
Multi-LHL protocol

Marika Mitrengová

Faculty of Mathematics, Physics and Informatics

Comenius University

Mlynska dolina

842 48 Bratislava, Slovakia

mitrengova@dcs.fmph.uniba.sk

Abstract: We present a password-authenticated group key exchange protocol where
each user has his/her own password. Advantage of such protocol is in short pass-
words, which can be easily memorized. On the other hand these protocols face the
low password entropy. In the first part we define security model based on models of
Abdalla, Fouque and Pointcheval and Bellare, Pointcheval, Rogaway. We construct
the MLHL (Multi-LHL) protocol, which is based on the LHL protocol proposed by
Lee, Hwang and Lee. However, the LHL protocol is flawed as pointed by Abdalla,
Bresson, Chevassut and Choo, Raymond. We prove that our protocol is secure authen-
ticated key exchange protocol with forward secrecy property and that the protocol is
resistant against attacks on the LHL protocol.

1 Introduction

With the explosion of its size, Internet became a major communication channel among

people. However, in its basis, Internet is an inherently insecure channel. The essential

part of securing such channel is an exchange of cryptographically strong keys. People

are notoriously bad at remembering long (pseudo)random sequences and thus the classical

solution is to store the key on some device (e.g. hard disk, smart card) and protect it with

a user password. This is inconvenient because the medium holding the original key needs

to be carried everywhere by the user.

Password authenticated key exchange (PAKE) protocols were designed to alleviate this

issue. They require a human user to remember only a short (easily-memorable) secret

password. This is the major advantage for mobile users who need to authenticate at various

places. PAKE protocols are therefore an interesting alternative of public key cryptography

(PKI), especially in environments where the PKI is hard to deploy. Because of their ability

to distill low-quality user passwords to strong keys, PAKE protocols have received a lot of

attention [BMP00, Ja96, GL01, KOY01].

Although the original idea of PAKE protocol EKE [BM92] was designed only for two

participants, PAKE protocols can be used to authenticate multiple parties as well. The

most important requirement is to require only a single password for the user. Solutions,

where user has to remember one password per group of participants obviously does not



scale with human memory. Moreover, in the case when one of the participants is compro-

mised, the whole group needs to choose a new password. Instead, the schemes with single

password per user offer much better user experience. However, this comes at the cost of

incorporating one party which will be trusted by everyone – a trusted server.

Security issues with PAKE protocols: As opposed to other cryptographic schemes, PAKE

protocols contain one weak link in their security and that is the user password. Therefore,

they must be guarded against a dictionary attack against a known dictionary DICT of all

possible passwords. The dictionary attack comes in two flavours – online and offline.

The protocol can be easily protected against online dictionary attacks by blocking the user

access after some unsuccessful tries. On the other hand the off-line dictionary attacks can

(and should) be prevented by the PAKE protocol itself.

Related work. The research on PAKE protocols started with the EKE (Encrypted key

exchange) protocol based on Diffie-Hellman key exchange. EKE was proposed by Bel-

lowin and Merritt in [BM92]. However, the paper provides only very informal proof of

security. This original work spawned a lot of new research ideas.

Observing recent work, Bellare, Pointcheval and Rogaway conclude that although many

new PAKE protocols are proposed, the theory is lagging behind. Therefore, they define a

security model for PAKE protocols and prove the correctness of EKE. Boyko, MacKenzie

and Patel [BMP00] proposed 2PAKE protocols called PAK and PAK-X. They defined a

new security model based on the model of Shoup [27]. Security of PAK is proved in the

random oracle model under decisional Diffie-Hellman assumption. PAK is extended to a

protocol PAK-X. It is built on the idea of a server which owns a user password verifier and

the client stores a plaintext password. The authors formally proved the security of PAK-X,

even when the server is compromised.

Kwon, Jeong, Sakurai and Lee [Kw06] deal with a multi-party scenario with a trusted

server where each participant owns a different password. The goal of their protocols

PAMKE1 and PAMKE2 is a group authentication and they note that designing PAKE pro-

tocols with trusted but curious server is quite involved task. Trusted server means that

the server performs protocol steps and do not manipulate data in a different way. Curious

means, that the server is honest, but we do not want it to know the computed session key.

Another group authentication protocol was proposed by Lee, Hwang and Lee in [LHL04].

The LHL protocol is however not secure as showed by Abdalla, Bresson and Chevassut

in [ABC06] where they propose a new protocol secure against this attack. Choo [Ch06]

suggested another attack on the LHL protocol.

In [Ab11] suggested construction that is secure in a common reference string, therefore

it does not rely on any idealized model. They prove the security of construction in the

universally composable framework.

Hao and Ryan [HR11] suggested a protocol, where two participants send ephemeral public

keys to each other. Then they encrypt the password by juggling the public keys in a

verifiable way.

462 Multi-LHL protocol



Our contribution. We were inspired by the LHL protocol [LHL04]. However in [ABC06,

Ch06] it is shown that this protocol is not secure. We propose a new PGAKE protocol

based on the LHL and prove that this protocol is secure in a random oracle model and

ideal cipher model under decisional Diffie-Hellmann assumption. The security model is

adopted from [BM92, AFP05, BPR00, Kw06]. Our construction is secure against the

attacks from [ABC06, Ch06]. Secondly, every participant has his own secret password

(compared to the protocol suggested in [ABC06]) and because of this, there are no prob-

lems with adding a new participant and with compromising some participant. On the other

hand, this requires a help of a server, which knows the password of each participant. When

the server knows the passwords, it could try to learn the session key (because it is curious).

Therefore we want to have a protocol in which server could not learn established session

key from knowledge of passwords and the communication it sees. Our main contribution

is the proof of security (denoted as AKE-fs, see Definition 8) of our protocol.

2 Preliminaries

In this section, we establish the most important notation. If you are familiar with the

standard notation in cryptography, it should be safe to skip this section.

2.1 Basic definitions

Random choice of an element R from a finite set T where the element R is chosen uni-

formly is denoted as R
$
←− T . By M1 ‖ M2 we denote concatenation of two strings

M1 and M2. Random oracle is a function f : Y1 → Y2 uniformly chosen from the set

Func(Y1, Y2) of all functions with domain Y1 and range Y2. We say that Turing machine

A has oracle access to Turing machine B if machine A can use B as a function. We denote

this fact as AB . Symbol ⊥ represents undefined value.

A symmetric encryption scheme is denoted as E = (G, E ,D) and message authentica-

tion code scheme (MAC) is denoted as M = (Gen,Mac,Vrf). A tag τ is computed as

τ = Mack(Msg) for message Msg with use of key k.

