
Translating XBRL Into Description Logic.

An Approach Using Protégé, Sesame & OWL

Thierry Declerck and Hans-Ulrich Krieger

German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

{declerck,krieger}@dfki.de

Abstract. In the context of the eTen project, WINS, a web-based busi-
ness intelligence service to public and private financial institutions has
been designed and implemented. One of the goals of the project was to
provide new financial knowledge on companies from information gath-
ered through interoperable information services. The services were im-
plemented under the new emerging standard XBRL used for financial
reporting. We sketch how relevant financial information was extracted
from annual financial reportings. We also show at the same time the
limitations we encountererd with the XBRL schema, due to the lack of
reasoning support over XML-based data and information extracted from
documents. To overcome these difficulties, we describe the “ontologiza-
tion” of XBRL, which we assume to be a necessary requisite for large
intelligent web-based financial information and decision support systems.

1 General Background

In the context of the eTen project, WINS, a web-based business intelligence
service to public and private financial institutions has been designed and imple-
mented.1 One of the goals of the project was to provide new financial knowledge
on companies from information gathered through interoperable information ser-
vices [1]. The services were implemented under the new emerging standard called
XBRL (eXtensible Business Reporting Language) used for financial reporting.
In the following, we sketch how relevant financial information was extracted
from annual financial reportings. We also show at the same time the limita-
tions we encountererd with the XBRL schema, due to the lack of reasoning
support over XML-based data and information extracted from documents that
is finally mapped onto XBRL instances. In the first part of our submission, we
just summarize our way of information extraction guided by XBRL, and after-
wards describing our work dedicated to the ontologization of XBRL, which we
assume to be a necessary requisite for large intelligent web-based financial infor-
mation and decision support systems.2 The work described here will be further
carried out within an Integrated Project of the 6th Framework, called MUSING
(MUlti-Industry, Semantic-based next generation business Intelligence).
1 ETEN 2003/1, Grant agreement nr. C51083. WINS stands for Web-based Intelli-

gence for common-interest fiscal Networked Services’.
2 For more information, see XBRL International: http://www.xbrl.org.

2 Incremental Information Extraction Guided by XBRL

The next three subsections present the basic setting, viz., XBRL-guided infor-
mation extraction of structured and unstructured documents.

2.1 Knowledge-Driven Information Extraction from Structured and
Unstructured Documents

The actual input for the information extraction (IE) task in WINS consists of
balance sheets in PDF format, containing structured forms (tables) and free text
(included, for example, in the annexes of balance sheets). Relevant information
extracted from these sources are merged and mapped onto the XBRL format.

A terminological clarification should be given at this place. IE often refers
to the task of filling user- or application-defined templates with the result of
information detected by natural language analysis tools in textual documents.
For certain applications, knowledge bases are available, supporting the IE task.
Such knowledge might consist of taxonomies, thesauri, or ontologies. In this case,
knowledge-driven IE tries to populate knowledge bases with instances detected
in the textual documents. This was the situation in WINS, where the XBRL
taxonomy was guiding the IE task through the analysis of both tabular data
and free text. In the end, an XBRL structure should be instantiated with the
information extracted from the annual reports of companies.

2.2 The Mapping Process from Text to XBRL

The mapping process has been implemented within a Web service made available
to the WINS partners. The Web service operates on PDF/text files from WINS
data providers and returns files, containing the data in XBRL format. In a
first step, text and tables from the PDF documents were extracted. It was also
necessary to apporimatively recontructs the original layout, which is getting lost
in the PDF-to-text conversion.

Once this has been done, the WINS information extraction module inspects
the generated HTML documents, trying to find correspondences in the text of
the tables for labels of concepts contained in the overall XBRL taxonomy. But
not only the detection of realizations of XBRL concepts in the document is
important. The extraction tools must also detect relevant dates in the tables as
well as currencies used, so that the figures contained in the tables , e.g., balance
and profit & loss (P&L) tables, are getting their correct interpretation.

Since the XBRL taxonomy is also considering information about a company
as such (name, address, number of employees, etc), the extraction tools need
to detect this kind of information. In order to obtain such information, we im-
plemented a simple named entity recognition algorithm for detecting names of
companies, locations, and relevant persons.

456 BUSINESS INFORMATION SYSTEMS - BIS 2006

2.3 Incremental Process

Even though the automatic process of mapping structured data into XBRL is
not perfectly accurate, it already brings a significant efficiency improvement
in providing XBRL data for various applications, such as self-assessment-based
company rating.

