece of software in order to have an accepted trust anchor — an
AI-based flight instructor/flight examiner would a priori miss such an anchor. Given
that, an AI software system could then be trained and checked to become an AI pilot.

(b) As an intermediate step, a rule-based flight instructor module could train AI systems
(or even aspiring human pilots), and a human flight examiner could check them out.
— However, the passed check flight must not be the only trust anchor to ’licencing’, as
the training phase is explicitly a part of the whole process: In manned aviation, an
ATO9 must confirm that a candidate has satisfactorily completed the required training
before a flight examiner will take a skill check. Therefore, it is essential to note that
this approach is not just mere check-driven trust propagation.

(c) A further extension would be to train and check an AI pilot to become an AI flight
instructor/flight examiner with a yet-to-be-defined trust anchor.

The Objectives of the Investigation

Concluding the preceding section, verifying the suitability of the anthropomorphic approach
boils down to implementing and validating a rule-based flight instructor/flight examiner
module (RB FI/FE). This module shall be embedded in an environment supporting the test
case scenarios listed in table 1:

Instructor / Supervisor Test Cases

FI (a) HUP (1) RBP (2) AIP (3)

FE (b) HUP (1) RBP (2) AIP (3) FDR (4)

Tab. 1: Test Case Scenarios

(a) FI: Training according to the items for licence training.

(b) FE: Assessing the pilot’s performance, with regard to the pass standards of a skill test.

(1) HUP: Humans, both aspiring pilots without a licence and licenced pilots, both with
and without instructor and/or examiner privileges.

(2) RBP: A rule-based pilot to generate test data.

(3) AIP: The (future) AI-based pilot.

(4) FDR: Flight data feed from an FDR10 from actual flight missions (refer to section Test
Data below). As this data is static, it may not be used in an instructional scenario.

9 Approved Training Organisation
10 Flight Data Recorder
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Given that, testing will be possible even if the final test candidate, the future AI pilot, the
black box in the fictitious scenario from chapter 1, is not yet available.

The additional constraint for a transparent interface will be fulfilled by the FI/FE module
able for speech generation, so that humans can be trained and checked interchangeably with
the rule-based pilot. Furthermore, a rule-based pilot supporting speech recognition would
allow for human flight instructors/flight examiners to be involved without having to get
accustomed to the interface.

The Research Setup for the Investigation

The research setup comprises the required components to evaluate and validate the anthro-
pomorphic approach, supporting the objectives from the previous section. It encompasses a
central flight deck module (FD), an abstraction layer for the X-Plane desktop-based COTS11
flight simulator. This module makes the flight situation data available and accepts inputs
to control the simulated aircraft. Apart from the X-Plane support, future extensions could
include connectivity to time-lapsed flight simulation modules for accelerated training, or
interfaces to other flight simulation software or devices — while maintaining the layout of
the FD abstraction layer.

The architecture of the research setup (figure 3) shows the three piloting options:

1. A human pilot (HUP), interacting with controls and instruments of the flight deck
layer.

2. A rule-based pilot (RBP), programmable to fly a particular pattern.

3. An AI pilot (AIP), potentially available in the future.

Three instructional and/or supervising elements are connected to the pilot:

1. The flight instructor (FI) and

2. the flight examiner (FE) modules to be developed.

3. An aeromedical examiner (AME) in analogy to manned aviation, yet to be defined.
The AME could, inter alia, implement a watchdog, listening for ’heartbeats’ of the
pilot in charge.

The flight instructor/flight examiner modules will implement an assessment and evaluation
of the time series of flight parameters provided by the flight data recorder (FDR) within the
flight deck layer (FD). They monitor the pilot’s performance and give feedback/rewards to
an AI pilot’s possible deep reinforcement learning system. — The flight instructor/flight
examiner must recognize if the autopilot is engaged or if the pilot is flying manually.
11 Commercial Off-The-Shelf
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FD
Flight Deck Abstraction Layer

HUP
Human Pilot

RBP
Rule-Based Pilot

AIP
AI-Based Pilot

XPS
COTS Flight Simulator

TLS
Time-Lapsed Simulator

FDR
Flight Data

Recorder

FE
Flight Examiner

FI
Flight Instructor

AME
Aeromedical Examiner

any Simulator or
Flight Data Recordings

Fig. 3: Architecture of the Research Setup

Thitherto, the modules depicted in figure 4 are implemented:

FD features GUI12 elements like the PFD13 as well as an autopilot, consisting of a set
of PID14 controllers, each with low-pass filters both for the setpoint value and for
the controlled variable. The integrated flight data recorder provides a set of external
views on the inner data for tuning the PID parameters, plots of flight parameters, and
a map display.

