
The Need for an Open Corpus of
Software Architecture Descriptions

Jens Knodel

Fraunhofer IESE
Fraunhofer-Platz 1, 67663
Kaiserslautern, Germany

jens.knodel@iese.fraunhofer.de

Jim Buckley

Lero – The Irish Software Research Centre
University of Limerick, Limerick

Ireland
jim.buckley@ul.ie

Sebastian Herold

Karlstad University
651 88 Karlstad

Sweden
sebastian.herold@kau.se

Abstract— Software architectures are the conceptual tool to
share information about key aspects of a software system and to
enable reasoning about the principal, most fundamental, and
often most difficult-to-change design decisions of the system.
Studies of failed software systems give evidence that
architecture drift, erosion or degradation is a prevalent problem
in industrial practice. But a recent systematic literature review
[9] indicates that research currently investigates compliance
checking or inconsistency detection only. To advance research
we need an open and grounded corpus of software architecture
description – serving as a basis for more sophisticated studies
beyond detection only. Such a corpus could enable (1) to
evaluate new approaches, (2) to provide means for fixing
degradation (when it occurs or a-posteriori), (3) to compare and
benchmark approaches and, ultimately, (4) enable longitudinal
studies in the field.

Keywords—software architecture, software architecture
description, drift, erosion, degradation, open corpus

I. INTRODUCTION

Software architectures are the conceptual tool to share
information about key aspects of a software system [1] and to
enable reasoning about the principal, most fundamental, and
often most difficult-to-change design decisions of the system.
These principle design decisions and their manifestation in
source code massively influence the system’s ability to meet
its business goals: realization of its functional requirements
and achievement of its non-functional qualities, the so-called
”-ilities”. In essence, the software architecture describes how
well the software system delivers value to the users of the
system, and also how well the development organization
responsible for software system can manage its overall
lifecycle, covering maintenance, evolution, migration,
retirement (of parts and/or technologies) and the like.

Software architectures prescribe the desired
decomposition into components, modules and the
dependencies among them (intended architecture).
Developers then translate the abstract building blocks of the
system into source code (realized architecture). In studies of
failed software systems evidence has been presented that
almost all of the studied system's implementations exhibit
significant amount of architecture degradation (sometimes
also referred to as architectural drift, architecture erosion,
architecture violations, or structural violations) [2-7]. In
addition, controlled empirical experiments indicates that
changes to software systems affected by architecture

degradation can take more than twice as long and result in
substantially lesser results, in terms of correctness [8].

Hence, there has been a rich vein of research in the area of
architecture degradation. A recent systematic literature review
[9] covering 119 papers on software architecture degradation
suggests that about 65% of the published, peer-reviewed
research articles in this area investigate consistency checking
or inconsistency detection only. A much lower percentage of
research articles touch upon advanced research topics that go
beyond pure detection of architecture degradation: analysis of
degradation causes (ca. 13%), fixing of degradation (ca 14%),
prevention of degradation (ca. 17%). This situation is
surprising and challenging given the results from studies
investigating architecture consistency in isolation: Some
historical/longitudinal studies give evidence that software
architecture degradation sometimes is not removed manually,
even when detected [10] .

II. GENERAL RESEARCH CHALLENGES
Various studies [2-12] suggest that software architecture

degradation is a prevalent problem, and not only in
commercial software development. Research has developed
many different techniques to address facets of software
architecture degradation. The most intensively investigated
aspect is checking for inconsistencies between a specified
prescribed architecture and the descriptive architecture, as
manifested in the source code of system. The techniques to
check for consistency/inconsistency differ in the way a
prescriptive architecture is described, the expressiveness of
the approach w.r.t. the prescriptive architecture, and the type
of implementation, e.g. the programming language, which can
be checked.

Empirical evidence in software architecture degradation
research is difficult to obtain. Research in the field evaluated
by case studies or experiments of commercial systems
generally requires access to a system for which not only the
system’s implementation is available: the prescriptive
architecture also needs to be documented or a system
expert/architect needs to be available to recover the
architecture. In addition, due to the sensitivity of data and
results, which potentially could reveal serious architectural
degradation, detailed findings and the source code are often
subject to non-disclosure agreements. Open source systems,
on the other hand, do often not have a documented
prescriptive architecture and access to open source project
members, who could recover the original intended, primary

46 Softwaretechnik-Trends 37:2, Mai 2017



design decisions, is often difficult to obtain [11]. This makes
it difficult, or even impossible, to perform transparent, high-
quality studies. Likewise, different approaches and techniques
can hardly be compared or benchmarked, as the systems used
for evaluation differ and lack a universally usable description
of their prescriptive architectures.

Hence it is not really surprising that the systematic
literature review on software architecture degradation
mentioned earlier [9] raises the following issues, across the
literature:
 In the last five years, ca. 45% of published research did not

contain proper empirical evaluation. Most of these papers
suggested new techniques or extension to existing ones
and validated them by a line of argumentation or synthetic
examples.