2.2 Protocols and adversaries

A single execution of a protocol is called a session. The set of protocol participants is

C ∪ S , where C = {P1, P2, . . . Pn} is set of clients and S is set of servers. For simplicity,

we assume that |S| = 1. Each client Pi 2 C has a password pwi called long-lived key

(LL-key) and server S has a vector of clients passwords 〈pwS,Pi
〉Pi∈C (pwi = pwS,Pi

for

all Pi 2 C in symmetric case, otherwise they are different in asymmetric case). The j-th

instance of participant Pi is denoted as Πj
i and ID(Pi) is a unique identifier of participant

Pi (analogously j-th instance of server S is denoted as Ψj). A group of participants

Multi-LHL protocol 463



Pi1 , Pi2 , . . . , Pik is denoted as Grpi1,i2,...,ik .

Definition 1. [BR95] A protocol is a triple P = (Π,Ψ, LL), where Π specifies how

each client behaves, Ψ specifies how server behaves and LL specifies the distribution of

long-lived keys.

Definition 2. An adversary is a probabilistic polynomial-time Turing machine with oracle

access to several other Turing machines. Running time of an adversary A is the length of

description of A plus the worst case running time of A.

Let CON be a cryptographic construction (algorithm), A be an adversary and xxx be any

problem on CON (such as collision resistance of hash function, or discrete logarithm in a

group G). Adv
xxx
CON,A is a measure of adversary’s advantage defined as a probability, that

A succeeds to solve the problem xxx for CON . Sometimes, the advantage depends on

some parameter, such as time of execution, length of the algorithm’s input or the number

of some queries. Let κ1, κ2, . . . κn be parameters needed for the security definition, then

the adversary’s advantage is denoted as Adv
xxx
CONN,A(κ1, κ2, · · ·κn).

In this paper we adopt a Dolev-Yao model of an adversary, where the adversary intercepts

whole communication during the execution of a protocol. The adversary can delay, change

or deliver messages out of order, start a new execution of a protocol, acquire a LL-key

of some participants and acquire a given session key. All abilities of the adversary are

modelled through oracles defined in Section 3.

We use the notion of Parallel Decisional Diffie-Hellman assumption and a challenger

Challβ(·) defined by Abdalla et al. [ABC06] in our security proofs.

Definition 3 (Parallel Decisional Diffie-Hellmann assumption – PDDHn). Let G be a

cyclic group of order q with generator g and AD be an adversary (distinguisher). Two

distributions are defined:

PDH∗
n = {(gx1 , gx2 , . . . , gxn , gx1x2 , gx2x3 , . . . , gxnx1)|x1, x2, . . . , xn

$
←− Z∗

q } and

PDH$
n = {(gx1 , gx2 , . . . , gxn , gy1 , gy2 , . . . , gyn)|x1, x2, . . . , xn, y1, y2, . . . , yn

$
←− Z∗

q },

where n > 2. The PDDHn problem for input (u1, u2, . . . , un, w1, w2, . . . , wn) is to dis-

tinguish, from which distribution is it. The PDDHn assumption holds in a cyclic group G
if and only if the advantage of every AD on PDDHn problem in time tDDH is negligible.

This advantage is denoted as Adv
PDDHn

G,AD
(tDDH) and computed as:

Adv
PDDHn

G,AD
(tDDH) = |Pr[AD(PDH∗

n) → 1]− Pr[AD(PDH$
n) → 1]|.

In [ABC06], it was proved that for a group G, time tDDH , an integer n > 2 and adversary

AD the PDDHn and DDH problems are equivalent in G:

Adv
DDH
G,AD

(tDDH) ≤ Adv
PDDHn

G,AD
(tDDH) ≤ n ·Adv

DDH
G,AD

(tDDH)

Challβ(I) is an algorithm that on an input I outputs vectors from the distribution PDH∗
n,

if the bit β = 0, otherwise it outputs vectors from the distribution PDH$
n. If the same I is

given on the input again, then the same vectors are returned.

464 Multi-LHL protocol



3 Security model

In this section we present a model based on [BM92], later extended in [BPR00] and

adapted for group key exchange in [Kw06]. For identification of concrete session and

instance of a partner in the session we defined notions session identifier and partnering.

Definition 4. A session identifier (sid) is a unique identifier of a session. It is the same for

all participants in the session. The session identifier of the instance Πj
i is denoted as sidji .

For the server instance Ψs is the session identifier denoted as sids.

If instances Πj
i , Πl

k and Ψs are in the same session, then sidji = sidlk = sids.

Definition 5. A partner identifier pidji for the instance Πj
i is set of all identifiers of in-

stances with whom Πj
i wants to establish a session key. Instances Πj

i and Πl
k are partners,

if

• sidji = sidlk v=⊥

• Πj
i 2 pidlk and Πl

k 2 pidji

The adversary controls whole communication. He can stop sent message, send message

Msg, deliver messages out of order and intercept communication. His abilities are model-

led using the following oracles:

• Send(Πj
i ,Msg) – sends the message Msg to the instance Πj

i in the session sidji
and returns a reply of Πj

i (according to the execution of the protocol). This oracle

query simulates an active attack of the adversary.

• Send(Ψs,Msg) – similarly to the Send(Πj
i ,Msg). This oracle query sends the

message Msg to the instance of the server Ψs in the session sids and returns a reply

of Ψs.

• Execute(Grpi1,i2,...,ik , S) – this oracle starts execution of a protocol between par-

ticipants Pi1 , Pi2 , . . . , Pik and the server S. The result is a full copy of messages

sent during execution of the protocol. This query models a passive attack, where

adversary eavesdrops the execution of the protocol.

• Reveal(Πj
i ) – if the instance Πj

i has established session key sk, then the oracle

returns sk else return ⊥. This oracle models scenario of session key leakage.

• Corrupt(Pi) – this query returns the LL-key pwi of the participant Pi. This oracle

models forward secrecy. (Such definition of Corrupt query is in a weak corruption

model. In a strong corruption model Corrupt(Pi) returns an internal state of all

instances of the participant Pi too.)

• Test(Πj
i ) – This query can be used only on a fresh/fs-fresh instance (see Def. 6).

First a random bit b
$
←− {0, 1} is chosen. If instance Πj

i has not established a session

key sk, then ⊥ is returned. If b = 0, then the real session key sk is returned else (if

b = 1) random string sk′
$
←− {0, 1}|sk| is returned.

Multi-LHL protocol 465



Definition 6 (Fresh and fs-fresh instance). The instance Πj
i is fresh,

1. if oracle query Reveal was not made on the instance Πj
i and its partners,

2. and if Corrupt query was not made on any protocol’s participant in any session.

The instance Πj
i is fs-fresh,

1. if oracle query Reveal was not made on the instance Πj
i and its partners,

2. and if Corrupt query was not made on any protocol’s participant in any session

before Test query or Send query was not made on the instance Πj
i .

