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Abstract: A fundamental question of security analysis is: When is a behavior normal, and when is
it not? We present techniques that extract behavior patterns from thousands of apps—patters that
represent normal behavior, such as “A travel app normally does not access stored text messages”.
Combining data flow analysis with app descriptions and GUI data from both apps and their stores
allows for massive machine learning, which then also allows to detect yet unknown malware by
classifying it as abnormal.

Extended Abstract

Most existing malware detectors work retrospectively, checking an unknown app against
features and patterns known to be malicious. Such patterns can either be given explicitly
(“Text messages must only be sent after the user has declared her consent”), or induced
implicitly from samples of known malware (“This app contains code known to be part of
the TDSS trojan.”). If a novel app is sufficiently different from known malware, though,
this retrospective detection can fail.

In our work, we thus conversely investigate the idea that, given access to a sufficiently
large set of “benign” apps, one might be able to detect novel malware not by its similarity
with respect to existing malware, but rather through its dissimilarity with respect to those
benign applications. As a measure for establishing similarity or dissimilarity with respect
to the norm, we explore the usage of sensitive data in an app.

In our CHABADA [Go14] work, we check implemented app behavior against advertised
app behavior. As a proxy for the advertised behavior of an app, we use its natural language
description from the Google Play Store. Asa proxy for its implemented behavior, we use
the set of Android application programming interfaces (APIs) that are used from within
the app binary. The key idea is to associate descriptions and API usage to detect anoma-
lies: “This ‘weather’ application accesses the messaging API, which is unusual for this
category” (See Fig. 1). Applied on a set of 22,500+ Android applications, our CHABADA
prototype identified several anomalies; additionally, it flagged 56% of novel malware as
such, without requiring any known malware patterns.
1 Saarland University, Saarbrücken, Germany, avdiienko@cs.uni-saarland.de
2 Saarland University, Saarbrücken, Germany, kuzntesov@cs.uni-saarland.de
3 IMDEA Software Institute, Madrid, Spain, alessandra.gorla@imdea.org
4 Saarland University, Saarbrücken, Germany, zeller@cs.uni-saarland.de
5 TU Darmstadt, Darmstadt, Germany, steven.arzt@cased.de
6 TU Darmstadt, Darmstadt, Germany, siegfried.rasthofer@cased.de
7 Paderborn University, Padeborn, Germany, eric.bodden@uni-paderborn.de

Jan Jürjens, Kurt Schneider (Hrsg.): Software Engineering 2017,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 113



1. App collection 2. Topics

"Weather",
"Map"…

"Travel",
"Map"…

"Theme"

3. Clusters

Weather
+ Travel

Themes

Access-LocationInternet Access-LocationInternet Send-SMS

4. APIs 5. Outliers

Abb. 1: How CHABADA detects apps with unadvertised behavior. Starting from a collection of
“good” apps (1), we identify their description topics (2) to form clusters of related apps (3). For each
cluster, we identify APIs used (4), and then identify outliers with unusual APIs for that cluster (5).

In our MUDFLOW work [Av15], we apply static taint analysis on the Android apps from
the Google Play Store to determine, for every sensitive data source, the sensitive APIs to
which this data flows. By applying MUDFLOW on the 2,866 most popular apps collected
from the Google Play Store, we can extract typical usage of sensitive sources across these
apps. In our experiment on a set of 10,552 malicious apps leaking sensitive data, MUD-
FLOW recognized 86.4% of the malware as such, with a false positive rate of 11.7%,
which is remarkable given that MUDFLOW is not trained on malware samples. Companies
like Google and Microsoft now use techniques similar to CHABADA and MUDFLOW to
identify malware.

Our current work focuses on anomalies in user interfaces—Does this button do what it
claims to do? Is this user interface consistent and complete? Again, we can apply machine
learning on thousands of instances to learn what is normal—and what is abnormal. We
see a great future in app mining, and we call for experts in program analysis, machine
learning, natural language analysis, and human-computer interaction to join their forces to
exploit these new data sources and opportunities.
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