Towards Predictive Self-optimization by
Situation Recognition

Sebastian Go6tz, René Schone, Claas Wilke, Julian Mendez and Uwe ABmann

Fakultit Informatik, Technische Universitit Dresden
sebastian.goetz @acm.org, $3970849 @mail.zih.tu-dresden.de,
{claas.wilke, julian.mendez, uwe.assmann } @tu-dresden.de

Abstract: Energy efficiency of software is an increas-
ingly important topic. To achieve energy efficiency, a
system should automatically optimize itself to provide
the best possible utility to the user for the least possi-
ble cost in terms of energy consumption. To reach this
goal, the system has to continuously decide whether
and how to adapt itself, which takes time and con-
sumes energy by itself. During this time, the system
could be in an inefficient state and waste energy. We
envision the application of predictive situation recog-
nition to initiate decision making before it is actually
needed. Thus, the time of the system being in an in-
efficient state is reduced, leading to a more energy-
efficient reconfiguration.

1 Introduction

Various approaches to self-optimizing software systems
have been proposed in literature [GWCA12, CCO5]. The
basic principle of a feedback loop is common to all ap-
proaches. This loop comprises four steps: (1) the sys-
tem continuously monitors itself and its environment, (2)
it analyzes the collected data and (3) decides for or against
as well as (4) performs reconfiguration. These four steps
(monitor, analyze, plan/decide, act) have been introduced
in literature by Oreizy et al. [OGT99]. In our previous
work [GWS™T10, GWCA12], we proposed a reification of
this feedback loop for energy efficiency.

For example, an audio processing system that improves
the quality of audio files (e.g., noise reduction, loudness
normalization, etc.) for multiple concurrent users can
make good use of self-optimization in terms of energy ef-
ficiency. One strategy to save energy is to automatically
choose the best server to process a user request based on
the current state of the system. Imagine two servers: one
is very good in terms of energy consumption but provides
poor performance, and the other one is bad in terms of en-
ergy consumption but offers very good performance. Let
us assume that the efficient server is currently fully uti-
lized, whereas the inefficient server is optimally utilized
but is able to process additional requests. If a user sends a
request to process an audio file and agrees with waiting for
the result for some time, a self-optimizing system would
schedule this user request on the efficient server at a later
point in time instead of the apparent choice to process the
file on the currently free, but inefficient server.

The goal of self-optimizing systems is to automatically
reconfigure to the most efficient state possible [ST09a].
Thus, the time of the system being in an inefficient state

time of system in inefficient state
)

[|
| Monitor | Analyze , Plan | Execute |
e i 2T

/ t

. “l -1
t N t

analyze \ plan

Stable ; Situation :
\ System / Detected

‘mon

Figure 1: Time Behavior of Feedback Loop

should be as short as possible. Figure 1 depicts the four
steps of the feedback loop and highlights the actual prob-
lem: the first two steps are continuously performed un-
til a situation, which requires reconfiguration is detected.
Whenever such a situation is detected, the last two steps
are performed. For the time of these two steps the system
is in an inefficient state. If the system aims at optimizing
energy efficiency, the time of being in an inefficient state
conforms to wasted energy. A peculiarity in this regard is
the question when the plan/decide step is performed. In our
previous work [GWCA12], this step is performed when a
user invokes functionality of the system. That is whenever
a user interacts with the system, the optimal configuration
is computed and the system gets adjusted accordingly. The
approach of Chang and Collet [CC05] initiates the deci-
sion step whenever a condition, specified at design time,
is sensed to be violated. The problem of both approaches
is that they initiate the time-consuming decision step at a
point in time, when an immediate reconfiguration is re-
quired. That is the system will be in an inefficient config-
uration for the time of decision making as well as the time
required to reconfigure the system.

Thus, an intelligent approach to decision making should
be performed before the system gets into an inefficient
state. This requires a classification of situations which de-
mand for system reconfiguration, as it allows for the appli-
cation of situation recognition to proactively detect the im-
minent demand for the decision step [End00]. Thereby, the
time between the actual occurrence of a situation and when
reconfiguration starts can, in the best case, be decreased
by the time required for the decision step. In consequence,
the time spans of the system being in an inefficient state
are reduced.

Our envisioned solution uses predictive situation recog-
nition [End00] based on description logic reasoning. For

Softwaretechnik-Trends 33:2, Mai 2013

this purpose we developed an automatic translation of soft-
ware engineering artifacts (models, code, etc.) to the web
ontology language (OWL) called OWLizer'. Keeping an
ontology synchronous to the running software system al-
lows the reasoner to recognize predefined situations and,
by investigating the history stored in the ontology, allows
for the prediction of imminent situations.

2 Envisioned Approach

As a basis for our approach to self-optimizing
software system, we follow the models@run.time
paradigm [MBJ109]. The system is developed in a
model-driven manner and a special model is kept syn-
chronous to the runtime state of the system. This model
is used to reason about the system. A peculiarity of our
approach is the application of non-functional contracts
to specify how implementations of software components
behave. These contracts specify and qualify the depen-
dencies between software components and hardware
components, which are the direct consumers of energy.