Forward secrecy is security feature of a protocol and it is defined by Corrupt queries on the

protocol. Informally, the protocol has forward secrecy property, if and only if revealing of

LL-keys does not compromise previous established session keys.

Definition 7. Advantage Adv
AKE(−fs)
P,A (κ) of an adversary A attacking a protocol P in

aforementioned model without (with) forward secrecy with security parameter κ is defined

by a following game:

GameAKE(-fs)P,A:

• A can ask queries to Send, Reveal, Execute (and Corrupt in case of forward secrecy)

oracles multiple times.

• Test query can be asked only once by A and only on a fresh (fs-fresh) instance.

• A returns a bit b′.

Let Succ denote the event, that b = b′, where b is the bit randomly chosen during Test

oracle. Then Adv
AKE(−fs)
P,A (κ) = |2 · Pr[Succ]− 1|.

Definition 8. We say a protocol P is AKE (AKE-fs) secure multi-party PAKE protocol

without (with) forward secrecy, if for all adversaries A running in polynomial time holds:

• all participant instances which are partners have the same session key,

• Adv
AKE(−fs)
P,A (κ) ≤ Q(κ)

|DICT | + ε(κ), where ε(κ) is negligible and Q(κ) denotes

the number of on-line attacks (all Send queries to clients, server S and all Corrupt

queries). DICT is a set of all possible passwords.

4 Our protocol

Our design goals for the new protocol are following:

466 Multi-LHL protocol



• Enable group-based authentication with a distinct password per user. This however

requires a presence of a trusted server.

• Protection against the previously mentioned attacks.

We meet both these design goals by replacing the first step of the LHL protocol with a

secure communication through the trusted server. Because of this secure communication,

the attacker can no longer exchange user identities by switching messages.

Similarly to LHL, our protocol works with a cyclic group G. We will use two pseudoran-

dom hash functions H and H′. New is the presence of a trusted server. Every participant

Pi has password pwi 2 DICT , which is shared with the server. To establish a secure con-

nection to the server, we use arbitrary secure 2PAKE protocol denoted as 2P. We assume a

symmetric encryption scheme modeled as an ideal cipher E = (G, E ,D) and an existen-

tially unforgeable under an adaptive chosen-message attack secure message authentication

scheme M = (Gen,Mac,Vrf).

Protocol MLHL (Multi-LHL):

1. Each participant Pi establishes a key ski with the server S using 2P protocol.

2. Establish a temporary key Ki between each pair of neighbours:

(a) Each participant Pi chooses a random xi, computes zi = gxi and sends mes-

sage Pi → S : ID(Pi)||z
∗
i = Eski

(zi). to the server

(b) Server decrypts z∗i and sends following messages to the participants Pi−1 and

Pi+1:

S → Pi−1 : ID(S)||ID(Pi)||Eski−1(zi)
S → Pi+1 : ID(S)||ID(Pi)||Eski+1

(zi)
(c) Each Pi decrypts received messages to obtain values zi−1 and zi+1 and com-

putes Ki = H(zxi

i+1), Ki−1 = H(zxi

i−1).

3. Each participant Pi computes wi = Ki−1 ⊕ Ki, then he computes MAC τi =
MacKi

(ID(Pi)||wi) and broadcasts message (ID(Pi)||wi||τi).
4. When Pi receives messages (ID(Pj)||wj ||τj) from all other participants, he com-

putes Kj = H(gxj−1xj ) for all j 2 {1, ..., n} using the values wj and Ki−1, in

direction to the left (from Ki−1, . . . ,Kn, . . . ,Ki+1,Ki). During this computation,

he verifies for received values ID(Pj) and wj their tags τj . For example, he starts

with computing K ′
i−2 = wi−1 ⊕Ki−1, VrfKi−1(ID(Pi−1)||wi−1, τi−1) and ends

with K ′
i = wi+1 ⊕ Ki+1, VrfKi+1(ID(Pi+1)||wi+1, τi+1). If all tag values are

correct, then Pi continues with the next step, otherwise terminates.

5. Pi computes the session key sk = H′(K1‖K2‖ . . . ‖Kn).

4.1 Security of MLHL protocol

Let G be a cyclic group with a generator g, for which the DDH assumption holds. Let H
and H′ be modeled as random oracles, where H : {0, 1}∗ → {0, 1}lH and H′ : {0, 1}∗ →

Multi-LHL protocol 467



{0, 1}lH′ . Let 2P be an arbitrary secure 2PAKE protocol with length of the session key

lk, let E = (G, E ,D) be symmetric encryption scheme defined as E : G× {0, 1}lk → G,

D : G × {0, 1}lk → G and modeled as an ideal cipher. Let M = (Gen,Mac,Vrf)
be an existentially unforgeable under adaptive chosen-message attack secure message au-

thentication scheme. Symbol ε denotes a negligible function, qE number of encryption

queries, qD number of decryption queries, qsend, qexecute, qreveal is number of Send, Ex-

ecute, Reveal queries the attacker makes in underlying 2P protocol during the GameAKE-

fsMLHL,AMLHL
. Polynomial p(·) denotes the number of instances of the protocol MLHL

executed through the Execute oracle or through the sequence of Send queries. Symbol

AX denotes adversary attacking construction X on its security property. Running times

of adversaries AMLHL, A2P, AM and ADDH are denoted tMLHL, t2P, tM , tDDH and κ is

security parameter.

Theorem 1. Assume that every participant Pi has a secret key pwi 2 DICT , which is

shared with the server S. We suppose, that the adversary AMLHL establishes p(κ) sessions

during the GameAkeMLHL,AMLHL
between n participants for some polynomial p(·). Then

the advantage of the adversary AMLHL in attacking the protocol MLHL is

Adv
AKE−fs
MLHL,AMLHL

(κ, tMLHL) ≤ 2

(

3(qE + qD)
2

2|G|
+

3p(κ) · n · qD
2lk

+ p(κ) · nAdv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal) + 2ε

+
np(κ)2

2lk+1
+ 5p(κ) · n ·Adv

DDH
G,ADDH

(tDDH) + 8qE/2
lk

+ 4Adv
MAC−forge
M,AM

(tM )

)

.

Looking at the definition of fs-fresh instance on which an adversary makes a Test query we

have following cases of Corrupt query usage (on instance in Test query) during the game

GameAKE-fsMLHL,AMLHL
:

• Case1: No Corrupt query was made during the execution of the game

GameAKE-fsMLHL,AMLHL
. In this case the adversary can ask Send, Execute and Re-

veal queries.

• Case2: In this case, there must be at least one Corrupt query and all Corrupt queries

were made after a Test query in the game GameAKE-fsMLHL,AMLHL
(note that in this

case the session key was established for instance on which Test query was made).

Here are allowed Send, Execute and Reveal queries.