12 Graphical User Interface
13 Primary Flight Display
14 Proportional–Integral–Derivative
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HUP routes joystick inputs and other interactions with control elements (flaps, gear, brakes)
to the flight deck.

RBP incorporates some aircraft-specific constants (currently for Cessna 172 Skyhawk
and Cirrus Vision Jet SF50 aircraft types), navigational computation functions and
is prepared to accept commands via speech recognition, in an attempt to provide a
transparent interface to a human flight instructor/flight examiner, comparable to the
’interface’ of a human student pilot.
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Fig. 4: Modules of the Research Setup

The GUI of the research setup is shown in figure 6.

Test Data

The trustworthiness propagation in manned aviation (figure 1) relies on a variety of
operational scenarios encountered during the training and checking phases. The more
extensive training needs of AI systems as mentioned in section Anthropomorphism vs.
Dehumanization further emphasize this requirement.

Both the human pilot and the rule-based pilot options will generate test data for the devel-
opment and evaluation of the flight instructor/flight examiner modules. Complementarily,
instead of using a flight simulator and any of these two piloting options, flight data from
actual flight missions could be fed into the system (figure 5).
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FD

Sim

PilFI

FE

(a)

FD

FDR

FI

FE
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Fig. 5: (a) Regular Case with a Pilot and a Flight Simulator. — (b) Flight Data Feed.

Fig. 6: Graphical User Interface of the Research Setup
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4 Intermediate Results and Next Steps

This paper concludes the conceptual description of the anthropomorphic approach and
sets the ground for the upcoming detailed investigation and evaluation of the concept. The
preparation of the research setup led to a development environment supporting these next
steps and revealed several findings that will co-determine the further proceeding.

Findings

The following points are noteworthy in particular:

Anthropomorphism and dehumanization Having consequently applied the anthropo-
morphic approach, the most surprising insight is the unexpected necessity for a
dehumanized element, the rule-based flight instructor/flight examiner modules certifi-
able under the current regulations, stipulated both by the call for automated training
and by the requirement for a trustworthiness anchor.

AI flight instructor/flight examiner An instructional situation distinguishes by many
unforeseen events, unanticipated actions of the student pilot and uncertainties.
Following the arguments listed in chapter 1, this seems to be an ideal starting scenario
for AI — the implementation of the flight instructor/flight examiner modules as
AI-based components would be a tempting idea. However, as the aim is to produce
an additional level of trustworthiness, a flight instructor/flight examiner lacking
trustworthiness does not seem to be an opportune starting point.

Research setup The available research setup with the integration of the X-Plane COTS
flight simulator and the two piloting options HUP and RBP seems to be an adequate
playground for further investigation and to start the implementation of the flight
instructor/flight examiner modules in focus.

Test data The already implemented rule-based pilot is able to produce some first-hand
test flight data, supporting the design and development of the flight instructor/flight
examiner modules.

Validation The anthropomorphic context reveals an additional opportunity for the validation
phase. At the present date, no AI pilots are yet available that could be engaged to
validate the flight instructor/flight examiner modules. But these modules can just
as well be validated with humans — flight instructors/flight examiners themselves,
licenced pilots, student pilots or persons without any previous flying experience.
Consequently, the interface to the pilot shall include synthetic voice generation to
convey the flight instructor’s orders.
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Potential overfitting issues A machine learning model that has become too attuned to
training data may exhibit overfitting issues [Overfitting]. A certain share of noise in
the training data e. g. could become too determinant, impairing the system’s ability to
generalize. As a consequence, the system performs perfectly correct on the training
data but will be much less accurate on new data. In the case of a deep reinforcement
learning system in training to fly an aircraft, the automated flight instructor/flight
examiner will have to ensure that the training scenario is not static but varies within the
training epochs. One approach to tackle this issue could be changing environmental
conditions (e. g. wind, turbulences, temperature/air density) and diverse flight tasks
on different altitudes, locations, and aircraft types — in analogy to manned aviation,
where the continuing training and checking of pilots encompasses ever-changing
scenarios.

Computing power Currently running on a desktop computer, the available computing
power restricts sophisticated real-time time series evaluations and their graphical
representation. Consequently, the X-Plane flight simulator has been outsourced to
another desktop computer connected via the local network.