But more is necessary. Aggregation of information is needed, consisting, for
example, in adding to the XBRL document information that is not included in
the tables. As a first step, annexes present in the annual report of a company
are analyzed and the relevant information for the XBRL document is extracted.
This is the place where linguistic analysis and text mining comes into play, since
the information is no longer available in structured form (positions in a table),
but given as free text.

Let us give an example of incremental processing from an annual report. In
a P&L table, a position is reserved for Umsatzerlöse (trading profit) with a sum
of 159,356 K Euro. The PDF-to-XBRL converter detects this fact and generates
the corresponding XBRL code. But the table contains a reference to a section
in the annex, and here, we find in free text that parts of the Umsatzerlöse has
been reached abroad:

Von den Umsatzerlösen wurden 78.299 Tsd. Euro (Vorjahr 1.653 Tsd.
Euro) im Ausland erzielt.

This is a case, where obviously text analysis is needed if one wants to ex-
tract this information, since a simple pattern wouldn’t suffice for ensuring the
extraction task. The knowledge base (here the XBRL taxonomy), tells us that
Umsatzerlöse in this portion of text is a relevant term. Hence, this information
is extracted and combined with the information gained from the table. Some
more facts are also needed, which can be considered as soft facts; for instance,
changes in the management structure of a company, analysis of trend in a special
branch, information that is present in documents external to the annual report,
etc. This information will be mapped onto XBRL, if there are some terms in the
taxonomy corresponding to this information. Other relevant information needs
to be encoded in a usable way, so that additional relations betwen soft and hard
facts can be stated or inferred. In this case the incremental building of XBRL-
encoded information is not trivial at all, since documents need to be concerned
that have been written during a longer period of time. There is a need here for
a more principled way of performing merging of information, based on temporal
reasoning (see, e.g., [2]). Therefore, we opt for a porting of XBRL to a represen-
tation language that supports the detection of relation, not explicitely defined
in XBRL. The next section describe this ongoing work that we have recently
started.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 457

3 Translating XBRL Taxonomies into OWL

In this section, we report on our effort in translating XBRL taxonomies into an
instance of description logic, viz., OWL, the Web Ontology Language [3]. We
first introduce the basic tools and then move on to the translation process.

3.1 OWL, Protégé, and Sesame

XBRL taxonomies make use of XML Schema [4] in order to describe the struc-
ture of an XBRL document as well as to define new datatypes and properties,
relevant to XBRL. Given such a schema and a validation program, it is then
possible to check whether a concrete (business) document conforms to the syn-
tactic structure, defined in the schema. As we have already indicated above,
we probably need languages and tools that go beyond the expressive syntactic
power of XML Schema.

OWL, the Web Ontology Language is the new emerging language for the
Semantic Web that originates from the DAML+OIL standardisation. OWL still
makes use of constructs from RDF [5] and RDFS [6], such as rdf:resource,
rdfs:subClassOf, or rdfs:domain, but its two important variants OWL Lite
and OWL DL restrict the expressive power of RDFS, thereby ensuring decid-
ability. What makes OWL unique (as compared to RDFS or even XML Schema)
is the fact that it can describe resources in more detail and that it comes
with a well-defined model-theoretical semantics, inherited from description logic
[7]. From description logic, OWL inherits further modelling constructs, such as
intersectionOf, equivalentClass, or cardinality restrictions. The description
logic background furthermore provides automated reasoning support such as
consistency checking of the TBox and the ABox, subsumption checking during
instance retrieval, etc.3

The XBRL OWL base taxonomy was manually developed using the OWL
plugin of the Protégé knowledge base editor [8]. This version of Protégé comes
with a partial OWL Lite support. The latest version of XBRL together with
the Accounting Principles for German (our example, see below) consists of 2,414
concepts, 34 properties, and 4,780 instances. Overall, this translates into 24,395
unique RDF triples.

The basic idea during our effort was that even though we are developing an
XBRL taxonomy in OWL using Protégé, the information that is stored on disk is
still RDF on the syntactic level. We were thus interested in RDF data base sys-
tems which make sense of the semantics of OWL and RDFS constructs such as
3 TBox and ABox are terms, introduced in the early days of description logic (or

terminological logic; [?]). TBox refers to the terminological knowledge—knowledge
about concepts that are relevant to our domain; for example, that sharesItemType is
a subclass (or subconcept) of shares. In that sense, a TBox defines a domain schema.
An ABox, however, represents assertions about individuals (of certain concepts),
for instance, that t genInfo.doc.id is related to t genInfo.doc via the partOf

property. Nowadays, the term ontology usually refers to both the TBox and the
ABox.