• Case3: In this case, there must be at least one Corrupt query and some Corrupt

query was made before a Test query in the game GameAKE-fsMLHL,AMLHL
. In this

case, only Execute and Reveal queries are allowed, due to preservation of the fs-

fresh property (adversary can not ask Send query on instances of other participants

in the same session, because if he starts to ask Send queries in the session, he must

ask Send queries on instance on which he will ask a Test query to finish the protocol

execution correctly).

468 Multi-LHL protocol



Therefore, we can divide advantage of the adversary attacking on AKE-fs security into

advantage of the adversary in every of these cases:

AdvAKE−fs
MLHL,AMLHL

(tMLHL) = AdvAKE−fs
MLHL,AMLHL,Case1

(tMLHL)

+ AdvAKE−fs
MLHL,AMLHL,Case2

(tMLHL)

+ AdvAKE−fs
MLHL,AMLHL,Case3

(tMLHL).

We prove the theorem for every case in three lemmas by sequence of games, starting with

the game G0 simulating the real protocol. In these games we simulate participants of the

protocol and their behavior. By Succi we denote that b = b′ in the game Gi, where b was

randomly chosen bit in Test query and b′ is the output of the adversary.

For simplicity we suppose, that the adversary asks Execute queries on group with the

number of users n. Similarly when the protocol is simulated through Send queries, we

assume that the number of users is n too.

Proof. Due to space limitations, the full proof of theorem is in full version [Mi13]. The

proof of the AKE security of the MLHL protocol is in Appendix A.

4.1.1 Acknowledgement.

This paper was supported by VEGA grant number 1/0259/13 and by Comenius University

grant number UK/407/2013.

References

[BM92] Steven M. Bellovin and Michael Merritt,Encrypted Key Exchange: Password-Based
Protocols Secure Against Dictionary Attacks, In IEEE Computer Society Symposium
on Research in Security and Privacy, pp. 72–84, IEEE Computer Society Press, 1992.

[LHL04] Lee, Su-Mi and Hwang, Jung Yeon and Lee, Dong Hoon, Efficient Password-Based
Group Key Exchange, Trust and Privacy in Digital Business, First International Con-
ference, TrustBus’04, pp. 191-199, LNCS 3184, Springer, 2004.

[ABC06] Michel Abdalla and Emmanuel Bresson and Olivier Chevassut, Password-based Group
Key Exchange in a Constant Number of Rounds, Public Key Cryptography - PKC’06 -
9th International Conference on Practice and Theory in Public Key Cryptography, pp.
427–442, LNCS 3958, Springer, 2006.

[Ch06] Choo, Kim-Kwang Raymond, On the Security Analysis of Lee, Hwang & Lee (2004)
and Song & Kim (2000) Key Exchange / Agreement Protocols, Informatica, 17, pp.
467-480, IOS Press, 2006.

[AFP05] Michel Abdalla and Pierre-Alain Fouque and David Pointcheval, Password-based au-
thenticated key exchange in the three-party setting, PKC 2005: 8th International Work-
shop on Theory and Practice in Public Key Cryptography, pp. 65–84, LNCS 3386,
Springer, 2005.

Multi-LHL protocol 469



[BPR00] Mihir Bellare and David Pointcheval and Phillip Rogaway, Authenticated
Key Exchange Secure Against Dictionary Attacks, Advances in Cryptology –
EUROCRYPT’00, International Conference on the Theory and Application of Cryp-
tographic Techniques, pp 139–155, LNCS 1807, Springer, 2000.

[Kw06] Jeong Ok Kwon and Ik Rae Jeong and Kouichi Sakurai and Dong Hoon Lee, Password-
authenticated multiparty key exchange with different passwords, IACR Cryptology
ePrint Archive, 2006.

[BR95] Mihir Bellare and Phillip Rogaway, Provably secure session key distribution: The Three
Party Case, Proceedings of the twenty-seventh annual ACM symposium on Theory of
computing, STOC ’95, pp. 57–66, ACM, 1995.

[CPS08] Jean-Sébastien Coron and Jacques Patarin and Yannick Seurin, The Random Ora-
cle Model and the Ideal Cipher Model Are Equivalent, Advances in Cryptology -
CRYPTO’08, 28th Annual International, pp. 1–20, LNCS 5157, Springer, 2008.

[KL07] Katz, Jonathan and Lindell, Yehuda, Introduction to Modern Cryptography (Chapman
& Hall/Crc Cryptography and Network Security Series),Chapman & Hall/CRC, 2007.

[KOY03] Jonathan Katz and Rafail Ostrovsky and Moti Yung, Forward Secrecy in Password-
Only Key Exchange Protocols, Security in Communication Networks, Third Interna-
tional Conference, pp. 29–44, LNCS 2576, Springer, 2003.

[BMP00] Victor Boyko and Philip Mackenzie and Sarvar Patel, Provably secure password-
authenticated key exchange using Diffie-Hellman, Advances in Cryptology - EURO-
CRYPT’00, International Conference, pp. 156–171, LNCS, Springer, 2000.

[Ja96] David P. Jablon, Strong Password-Only Authenticated Key Exchange, SIGCOMM
Computer Communication Review 26, pp. 5–26, ACM, 1996.

[Wu98] Thomas Wu, The secure remote password protocol, Proceedings of the Network and
Distributed System Security Symposium, NDSS’98, The Internet Society, pp. 97–111,
1998.

[GL01] Oded Goldreich and Yehuda Lindell, Session-Key Generation using Human Passwords
Only, Advances in Cryptology - CRYPTO’01, 21st Annual International Cryptology
Conference, pp. 408–432, LNCS 2139, Springer, 2001.

[KOY01] Jonathan Katz and Rafail Ostrovsky and Moti Yung, Efficient Password-Authenticated
Key Exchange using Human-Memorable Passwords, Advances in Cryptology - EURO-
CRYPT’01, International Conference on the Theory and Application of Cryptographic
Techniques, pp. 475–494, LNCS, Springer, 2001.

[Mi13] Marika Mitrengová, Multi-LHL protocol, Cryptology ePrint Archive, Report 2013/621,
http://eprint.iacr.org/, 2013.

[HR11] Feng Hao and Peter Ryan, Password Authenticated Key Exchange by Jug-
gling,Security’08 Proceedings of the 16th International conference on Security pro-
tocols, pp. 159–171, Springer, 2011.

[Ab11] Michel Abdalla1 and Celine Chevalier and Louis Granboulan and David Pointcheval,
Contributory Password-Authenticated Group Key Exchange with Join Capability,CT-
RSA,pp. 142–160, LNCS, Springer,2011.

470 Multi-LHL protocol



A Advantage of adversary in Case1

In this section we prove the AKE-fs security of the MLHL protocol in Case1, where

the adversary does not make any Corrupt queries. If no Corrupt queries are made, it is

sufficient to prove the AKE security instead of AKE-fs.