Next Steps

The forthcoming phase of the investigation will include the conceptual design and the
implementation of the rule-based flight instructor/flight examiner modules, followed by a
respective validation.

Flight instructor/flight examiner The current focus is on these modules: Evaluation of
the time series of flight parameters provided by HUP and RBP. These parameters
shall be assessed, inter alia, regarding the stability of flight (e. g. by evaluating the
angle of attack), the adequacy of the control inputs (e. g. with regard to oscillations),
the reaction to external events and to orders from the flight instructor, the successful
completion of the flight mission, and other aspects.

Validation The flight instructor/flight examiner modules shall be developed and tested by
licenced pilots and licenced flight instructors/flight examiners.

Risks Assessment andmitigation of the risks associated with the anthropomorphic approach
in general and the overfitting issues in particular.

Benefits Investigation of the anticipated key advantages identified in [NASA], like perfor-
mance focus, reduced costs, reduced stagnation, and reduced manufacturer liability.

Special attention has to be payed to the amount and variety of operational scenarios, the
test data mentioned in section Test Data in chapter The Anthropomorphic Method under
Investigation, and considering the potential overfitting issues listed above.
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5 Summary and Conclusions

In summary, the concept of the anthropomorphic approach depicts as follows:

Goal The goal of the ongoing research is a deepened investigation of whether an an-
thropomorphic apporach could prove to be one element to verify or to leverage the
trustworthiness of AI systems in cockpit applications. The intention is by no means to
replace bottom-up approaches currently under investigation and/or elaboration, but to
establish it as a complementary, independent element of assurance to increase the
level of trustworthiness. — Trustworthiness is considered the key element for any
future certification/licencing efforts, for insurance covers, and for social acceptance,
which in effect again could trigger regulatory initiatives for the development of a
corresponding regulatory framework.

Approach to the goal Relying on a well-established and well-proven regulatory frame-
work that is continuously enhanced and refined primarily based on findings out of
investigations of occurrences, incidents and accidents, the general idea is to apply
the flight crew licencing framework to AI systems. In analogy to the Turing Test
[ComputingMachineryAndIntelligence] as well as incorporating the general idea
behind the performance-based environment [EASA-PBE], a machine intended to
execute a particular function, i. e. to fly an aeroplane, shall be tested the very same
way as a human intended to execute the very same function. This is the so-called
anthropomorphic approach. — Furthermore, when compared to humans, AI systems
have elevated training needs. It should be possible to conduct the training and check-
ing processes autonomously, or at least to the possible extent. Therefore, it shall be
investigated whether the roles of a flight instructor and flight examiner can be partially
built up in software. This would then be the so-called dehumanizing but central
element within the investigation. — It has to be noted that the term trustworthiness
lacks a formal and applicable definition.

Incremental implementation It is paramount to envisage an incremental introduction
of such disruptive, game-changing new methods, especially in safety-critical envi-
ronments like aviation. The rather out-of-the-box approach further emphasizes the
importance of gradual progress. For example, an AI software acting in shadow mode
could lead to the first statistical evidence. The next phase with AI software at the
controls should include human supervision and take place in a simulated environment
as long as possible.

Non-goals It is not the goal to contribute to the actual development of an AI-based
piloting system — this is well beyond the scope. The idea begins in the fictitious
scenario where a black-box system, claiming to have piloting capabilities, shall be
tested and attributed to a certain level of trustworthiness. — The envisaged flight
instructor/examiner will probably not cover the entire airline transport pilot training
and checking range. In a first step, specific private pilot training and checking elements
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shall be incorporated and examined for the suitability of such an anthropomorphic
approach. — Furthermore, the envisaged validation of the anthropomorphic approach
assumes a transparent interface to the different piloting options (refer to chapter 3),
i. e. the same way of communication between the flight instructor/flight examiner
and the pilot at the controls. No distinction is made whether the AI-based pilot will
rely on additional sensors like e. g. LIDAR15 or LRF16, or AI subsystems for image
recognition, or not.

Relevance The relevance of such independent software assurance systems is not limited to
the cockpit environment. Similar applications can be found e. g. in air traffic control
or flight dispatch, or generally, in most situations involving licenced human staff, not
limited to aviation.

Several questions arose during the elaboration of the anthropomorphic approach. Interest-
ingly, it was possible to project most of these uncertainties into the field of manned aviation,
where similar challenges are found and where answers transferable to AI pilots are available,
further emphasizing the potential of the general idea.
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