458 BUSINESS INFORMATION SYSTEMS - BIS 2006

rdfs:subClassOf or owl:equivalentClass. We currently experimenting with
the Sesame open-source middleware framework for storing and retrieving RDF
data [9]. Sesame partially supports the semantics of RDFS and OWL constructs
via entailment rules that compute “missing” RDF triples (the deductive clo-
sure) in a forward-chaining style at compile time. Since sets of RDF statements
represent RDF graphs, querying information in an RDF framework means to
specify path expressions. Sesame comes with a very powerful query language,
SeRQL, which includes (i) generalised path expressions, (ii) a restricted form of
disjunction through optional matching, (iii) existential quantification over pred-
icates, and (iv) Boolean constraints. From an RDF point of view, additional
62,598 triples were generated through Sesame’s (incomplete) forward chaining
inference mechanism. Let us give an example of a slightly simplified entailment
rule that computes the missing triples with hasPart in predicate position (see
also figure 1):

<rule name="owl-transitiveProp">

<!-- note: ?p, ?x, ?y, and ?z are variables -->

<premise>

<subject var="?p"/>

<predicate uri="&rdf;type"/>

<object uri="&owl;TransitiveProperty"/>

</premise>

<premise>

<subject var="?x"/>

<predicate var="?p"/>

<object var="?y"/>

</premise>

<premise>

<subject var="?y"/>

<predicate var="?p"/>

<object var="?z"/>

</premise>

<consequent>

<subject var="?x"/>

<predicate var="?p"/>

<object var="?z"/>

</consequent>

</rule>

Since we have classified hasPart (as well as partOf) as a transitive OWL
property, the above rule will fire, making implicit knowledge explicit and pro-
duces new triples such as

<t_bs, hasPart, t_bs.ass.defTax>

although only

<t_bs, hasPart, t_bs.ass>

<t_bs.ass, hasPart, t_bs.ass.defTax>

can be found in the original specification.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 459

3.2 Translating the Base Taxonomy

For proof of concept, we looked at the freely available financial reporting tax-
onomies (http://www.xbrl.org/FRTaxonomies/) and took the final German
AP Commercial and Industrial (German Accounting Principles) taxonomy (Feb-
ruary 15, 2002; http://www.xbrl-deutschland.de/xe news2.htm), acknowl-
edged by XBRL International. The taxonomy can be optained as a packed zip
file from http://www.xbrl-deutschland.de/german ap.zip.

xbrl-instance.xsd specifies the XBRL base taxonomy using XML Schema.
The file makes use of XML schema datatypes , such as xsd:string or xsd:date,
but also defines simple types (simpleType), complex types (complexType), ele-
ments (element), and attributes (attribute). Element and attribute declara-
tions are used to restrict the usage of elements and attributes in XBRL XML
documents. Since OWL only knows the distinction between classes and proper-
ties, the correpondences between XBRL and OWL description primitives is not
a one-to-one mapping:

XBRL OWL
simple type class

complex type class
attribute property
element property

However, OWL allows to characterize properties more precisely than just
having only a domain and a range. We can mark a property as functional (in-
stead of being relational, the default case), meaning that it takes at most one
value. This clearly means that a property must not have a value for each in-
stance of a class on which it is defined. Thus a functional property is in fact a
partial (and must not necessarily be a total) function. Exactly the distinction
functional vs. relational is represented by the attribute vs. element distinction,
since multiple elements are allowed within a surrounding context. However, at
most one attribute-value combination for each attribute name is allowed within
an element:

XBRL OWL
simple type class

complex type class
attribute functional property
element relational property

Simple and complex types differs from one another in that simple types are
essentially defined as extensions of the basic XML Schema datatypes, whereas
complex types are XBRL specifications that do not build upon XSD types,
but instead introduce their own element and attribute descriptions. Here are
simple type specifications found in the base terminology of XBRL, located in
file xbrl-instance.xsd:

460 BUSINESS INFORMATION SYSTEMS - BIS 2006

<attribute name="balance">

<simpleType>

<restriction base="string">

(1) <enumeration value="debit"/>

<enumeration value="credit"/>

</restriction>

</simpleType>

</attribute>

<simpleType name="monetary">

(2) <restriction base="decimal"/>

</simpleType>

<simpleType name="dateUnion">

(3) <union memberTypes="date dateTime"/>

</simpleType>

<simpleType name="operatorNameEnum">

<restriction base="string">

(4) <enumeration value="multiply"/>

<enumeration value="divide"/>

</restriction>

</simpleType>

Let us have a closer look on the above five descriptions. First of all, let us
compare (1) and (4). (4) specifies a type that is an extension of the base XSD type
string in that it enumerate the only two possible extensions, viz., the strings
multiply and divide. This definition is given a name, viz., operatorNameEnum.
Contrary to this named “top-level” definion, (1) specifies a similar string enu-
meration type that is, however, unnamed (name= is missing). This unnamed def-
inition is part of the range specification for attribute (OWL: property) balance.
(2) defines a named extension of the XSD base type decimal. Finally, (3) defines
dateUnion to be the union of the two XSD types date and dateTime.

At this point, let us have a few remarks on the representation of the XSD
base types in our implementation. Since OWL only claims that

As a minimum, tools [using OWL] must support datatype reasoning for
the XML Schema datatypes xsd:string and xsd:integer. [3, p. 30]

and because

It is not illegal, although not recommended, for applications to define
their own datatypes ... [3, p. 29]

we have decided to implement a workaround that represents all the necessary
XML Schema datatypes used in XBRL. This was done by having a wrapper
type for each simple XML Schema type. For instance, monetray (2) is a simple
subtype of the wrapper type decimal: <restriction base="decimal"/>.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 461

Now comes the definition of dateUnion (3). OWL DL’s unionOf construct
exactly models the intended meaning: dateUnion ≡ date � dateTime. Since
dateUnion is also a subtype of Xbrli (the most general complex type), we
further have dateUnion
 Xbrli. Since dateUnion is exactly the union of date
and dateTime, OWL will further infer that dateUnion
 anySimpleType, since
we know that date
 anySimpleType and dateTime
 anySimpleType is the
case.

Finally, let us report on the final definition (4) of operatorNameEnum. OWL
DL provides oneOf that supports user-defined enumerated datatypes, types
which are solely defined through their finite number of instances (contrary to the
potential infinite datatypes, e.g., decimal). Thus we have operatorNameEnum≡
{multiply, divide}, but also at the same time operatorNameEnum
 string
and operatorNameEnum
 Xbrli.

Example (1) is somewhat different from (2)–(4) in that it uses an unnamed
type that is further used inside an attribute description. This property balance
is silent about its domain and, in principle, might be applied to each instance, so
we can assume owl:Thing here. But balance is very concrete about its range: the
enumeration of debit and credit: balance
 �owl : Thing, {debit, credit}�,
together with the restriction that balance is a functional property (since it
is defined as an XML Schema attribute): balance = 0 � balance = 1. The
informal OWL description used so far makes a loose reference to the Protégé
OWL syntax.

The translation of complex types is more intricate. Take, for instance, the
specification of monetaryItemType that extends monetary:

<complexType name="monetaryItemType">

<simpleContent>

<extension base="xbrli:monetary">

(5) <attribute name="numericContext" type="IDREF" use="required"/>

</extension>

</simpleContent>

</complexType>

This type, as well as sharesItemType and decimalItemType, refer through
its attribute numericContext via IDREF to an element numericContext:

<element name="numericContext">

<complexType>

<sequence>

<element name="entity" type="xbrli:entityType"/>

<element name="period" type="xbrli:periodType"/>

<element name="unit" type="xbrli:unitType"/>

(6) <element ref="xbrli:scenario" minOccurs="0"/>

</sequence>

<attribute name="id" type="ID" use="required"/>

<attribute name="precision" type="string" use="required"/>

<attribute name="cwa" type="boolean" use="required"/>

</complexType>

</element>

462 BUSINESS INFORMATION SYSTEMS - BIS 2006

Since numericContext is solely defined on the above three types, its domain
becomes the union of those types:

monetaryItemType � sharesItemType � decimalItemType

The use of IDREF in the above three complex type definitions is simply re-
stated by saying that numericContext is defined on those types. The addi-
tional constraint use="required" is represented by adding a local class restric-
tion, saying that the cardinality of numericContext is 1 for the three types
monetaryItemType, sharesItemType, and decimalItemType. Recall, that since
numericContext is used as an attribute in the three item types, a cardinal-
ity of 0 is in principle possible. Note, that this cardinality restriction does not
hold for numericContext in general—it is still an element and thus modelled
in OWL as a relational property. Again, we have an element numericContext
that has a top-level definition, saying that it maps onto objects of an unnamed
type, consisting of properties, such as entity or cwa. Since OWL does not di-
rectly comes up with a sequence4 construct, we have simplified the definition of
numericContext in that we put the above four sequence elements on par with
the other three. This is reasonable since elements have a name and no name
conflict is possible at this point.

It should now be clear how the range of numericContext looks like. Given
Protégé’s OWL syntax and using OWL’s allValuesFrom (∀), someValuesFrom
(∃), and cardinality restrictions, we have

(∀ entity entityType) �
(∀ period periodType) �
(∀ unit unitType) �
(scenario ≥ 0) �
(∃ precision string) �
(precision = 1) �
(∃ cwa boolean) �
(boolean = 1)

Note that the attribute id of type ID is not remodelled here, since referencing
numericContext in the above three complex types (IDREF!) is done by simply
using the name of this attribute.

Let us finally come to another “problematic” XML Schema construct that
does not has a direct counterpart in OWL: choice, a kind of XOR. Consider,
for instance, the element definition of operator:

<element name="operator">

<complexType>

<choice minOccurs="2" maxOccurs="2">

<element ref="measure"/>

4 Of course, we could have used a FIRST-REST list encoding, but such a construction
would make the definition more complex than is really needed.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 463

(7) <element ref="operator"/>

</choice>

<attribute name="name" type="operatorNameEnum" use="required"/>

</complexType>

</element>

This recursive operator expression defines a special kind of balanced binary
trees and can clearly be modelled using AND (�), OR (�), and cardinality re-
strictions (or negation, in the general case), and in fact, we have defined the range
of operator as follows (name itself is already defined as a functional property):

(∃ name operatorNameEnum) �
(((measure = 2) � (operator = 0)) � ((measure = 0) � (operator = 2)))

However, there exist examples with more than two elements involved in a
choice:

<complexType name="periodType">

<choice>

<sequence minOccurs="0">

<element ref="xbrli:startDate"/>

<choice>

<element ref="xbrli:endDate"/>

<element ref="xbrli:duration"/>

</choice>

(8) </sequence>

<sequence minOccurs="0">

<element ref="xbrli:duration"/>

<element ref="xbrli:endDate"/>

</sequence>

<element ref="xbrli:instant" minOccurs="0"/>

<element ref="xbrli:forever" minOccurs="0"/>

</choice>

</complexType>

A proper approximation in OWL avoiding the sequence construct would be
the following unhandy class expression:

((startDate = 1) � (endDate = 1) � (duration = 0) � (instant = 0) � (forever = 0)) �
((startDate = 1) � (duration = 1) � (endDate = 0) � (instant = 0) � (forever = 0)) �
((duration = 1) � (endDate = 1) � (startDate = 0) � (instant = 0) � (forever = 0)) �
((instant = 1) � (startDate = 0) � (endDate = 0) � (duration = 0) � (forever = 0)) �
((forever = 1) � (startDate = 0) � (endDate = 0) � (duration = 0) � (instant = 0))

At the moment, we have opted to modell such a definition by simply listing
the already defined properties (6)–(10) for the OWL concept periodType.

464 BUSINESS INFORMATION SYSTEMS - BIS 2006

3.3 Translating the Accounting Principles

The last section has explained how the base taxonomy of XBRL is represented.
This section is devoted to the translation of the German Accounting Principles
(AP; see http://www.xbrl-deutschland.de/xe news2.htm). At the moment,
we have taken the following three files into account:

1. german ap definition.xml
2. german ap label.xml
3. german ap.xsd

The file german ap definition.xml basically defines a part-of/has-part tax-
onomy via the XML Linking Language XLink [10] through the use of xlink:from
and xlink:to in definitionArc elements.5 Note that we have characterized the
partOf and hasPart properties in OWL as mutual inverse and transitive, im-
portant for later reasoning.

german ap definition.xml also specifies the basic objects of interest, the so-
called locators (xlink:type="locator") via loc elements. Such a loc element
is furthermore equipped with three attributes:

1. xlink:href: the URI reference for this class/concept
2. xlink:title: the name of the class/concept
3. xlink:label: the name of the instance of the class/concept

For each AP concept, we define a unique instance that can be used in the
description of other AP concept instances. This way of representing information
is due to the fact that OWL (or description logic in general) enforces properties,
such as partOf, to connect individuals, but not classes (we are talking about the
ABox here!).

german ap label.xml provides further information concerning a natural lan-
guage description of the concept, both in German (xml:lang="de") and En-
glish (xml:lang="en"), using label elements. This file also respecifies the part-
of/has-part taxonomy.

german ap.xsd finally links the AP concepts to concepts defined in the
base taxonomy, saying that, for instance, bs.ass.fixAss is of type monetary:
type="xbrli:monetary"; see definition (2) for monetary.

Overall, a locator object thus consists of the following six properties:

1. deLabel (single xsd:string)
2. enLabel (single xsd:string)
3. href (single xsd:string)
4. type (single Xbrli)
5. partOf (multiple Locator)
6. hasPart (multiple Locator)

The outcome of our translation of the (single) instance t bs.ass for the
XBRLI concept bs.ass (total assets) is depicted in the next figure.
5 At first sight, one might think that german ap definition.xml defines a sub-

/supertype taxonomy.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 465

t bs.ass

deLabel Summe Aktiva

enLabel Total Assets

href german ap.xsd#bs.ass

type xbrli monetaryItemType 230

partOf t bs

hasPart t bs.ass.defTax

t bs.ass.assInbetwFixAndCurr

t bs.ass.deficitNotCoveredByCapital

t bs.ass.accountingConvenience

t bs.ass.other

t bs.ass.prepaidExp

t bs.ass.currAss

t bs.ass.fixAss

t bs.ass.unpaidCap

Fig. 1. The internal structure of the instance t bs.ass, representing XBRL’s insight
on the notion of total assets. t bs.ass refers to other instances via its hasPart/partOf
properties. type, partOf, and hasPart are OWL object properties, whereas deLabel,
enLabel, and href are so-called datatype properties.

Overall, the German Accounting Principles taxonomy consists of 2,387 con-
cepts, plus 27 concepts from the base taxonomy for XBRL. 34 properties were
defined and 4,780 instance finally generated. The running time of the translation
process is about 3 seconds on a mid-size Linux machine under Java 2 SE 5.0.

4 Summary

This paper has presented a translation schema for the base ontology of XBRL
into OWL that was extended to the German Accounting principles. Our en-
terprise was initiated by work in the eTen WINS project that needs reasoning
support going beyond the syntactic power of XML Schema. We believe that our
work is a first step towards large-scale intelligent web-based financial information
and decision support systems.

References

1. Fornasari, F., Tommasi, M.N.A., Zavattari, C., Gagliardi, R., Declerck, T.: XBRL
web-based business intelligence services. In: Proceedings of the rChallenge Con-
ference 05, Springer (2005)

2. Hobbs, J., Pan, F.: An ontology of time for the Semantic Web. ACM Transactions
on Asian Language Processing (TALIP) 3(1) (2004) 66–85

3. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL web ontology language reference. Technical
report, W3C (2004) 10 February.

466 BUSINESS INFORMATION SYSTEMS - BIS 2006

4. Fallside, D.C., Walmsley, P.: XML schema part 0: Primer second edition. Technical
report, W3C (2004) 28 October.

5. Klyne, G., Carroll, J.J.: Resource description framework (RDF): Concepts and
abstract syntax. Technical report, W3C (2004) 10 February.

6. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF Schema.
Technical report, W3C (2004) 10 February.

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook. Cambridge University Press, Cambridge (2003)

8. Knublauch, H., Musen, M.A., Rector, A.L.: Editing description logic ontologies
with the Protégé OWL plugin. In: Proceedings of the International Workshop on
Description Logics, DL2004. (2004)

9. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic archistecture for
storing and querying RDF and RDF schema. In: Proceedings of the International
Semantic Web Conference (ISWC). Number 2342 in Lecture Notes in Computer
Science (LNCS), Springer (2002) 54–68

10. DeRose, S., Maler, E., Orchard, D.: XML Linking Language (XLink) Version 1.0.
Technical report, W3C (2001) 27 June.

TRANSLATING XBRL INTO DESCRIPTION LOGIC 467