Lemma 1. The advantage of the adversary from Case1 is:

Adv
AKE−fs
MLHL,AMLHL,Case1

(tMLHL) ≤ 2

(

(qE + qD)
2

2|G|
+

p(κ) · n · qD
2lk

+ p(κ) · nAdv
AKE
2P (t2P, qexecute, qsend, qreveal)

+
np(κ)2

2lk+1
+ 2p(κ) · n ·Adv

DDH
G,ADDH

(tDDH)

+ 2Adv
MAC−forge
M (tM ) + 4qE/2

l−k

)

.

Proof. We start with the simulation of the real protocol.

Game G0:

This is a game simulating the real protocol. From the definition 7 we have:

AdvAKE
MLHL,AMLHL

(tMLHL) = 2Pr[Succ0]− 1.

Because 2P could represent arbitrary secure 2PAKE protocol, without the loss of general-

ity we assume that the protocol has l flows of messages. By ski =2P(Pi, S) we denote,

that the key ski was computed with simulation of 2P between Pi and S. When a parti-

cipant awaits more than one message, we denote it as a concatenation (see definitions of

Send3 and Send4 oracles). In this game we simulate Send oracles as described bellow (we

skip the description of Execute, Test and Reveal queries, because they are straightforward

from their definition). The simulation of Send queries is divided into l+4 types of queries

(l is number of messages sent during the 2P protocol). Such Send query represents con-

crete type of message, which was sent.

Send11(Π
j
i ,Msg)

simulate first step of the 2P protocol, message Msg of the form

(ID(Pi1)||ID(Pi2)|| . . . ||ID(Pin−1)||ID(S)) is sent to the instance Πj
i in-

forming that the instance Πj
i is going to establish a session key with partici-

pants Pi1 , Pi2 , . . . , Pin−1 ,

return the message, which is the result of simulation of the first step of the

2P protocol.

...

Multi-LHL protocol 471



Sendl
1(ψ

s,Msg)
simulate the last step of the 2P protocol,

return the last message of the 2P protocol computed according to the rules of

2P.

Send12(Π
j
i ,Msg)

Msg is the last message sent by the server ψ to Πj
i in 2P,

ski =2P(Pi, S),

xi
$
←− G,

zi = gxi , z∗i = Eski
(zi)

return (ID(Pi)||z
∗
i )

Send22(ψ
s,Msg)

Msg has the form (ID(Pi)||Msg′)
zi = Dski

(Msg),
z∗∗i−1 = Eski−1(zi),
z∗∗i+1 = Eski+1

(zi)
return (ID(S)||ID(Pi)||z

∗∗
i−1), (ID(S)||ID(Pi)||z

∗∗
i+1)

Send3(Π
j
i ,Msgi−1||Msgi+1)

Msgi−1 and Msgi+1 have the form (ID(S)||ID(Pi−1)||Msg′i−1) and

(ID(S)||ID(Pi+1)||Msg′i+1)
zi−1 = Dski

(Msgi−1), zi+1 = Dski
(Msgi+1),

Ki−1 = H(zxi

i−1), Ki = H(zxi

i+1),
wi = Ki−1 ⊕Ki, τi = MacKi

(ID(Pi)||wi)
return (ID(Pi)||wi||τi)

Send4(Π
j
i ,Msg0|| . . . ||Msgi−1||Msgi+1|| . . . ||Msgn)

Msgj has the form (ID(Pj)||wj ||τj),
j 2 {0, . . . , i− 1, i+ 1, . . . , n},

if VrfKi−1
(ID(Pi−1)||wi−1, τi−1) = 1

then Ki−2 = wi−1 ⊕Ki−1, . . .

if VrfKi+1(ID(Pi+1)||wi+1τi+1) = 1
then Ki = wi+1 ⊕Ki+1,

sk = H′(H(K1)‖...‖H(Kn)),
return ”accept”

else if any of MAC verifications fails, return ”terminated”

Game G′
0:

In this game we simulate encryption and decryption oracles. We work with a list ΛE of

tuples (type, sidji , i, α, sk, z, z
∗), where we store previous answers of encryption/decryp-

tion queries. Type takes values enc/dec, sidji is a session ID of the instance Πj
i , α is

value used in other games, sk is encryption/decryption key and z∗ = Esk(z). Moreover,

we use a list Λ2P of tuples (sid, i, sk) where we store previously established session keys

ski in the 2P protocol in session sid for the participant Pi. We simulate encryption and

decryption as follows:

472 Multi-LHL protocol



• Esk(z) – if (·, ·, ·, ·, sk, z, z∗) 2 ΛE , we return z∗ otherwise we choose z∗
$
←− G,

if (·, ·, ·, ·, sk, ·, z∗) 2 ΛE , we stop the simulation and the adversary wins (because

such situation represents a collision). Otherwise we add a record (enc,⊥,⊥,⊥
, sk, z, z∗) to ΛE and return z∗.

• Dsk(z
∗) – if (·, ·, ·, ·, sk, z, z∗) 2 ΛE , we return z otherwise

– if (sidji , i, sk) 2 Λ2P, we choose z
$
←− G∗, if (·, ·, ·, ·, sk, z, ·) 2 ΛE , we stop

the simulation and the adversary wins. Otherwise we return z and add a record

(dec, sidji , i,⊥, sk, z, z∗) to ΛE .

– if (sidji , i, sk) /2 Λ2P, we choose z
$
←− G∗, if (·, ·, ·, ·, sk, z, ·) 2 ΛE , we stop

the simulation and the adversary wins. Otherwise we return z and add a record

(dec,⊥,⊥,⊥, sk, z, z∗) to ΛE

This game is the same as the previous unless:

• Collision occurs in the simulation of encryption/decryption. This event happens

with probability ≈ (qE+qD)2

2|G| , where qE is a number of encryptions and qD is a

number of decryptions.

• Value sk had been first used by the decryption oracle D and then returned as a

result of the 2P protocol in the first step of the protocol MLHL. This event occurs

with probability
p(κ)·n·qD

2lk
, where p(·) is a polynomial and qD denotes number of

decryptions (p(κ) · n is number of 2P’s executions).

Hence,

|Pr[Succ′0]− Pr[Succ0]| ≤
(qE + qD)

2

2|G|
+

p(κ) · n · qD
2lk

.

Next, we simulate gradual replacement of values ski by random keys in the games Gi
1.

We alter the simulation of Execute and Send1
2 queries as follows: session key ski estab-

lished during the 2P protocol between the participant Pi and server S is replaced by a

random string sk′i, while we keep these randomly chosen values in a list Λ2P in the format

(sidji , i, sk
′
i). The randomly chosen values sk′i should not repeat for any participant and

any session, if some sk′i is repeated, we stop the simulation and we let the adversary win

(this happens with probability
p(κ)2

2lk+1 , where p(κ) specifies number of simulations of the

MLHL protocol.