 Most of the empirical evaluations deal with technical
aspects, such as showing applicability or correctness. Very
little of this research deals with usability, user perception,
or the analysis and assessment of architecture degradation.

 Case studies, as one form of empirical studies, are
dominating. This strong focus can be a threat to the
generality of results. Wider scoped studies such as
controlled experiments and surveys, could improve the
validity of results.

 The large majority of case studies investigate degradation
at a single point in time, even though the phenomenon has
a strong longitudinal aspect: Few historical or longitudinal
studies exist.

 Most studies focus on detecting structural architecture
degradation only. Other kinds of degradation are
underrepresented (e.g., behavioral architecture
degradation [12]).

III. CONCLUSION

We expect that an open corpus of software architecture
descriptions can drastically reduce the effort of empirical
research in the field of software architecture, particularly in
software architecture degradation. It will serve as an easily
accessible dataset, replacing the often-cumbersome search for
systems with available descriptions of prescriptive
architecture and/or time-consuming architecture recovery
procedures. Our next steps in this direction are:
 Shape a corpus of software architectures descriptions that

allows studies in the areas of (1) prevention of
architectural violations, and (2) identification, analysis and
remediation of pre-existing violations. This shaping would
encompass the conceptual, organizational, and technical
requirements and constraints of such a repository.

 Populate this open corpus with prescriptive architectures
“grounded and validated” by expert knowledge. This
means that prescriptive architectures are created or
reviewed by an expert, such as the original architect (or a
lead developer of that particular system). This corpus
could then be used for replication of studies, for
benchmarking, and for exploring the usefulness of new
and/or existing techniques.

 Exemplify and disseminate the usefulness of the open
corpus by authoring an extensive experience report,
making the corpus available to the research community
and, additionally, publishing relevant findings at
conferences in the field of software architecture (e.g.,
conferences like ICSE, ICSA, ECSA).

Such corpora, or repositories, have been proven successful
for other software engineering disciplines, e.g., testing, source
code analysis, or project management (e.g., [13]). This is also
reflected in the so-called Artifacts Track of many software
engineering conferences (e.g., recent editions of ICSME or
FSE). Corpora are successful because they enable a common
basis for discussing research approaches, tools results, and
research results. They allow comparison and benchmarking of
results, as they deliver a predefined and structured way for
representing results and make it easier to perform replication
studies.

REFERENCES

[1] ISO/IEC, ISO/IEC 42010 (IEEE Std) 1471-2000 : Systems and
Software engineering - Recomended practice for architectural
description of software-intensive systems. 2007, ISO/IEC/(IEEE). p.
23.

[2] Murphy, G.C., D. Notkin, and K.J. Sullivan, Software Reflexion
Models: Bridging the Gap between Design and Implementation. IEEE
Trans. Softw. Eng., 2001. 27(4): p. 364-380.

[3] Bourquin, F. and R.K. Keller. High-impact Refactoring Based on
Architecture Violations. in 11th European Conference on Software
Maintenance and Reengineering (CSMR'07). 2007.

[4] Rosik, J., et al., An industrial case study of architecture conformance,
in Proceedings of the Second ACM-IEEE international symposium on
Empirical software engineering and measurement. 2008, ACM:
Kaiserslautern, Germany. p. 80-89.

[5] Godfrey, M.W. and E.H.S. Lee, Secrets from the Monster: Extracting
Mozilla's Software Architecture, in Intl. Symposium on Constructing
software engineering tools (CoSET 2000). 2000.

[6] Brunet, J., et al., Five Years of Software Architecture Checking: A
Case Study of Eclipse. IEEE Software, 2015. 32(5): p. 30-36.

[7] Knodel, J., Muthig, D., Naab, M., & Lindvall, M. Static Evaluation of
Software Architectures, in Proceedings of the Conference on Software
Maintenance and Reengineering (CSMR 2006), 2006.

[8] Knodel, J., Sustainable Structures in Software Implementations by
Live Compliance Checking. 2011, Fraunhofer Verlag.

[9] Herold, S., M. Blom, and J. Buckley, Evidence in architecture
degradation and consistency checking research: preliminary results
from a literature review, in Proccedings of the 10th European
Conference on Software Architecture Workshops. 2016, ACM:
Copenhagen, Denmark. p. 1-7.

[10] Buckley, J., et al., Real-Time Reflexion Modelling in architecture
reconciliation: A multi case study. Information and Software
Technology, 2015. 61: p. 107-123.

[11] Ding, W., et al. How Do Open Source Communities Document
Software Architecture: An Exploratory Survey. in 2014 19th
International Conference on Engineering of Complex Computer
Systems. 2014.

[12] Ackermann, C., et al. An Analysis Framework for Inter-system
Interaction Behavior. in 2008 19th International Symposium on
Software Reliability Engineering (ISSRE). 2008.

[13] Tempero, E., et al. The Qualitas Corpus: A Curated Collection of Java
Code for Empirical Studies. in 2010 Asia Pacific Software Engineering
Conference. 2010.

Softwaretechnik-Trends 37:2, Mai 2017 47