To enable predictive situation recognition, we plan to
synchronize the runtime model of our previous approach
with an ontology using the tool OWLizer. The applica-
bility of this synchronization has been shown in [Sch12].
The applicability of description logics for situation recog-
nition has been shown in [ST09b]. Based on this, ontology
situations can be recognized by standard reasoners. As a
prerequisite, the types of situations to be recognized have
to be classified. We identified two major classes of situa-
tions, which subdivide into two minor classes each:

e contract-concerned situations: (1) violation of con-
tract clauses, which have been valid at the last de-
cision made, (2) contract clauses, which have been
invalid at the last decision made, but became valid

e user-concerned situations: (1) system overload, i.e.,
the system cannot serve more users, (2) increas-
ing/decreasing number of concurrent users

Each of these situation types potentially demands for
reconfiguration as they imply the likelihood of the exis-
tence of a better system configuration. For example, imag-
ine a contract clause for an audio normalization algorithm,
which specifies the requirement to have a CPU with less
than 20% load to guarantee a processing time of at most
10% of the time a playback of the audio file would take.
Notably, the processing time impacts energy consumption,
as the longer the algorithm runs, the more energy will be
consumed. The system decides to run this algorithm on a
CPU with 10% load. Later, the load of this CPU increases
to 50% due to some other processes, which are not under
control of the self-optimizing software system. This situ-
ation is a contract clause violation. The guarantee of the
contract (max. processing time) does not hold anymore,
and another system configuration needs to be computed.

Uhttp://st.inf.tu-dresden.de/owlizer

Softwaretechnik-Trends 33:2, Mai 2013

3 Conclusion

In this paper we first motivated the application of self-
optimizing software systems to improve the energy effi-
ciency of software at runtime. Then, we outlined the need
to anticipate decision making in self-optimizing software
systems to reduce their time in inefficient configurations.
This is because the time of the system in an inefficient con-
figuration implies a potential waste of energy. Finally, we
proposed to utilize predictive situation recognition to de-
tect imminent situations, which demand for reconfigura-
tion. Thus, decision making can be anticipated and the
inefficient time of the system can be reduced.

Acknowledgements

This research has been funded within the Collaborative Research Center
912 (HAEC), funded by the German Research Foundation (DFG) and
within the research project ZESSY #080951806, by the European Social
Fund (ESF) and Federal State of Saxony

References

[CCO5] H. Chang and P. Collet. Fine-grained contract ne-
gotiation for hierarchical software components. In
31st EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pages 28-35,

2005.

M. R. Endsley. Theoretical underpinnings of situ-
ation awareness: a critical review. In M. R. Ends-
ley and D. J. Garland, editors, Situation Awareness
Analysis and Measurement, pages 3—32. Lawrence
Erlbaum Associates, Mahwah, NJ, USA, 2000.

[GWCA12] Sebastian Gotz, Claas Wilke, Sebastian Cech, and
Uwe ABmann. Sustainable ICTs and Manage-
ment Systems for Green Computing, chapter Archi-
tecture and Mechanisms for Energy Auto Tuning,
pages 45-73. IGI Global, June 2012.

[GWST10] Sebastian Gétz, Claas Wilke, Matthias Schmidt, Se-
bastian Cech, and Uwe ABmann. Towards Energy
Auto Tuning. In Proceedings of First Annual In-
ternational Conference on Green Information Tech-
nology (GREEN IT), pages 122-129. GSTF, 2010.

Brice Morin, Olivier Barais, Jean-Marc Jezequel,
Franck Fleurey, and Arnor Solberg. Models@
Run.time to Support Dynamic Adaptation. Com-
puter, 42(10):44-51, 2009.

[OGTT99] Peyman Oreizy, Michael M. Gorlick, Richard N.
Taylor, Dennis Heimbigner, Gregory Johnson, Ne-
nad Medvidovic, Alex Quilici, David S. Rosen-
blum, and Alexander L. Wolf. An Architecture-
Based Approach to Self-Adaptive Software. IEEE
Intelligent Systems, 14:54—62, May 1999.

René Schone. Ontology-based Contract-Checking
for Self-Optimizing Systems. Minor thesis, Tech-
nische Universitit Dresden, December 2012.

Mazeiar Salehie and Ladan Tahvildari. Self-
adaptive software: Landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst., 4:14:1—
14:42, May 2009.

Thomas Springer and Anni-Yasmin Turhan. Em-
ploying Description Logics in Ambient Intelligence
for Modeling and Reasoning about Complex Situ-
ations. Journal of Ambient Intelligence and Smart
Environments, 1(3):235-259, 2009.

[End00]

[MBJT09]

[Sch12]

[ST09a]

[STO9b]

	Towards Predictive Self-optimization bySituation Recognition
	1 Introduction
	2 Envisioned Approach
	3 Conclusion
	Acknowledgements
	References