Game G1
1:

In this game the session key established during the 2P protocol between participant P1 and

server S is replaced by a random string sk′1. We store values (sidj1, 1, sk
′
1) in the list Λ2P.

We show that

|Pr[Succ11]− Pr[Succ′0]| ≤ p(κ)Adv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal) +
p(κ)2

2lk+1
,

where qsend, qexecute, qreveal is number of Send, Execute, Reveal queries of 2P on his o-

racles and p(·) is polynomial.

Multi-LHL protocol 473



To show this inequality we use a hybrid argument: we assume that there is a polyno-

mial time distinguisher AD that can distinguish games G′
0 and G1

1 with probability ε =

|Pr[A
G′

0

D → 1]− Pr[A
G1

1

D → 1]|. We show that if ε is not negligible, we can construct an

adversary A2P against the AKE security of the 2P protocol, which probability of success

is not negligible. We define sequence distributions Hi
1, i = 0 . . . p(κ). In the distribution

Hi
1 the first i session keys established during the 2P protocol between participant P1 and

server S are replaced by a random string sk′1. Clearly the distribution H0
1 is equal to the

game G′
0 and H

p(κ)
1 to G1

1.

Adversary A2P

1. A2P selects an index j at random from {1 . . . p(κ)− 1} and a bit b
$
←− {0, 1}. Then

A2P runs distinguisher AD and responds to his oracle queries (described later). We

assume that A2P is able to identify, which queries asked by AD belong to the 2P

protocol (Send11, . . . , Sendl1) and which belong to the rest of the protocol MLHL

(Send12, . . . , Send4). A2P will simulate oracle queries of AD as follows:

• Send(Πl
1,Msg) in 2P, l < j: A2P replies with the response of his Send(Πl

1,Msg)
oracle. If this query leads to establishment of a session key in 2P, then A2P

selects a random key sk′1 and uses it as a session key sk1 between P1 and S in

the session sidl1.

• Send(Πj
1,Msg) in 2P: A2P replies with the response of his

Send(Πj
1,Msg) oracle. If this query leads to establishment of a session key

in 2P, then A2P asks Test(Πj
1) query and a result is used as a session key sk1

between P1 and S in the MLHL protocol with the session identifier sidj1.

• Send(Πl
i,Msg) in 2P, i v= 1 ∧ l 2 {1, · · · p(κ)} or i = 1 ∧ l > j: A2P

replies with the response of his Send(Πj
i ,Msg) oracle. If this query leads to

establishment of a session key in 2P, then A2P asks Reveal(Πl
i) query and the

returned result is used as a session key ski between Pi and S in the session

sidji .

• Send(Ψs,Msg) in 2P: similar as Send(Πj
i ,Msg)

• Send(Πj
i ,Msg) query outside 2P: A2P answers with the result of simulation

of sending the message Msg in MLHL, while he follows rules and steps of

MLHL as in the previous game. During the simulation he uses keys ski, i 2
{1, 2, ..., n} (which were obtained as a response of his Reveal or Test oracle or

by a random choice).

• Send(Ψs,Msg) query outside 2P: similar to Send(Πj
i ,Msg) outside 2P.

• Execute(P1, P2, . . . , Pn, S): similar to combination of the Send queries.

• Reveal(Πj
i ): A2P answers under the rules of Reveal query in the security

model (he returns a real session key sk, if Πj
i has the key established during

the simulation)

• Test(Πj
i ): if a randomly chosen bit b = 0, A2P returns the real session key

sk (computed during the simulation of Send or Execute queries), otherwise he

returns a randomly chosen key sk′.

474 Multi-LHL protocol



2. A2P returns b ← D

We analyze the behaviour of A2P now. Fix polynomial p(·) and A2P chooses j = J , where

J is a random value uniformly chosen from {1, . . . , p(κ)}. If A2P gets a real session key

during GameAKE2P,A2P
, established during the protocol 2P between participants P1 and

S, then the view of the distinguisher AD is as in the distribution HJ−1
1 . That is,

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1|j = J ] = Pr
view←H

J−1
1

[AD(view) = 1].

Since the value of j is chosen uniformly at random, we have

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1] =
1

p(κ)

p(κ)
∑

J=1

Pr
sk1←2P(P1,S)

[A2P(sk1) = 1|j = J ]

=
1

p(κ)

p(κ)
∑

J=1

Pr
view←H

J−1
1

[AD(view) = 1].

If A2P chooses j = J and during GameAKE2P,A2P it receives a randomly chosen value

instead of the session key as a response of its Test oracle, then the view of the distinguisher

AD is as in the distribution HJ
1 . That is,

Pr
sk′

1←{0,1}lk

[A2P(sk
′
1) = 1|j = J ] = Pr

view←HJ
1

[AD(view) = 1].

Then, we have

Pr
sk′

1←{0,1}lk

[A2P(sk
′
1) = 1] =

1

p(κ)

p(κ)
∑

J=1

Pr
sk′

1←{0,1}lk

[A2P(sk
′
1) = 1|j = J ]

=
1

p(κ)

p(κ)
∑

J=1

Pr
view←HJ

1

[AD(view) = 1].

In the end we have
∣

∣

∣
Pr

sk′
1←{0,1}lk

[A2P(sk
′
1) = 1]− Pr

sk1←2P(P1,S)
[A2P(sk1) = 1]

∣

∣

∣

=
1

p(κ)

∣

∣

∣

p(κ)
∑

J=1

Pr
view←HJ

1

[AD(view) = 1]−

p(κ)−1
∑

J=0

Pr
view←HJ

1

[AD(view) = 1]
∣

∣

∣

=
1

p(κ)

∣

∣

∣
Pr

view←H
p(κ)
1

[AD(view) = 1]− Pr
view←H0

1

[AD(view) = 1]
∣

∣

∣
=

ε

p(κ)
.

Since 2P is AKE secure protocol and A2P runs in polynomial time and p(·) is a polyno-

mial, the value ε must be negligible.

|Pr[Succ11]− Pr[Succ′0]| = | Pr
view←H

p(κ)
1

[AD(view) = 1]− Pr
view←H0

1

[AD(view) = 1]|

≤ p(κ)Adv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal) +
p(κ)2

2lk+1
.

Multi-LHL protocol 475



Games G2
1, . . . , G

n
1 are defined similarly. The similar reasoning of existence of a distin-

guisher between games Gi
1 and Gi+1

1 works. When we sum all inequalities on the left side

and on the right side,

|Pr[Succn1 ]−Pr[Succ′0]| ≤ n · p(κ)Adv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal) +
np(κ)2

2lk+1
.

In this part we simulate gradual replacement of values Ki by random values in the games

Gi
2, i = 1 . . . n. We alter the simulation of Execute queries as follows: a Diffie-Hellman

value Ki established during the MLHL protocol between participants Pi and Pi+1 is re-

placed by a random value K ′
i from G.

Game G1
2: We simulate everything like in the previous game in this game, however the

value K1 is replaced by a random value during Execute queries. We show that

|Pr[Succ12]− Pr[Succn1 ]| ≤ p(κ)Adv
DDH
G,ADDH

(tDDH).

To prove this inequality, suppose that there exist a distinguisher AD which can distinguish

these two games. We can use this distinguisher to construct an adversary ADDH, which can

solve DDH problem, with use of similar hybrid argument as in previous games: we define

a distribution Hi
2, i 2 {0, 1, . . . p(k)}. In the distribution Hi

2 the values K1 for instances

Πj
1, j ≤ i are chosen randomly and the values K1 for instances Πj

1, j > i are computed as

in the previous game. We assume that distinguisher AD constructs p(κ) sessions for some

polynomial p(·) during simulation.

Adversary ADDH(u, v, w)

1. ADDH chooses a random bit b and an index j.

2. ADDH answers oracle queries of the distinguisher AD as follows:

• Send, Reveal and Test queries are answered as in the previous game, Test

queries are answered with the use of the bit b (note, that the adversary knows

established session keys, because he simulated the execution).

• Execute(P1, . . . , Pn) queries are simulated in the following way:

If instance of P1 has form Πl
1, where l = j then simulation of Execute query

for instances of participants P3, . . . , Pn in the same session does not change.

The protocol 2P between P1, P2 and S is simulated as in the previous game,

after this simulation ADDH knows values sk1, sk2 – he has chosen them ran-

domly. Then he simulates that P1 sends a message (ID(P1)||Esk1(u)) and

P2 sends a message (ID(P2)||Esk2(v)) then K1 is set to w, K2 = vx3 ,

Kn = uxn . Next he continues with the simulation of the rest of MLHL. Other

Execute queries, where l v= j are simulated as follows:

– If instance of P1 has form Πl
1, where l < j then ADDH starts to simulate

2P between participants P1, . . . , Pn and S as in the previous game. After

simulation of the 2P protocol he chooses randomly keys sk′i, i = 1 . . . n
and simulates the rest of the MLHL as in the previous game however, a

computed value K1 in each session is replaced by a random value.

476 Multi-LHL protocol



– If instance of P1 has form Πl
1, where l > j then ADDH starts to simulate

2P between participants P1, . . . , Pn and S as in the previous game. After

simulation of the 2P protocol he continues with simulation of the rest of

the MLHL as in the previous game.

3. ADDH returns a b ← AD

If (u, v, w) from adversary’s input is a DDH triple and the index j = 0, the view of the

distinguisher AD is the same as in the game Gn
1 (H0

2 ). If (u, v, w) is not a DDH triple

and the index j = p(k), the view of AD is the same as in the game G1
2 (H

p(k)
2 ). Thus

the advantage of ADDH is at least as great as 1
p(κ) of the advantage of AD (we skip the

detailed reasoning).

|Pr[Succ12]− Pr[Succn1 ]| = p(κ)Adv
DDH
G,ADDH

(tDDH)

The games G2
2, . . . , G

n
2 are defined similarly. When we sum inequalities, we have

|Pr[Succn2 ]− Pr[Succn1 ]| = n · p(κ) ·Adv
DDH
G,ADDH

(tDDH).

Game G3:

In this game the session key of MLHL is replaced by a random value during Execute

queries. We have

Pr[Succ3] = Pr[Succn2 ].

This claim follows from the view of an adversary in this two games. In the game Gn
2

the values Ki are chosen at random, therefore they are independent from previously sent

messages (They are not sent directly, but as xor-ed values wi, which can originate from

combination of 2|wi| different pairs of values). This implies that the computed wi (which

adversary can see) are independent from previously sent messages. From all of this facts

follows, that the computed session key is independent from all sent values and therefore

there is no difference between these games.

Game G4:

In this game we change simulation of the first subcase of the decryption oracle (defined

in the game G′
0) in Send queries: we build an instance of PDDH problem in simu-

lation of the protocol. We set β = 0, thus the challenger Challβ(·) returns vectors

(ζ1, ..., ζn, γ1, ..., γn) from the distribution PDH∗
n. New vectors are returned in every

session, however the same vectors are returned in queries on the same session. For ran-

domly chosen (α1, ..., αn), αi
$
←− Z∗

q , vectors (ζα1
1 , ..., ζαn

n , γα1α2
1 , ..., γαnα1

n ) have equal

distribution to the original (ζ1, ..., ζn, γ1, ..., γn). We use this property for application of

random self-reducibility of the PDDH problem. The decryption is changed as follows:

• Dski
(z∗) – if (sidji , i, ski) 2 Λ2P, (ζ1, ..., ζn, γ1, ..., γn) ← Challβ(sk1, ..., skn)

(the arguments of Challβ can be found in the Λ2P list sharing the same value

of the session ID), we choose αi
$
←− Z∗

q randomly and compute zi = ζαi

i . If

(·, ·, ·, ·, ski, zi, ·) 2 ΛE , then we stop the simulation, adversary wins. Otherwise

we add record (dec, sidji , i, αi, ski, zi, z
∗) to ΛE and return zi.

Multi-LHL protocol 477



Exponent αi specifies, how we applied random self-reducibility of PDDH problem on

instance generated by the challenger. Exponent αi can be defined in the list ΛE only if

values sidji and i are known. The view of the adversary does not change and therefore we

have

Pr[Succ4] = Pr[Succ3].

Game G5:

We change the simulation of Send1
2, Send2

2 and Send3 queries. First, encryption of mes-

sages in the second step of the protocol is changed during simulation of Send1
2. The in-

stance Πj
i chooses z∗i

$
←− G randomly and computes zi = Dski

(z∗i ) as in the previous

game. Then Πj
i sends a message (ID(Pi)||z

∗
i ). Therefore Send1

2 queries in the second

step of the MLHL lead to adding of αi to the list ΛE . Simulation ends if

• (enc,⊥,⊥,⊥, ski, ·, z
∗
i ) 2 ΛE , because we do not know the value of αi. This

possibility occurs if the adversary asks for encryption of some value with the key ski
and the result of encryption was z∗i (it means that (enc,⊥,⊥,⊥, ski, ·, z

∗
i ) 2 ΛE ).

The probability of this event is qE/2
lk . In this case we stop the simulation, the

adversary wins.

• (dec,⊥,⊥,⊥, ski, zi, z
∗
i ) 2 ΛE . This possibility occurs if we decrypt the value z∗i ,

while the values i, sidji belonging to ski were not known. However this situation

can not occur (see the Game G′
0, point 3).

When the server accepts the message (ID(Pi)||z
∗
i ) during simulation of Send2

2, he should

resend it to participants Pi−1 and Pi+1, thus he must decrypt z∗i . The following cases can

occur:

• z∗i was encrypted in the aforementioned manner, thus we know the value αi. We

can continue with the simulation of encryption described bellow.

• z∗i is response of the encryption oracle Eski
, while ski is a correct key of Πj

i in the

corresponding session (thus adversary guessed the ski and used it for encryption of

data for server). In this case we stop the simulation, adversary wins. This event

occurs with probability qE/2
lk .

• z∗i was chosen by the adversary without asking the encryption oracle. In this si-

tuation the adversary does not know the password and therefore he could not com-

pute messages in the way they go through the control step. The simulation continues

as follows: we compute z′i = Dski
(z∗i ), then we compute z∗∗i = Eski+1(z

′
i) and send

to the user Pi+1 a message (ID(S)||ID(Pi)||z
∗∗
i ). Similar for Pi−1. Next we con-

tinue in simulation as in previous games, however, the adversary does not know any

of values Ki, therefore he could not manipulate other messages in the way they go

through the verification step of the MAC scheme, unless he breaks it with probability

Adv
MAC−forge
M,AM

(t′), which is negligible.

Encryption of zi = Dski
(in the first case) with another passwords (ski−1 and ski+1) (in

second step) works as follows:

478 Multi-LHL protocol



• Eski+1
(zi)

– if (·, ·, ·, ·, ski+1, zi, ·) /2 ΛE and (dec, sidji , i, αi, ski, zi, ·) 2 ΛE (this record

was added in the simulation described above by the instance Πj
i ), then we

choose z∗∗
$
←− G, if (·, ·, ·, ·, ski+1, ·, z

∗∗) /2 ΛE , we return z∗∗ and add record

(enc, sidji , i,⊥, ski+1, z, z
∗∗) into ΛE , else we stop the simulation and the

adversary wins.

– if (enc,⊥,⊥,⊥, ski+1, zi, ·) 2 ΛE , we stop the simulation and the adversary

wins. This case occurs if the adversary asked for encryption of value zi with

key ski+1. The probability of this event is qE/2
lk .

– if (enc, sidji , i + 2,⊥, ski+1, zi, z
∗) 2 ΛE , we return z∗. This case occurs if

during the simulation of execution of the protocol a request for resending the

value zi to the instance Πj
i+1 (sent with the instance Πj

i+2) happens, while the

value was encrypted with the key ski+1.

– if (dec, sidji , i + 1, αi+1, ski+1, zi, z
∗) 2 ΛE , we return z∗. This case can

occur by simulation of Send queries of the instance Πj
i+1 in the second round.

• Eski−1(zi) – similar to the previous case.

The simulation of Send3, when Πj
i receives a messages (ID(S)||ID(Pi−1)||z

∗
i−1) and

(ID(S)||ID(Pi+1)||z
∗
i+1) works as follows: compute zi−1 = Dski

(z∗i−1) and zi+1 =
Dski

(z∗i+1). This three cases can occur:

• z∗i−1 and z∗i+1 were encrypted in the previous manner. We can continue with the

simulation as described bellow.

• one or both z∗i−1 and z∗i+1 is/are the answer from query on the encryption oracle

Eski
, while ski is correct key of the instance Πj

i in the session j (thus adversary

guessed a password and used its for encryption of data from server). This event

occurs with probability qE/2
lk . In this case we stop the simulation, adversary wins.

• one or both z∗i−1 and z∗i+1 was/were chosen by the adversary without asking for the

Encryption oracle, in this situation the adversary does not know the password and

therefore he could not compute messages in the way they go through the verification

step of the MAC scheme, unless he breaks it with probability Adv
MAC−forge
M,AM

(tM ),
which is negligible.

If messages were sent as we simulate them, we have zi = ζαi

i , zi−1 = ζ
αi−1

i−1 , zi+1 = ζ
αi+1

i+1

and we can compute

Ki−1 = H(CDH(zi−1, zi)),Ki = H(CDH(zi, zi+1))

wi = Ki−1 ⊕Ki, τi = MacKi
(wi)

and resend a message (ID(Pi), wi, τi). When every participant broadcasts such message,

the session key can be computed.

Multi-LHL protocol 479



This game is the same as the previous unless mentioned ”bad” events happen.

|Pr[Succ5]− Pr[Succ4]| ≤ 4qE/2
lk + 2Adv

MAC−forge
M,AM

(tM )

Game G6:

In this game we change the bit β to 1, thus the values (ζ1, ..., ζn, γ1, ..., γn) are from

distribution PDH$
n. Clearly holds that

|Pr[Succ6]− Pr[Succ5]| ≤ p(κ) ·Adv
PDDHn

G,APDDH
(tDDH),

where p(κ) is the number of sessions, p is a polynomial.

Game G7:

The session key of MLHL is replaced by a random value during Send queries in this game.

We have

Pr[Succ7] = Pr[Succ6].

This claim follows the view of the adversary in this two games. In the game G6 values Ki

are chosen randomly, therefore they are independent from previous sent messages (They

are not sent directly, but as xor-ed values wi, which can originate from combination of 2|wi|

different pairs of values). This implies that the computed wi (which adversary sees) are

independent from previous sent messages. From all of this facts follows, that the computed

session key is independent from all sent values and therefore there is no difference between

these games.

The probability of the adversary’s success in this game is Pr[Succ7] =
1
2 , because the

session key is randomly chosen and independent from the previous messages. When we

sum all (in)equalities of games, we have:

|Pr[Succ7]− Pr[Succ0]| ≤
(qE + qD)

2

2|G|
+

p(κ) · n · qD
2lk

+ 2Adv
MAC−forge
M,AM

(tM )

+ p(κ) · nAdv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal)

+
np(κ)2

2lk+1
+ p(κ) · n ·Adv

DDH
G,ADDH

(tDDH) + 4qE/2
l−k

+ p(κ) ·Adv
PDDHn

G,APDDH
(tDDH)

AdvAKE
MLHL,AMLHL

(A) ≤ 2

(

(qE + qD)
2

2|G|
+

p(κ) · n · qD
2lk

+ 2Adv
MAC−forge
M,AM

(tM )

+ p(κ) · nAdv
AKE
2P,A2P

(t2P, qexecute, qsend, qreveal)

+
np(κ)2

2lk+1
+ 2p(κ) · n ·Adv

DDH
G,ADDH

(tDDH) + 4qE/2
l−k

)

.

480 Multi-LHL protocol


