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Abstract: Novel techniques are indispensable to process the ŕood of data from the new generation of
radio telescopes. In particular, the classiőcation of astronomical sources in images is challenging.
Morphological classiőcation of radio galaxies could be automated with deep learning models that
require large sets of labelled training data. Here, we demonstrate the use of generative models,
speciőcally Wasserstein GANs (wGAN), to generate artiőcial data for different classes of radio
galaxies. Subsequently, we augment the training data with images from our wGAN. We őnd that a
simple fully-connected neural network for classiőcation can be improved signiőcantly by including
generated images into the training set.
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1 Introduction

The new generation of radio telescopes (e.g. LOFAR, MeerKAT and in the future the SKA

[Ca04; JM16; va13]) will produce enormous amounts of data and the improved sensitivity

of the instruments leads to a much higher source density within these data sets. As a result,

a new level of automation for processing the data and for classifying sources is needed.

Morphological classiőcation of radio sources is crucial for answering a range of fundamental

astrophysical questions, such as the origin of cosmic magnetism. One promising approach for

morphological classiőcation relies on the use of deep classiőers trained on well-understood

data sets. However, the existing amount of data with morphological labels is limited, as they

are typically extracted from catalogues created and curated manually by experts. Small data
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sets used in the training of deep learning models for galaxy classiőcation can be enlarged

by data augmentation, e.g. by applying random rotations and reŕections to the images

(classical augmentation). In this work, we investigate a novel application of generative

models to enhance the available training sets. For this augmentation technique, multiple

neural networks are combined to learn the underlying distribution of a data set. This allows

the creation of new data by sampling from the learnt distribution. In this study we investigate

whether radio galaxy classiőers can be improved when trained on such enhanced data sets

containing generated data. For similar approaches from different őelds see for example

[Fr18; Zh17].

As radio sources exhibit a large variety of structures, we consider a four-class classiőcation

problem (as in [ATV18; Sa21]), including bent-tail and compact sources in addition to

the classes FRI and FRII of Fanaroff; Riley [FR74]. For the class FRI, the maximum of

the radio emission is situated close to the centre of the source. The maxima of the radio

emission are located at the edges of the jets for FRII sources. Unresolved and point sources

are contained in the Compact class. The Bent class consists of sources for which the angle

between the jets differs signiőcantly from 180 degrees. The two subtypes narrow-angle tail

(NAT) and wide-angle tail (WAT) are further discriminated by the angle. For an illustration

of the considered classes (FRI, FRII, Compact and Bent) see Fig. 1.

Fig. 1: Examples of the classes FRI, FRII, Compact and Bent.

Aniyan; Thorat [AT17], Alhassan et al. [ATV18], Samudre et al. [Sa21], and Tang et al.

[TSL19] use convolutional neural networks (CNNs) trained on data from the FIRST survey

[BWH95] for the classiőcation of radio galaxies.
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2 Data

We combine different catalogues that characterise radio sources from the FIRST survey

to create a data set of radio galaxy images with morphological labels [BCM17; CMB17a;

CMB17b; GBW10; GW08; MB17; Pr11]. By explicitly comparing the coordinates of the

sources, 300 duplicates were found and removed. Moreover, we exclude 147 sources from

the data set that appear in different catalogues with different labels. The resulting data sets

are presented in Table 1. We adopt the preprocessing from [AT17] after cropping the images

to the input size of our generative network (128 x 128 pixels). In particular, we set all pixel

values below three times the local RMS noise to the value of this threshold. Subsequently,

the pixel values are rescaled to the range between -1 and 1 to represent ŕoating point

greyscale images. We apply classical augmentation to each image during training.

FRI FRII Compact Bent Total

train 395 824 291 248 1758

validation 50 50 50 50 200

test 50 50 50 50 200

total 495 924 391 348 2158

Tab. 1: Number of sources per class in the data sets.

3 Wasserstein GAN

Generative adversarial networks (GANs) [Go14; Sa16] are able to learn a representation of

the underlying statistical distributions of sets of images. Sampling from those representations

may provide additional data points for subsequent treatments [Bu21a; Bu22].

For this project, we employ a variant of the standard GAN setup called Wasserstein GAN

(wGAN), which uses the Wasserstein-1 metric, often referred to as the Earth Mover’s

distance, as main term in the loss function [ACB17]. A direct advantage of this setup is

the correlation between image quality and the value of the loss function, transforming the

discriminant of a standard GAN into a critic. Additionally, training of wGANs is often

more stable and more likely to converge than standard GAN setups. To approximate the

Wasserstein-1 metric by use of a critic network, it has to be ensured that the 1-Lipschitz

constraint is fulőlled. This is achieved by applying a gradient penalty term to the loss

function as in [Gu17].

Since different morphologies of radio galaxies result in very different images, it seems

reasonable to condition the networks with the class label. For this setup, this is achieved

for the generator by applying a 2D transposed convolution operator on a matrix of image

dimensions őlled with the class label. The transpose-convoluted layer is then concatenated

to the őrst transpose-convoluted layer of the noise tensor. Batch normalisation in 2D and

ReLU activation functions are used. The concatenated tensor is then passed through őve

additional 2D transposed convolutions, where no normalisation or activation is applied
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after the last layer. Instead, the individual pixel values are simply clipped to [-1,1] for easy

conversion to greyscale. The critic is built analogously, but uses 2D convolutional layers

resulting in a single output node representing the critic score for image quality. Here, layer

normalisation and leaky ReLU functions are used except for the last layer. A schematic of

the wGAN setup can be found in Fig. 2.
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Generated Data

Fig. 2: Schematic of the wGAN architecture, where 𝑥 denotes real images and 𝑦 the class label. The

noise vector 𝑍 is the input of the generator and the output of the generator 𝑥 represents generated

images. The critc receives either real or generated images as input.

4 Generated Images

4.1 Training

To evaluate statistical ŕuctuations, ten statistically independent wGAN training runs are

launched solely on the training set. The training is performed with a single NVIDIA A100

GPU provided by the Maxwell cluster at DESY. The training is done for 40,000 generator

iterations, while the critic is trained őve times per generator iteration. A batch size of 400 is

chosen and the full training takes roughly 7 hours to complete. The generator and critic

weights are saved every 250 iterations, allowing to scan for the best training state later on.

4.2 Image Quality

In order to determine the quality of images and thus to őnd the best performing training

iteration, a set of distributions is deőned to compare generated images to the validation data

set. This includes normalised histograms of pixel intensities, the number of pixels with an

intensity greater than zero and of the sum of intensities. These histograms are compared for

each class and the relative mean absolute error (RMAE) between the generated set of 10,000

images and the validation set is computed. The RMAE for the different histograms are
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summed up to yield a single őgure-of-merit (FOM) per class, where the training iteration

with the lowest FOM value is used in the following. As an example, the histogram of pixel

intensities for FRI is depicted in Fig. 3, where the generated histogram is shown in blue and

the validation set in orange.
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Fig. 3: Histogram of pixel intensities of FRI sources comparing batches of real (orange) and generated

images (blue) for the training epoch with the lowest combined RMAE. The per-bin relative error is

shown in the bottom panel.

For a direct visual comparison of image quality, a set of 5,000 images per class is generated

and aligned using principle component analysis. Subsequently, the pixel-by-pixel difference

is computed for all possible pairs of real and generated images. The closest pairs with a

minimal activity for each class are shown in Fig. 4.

5 Using wGAN-supported Augmentation

As described above, classical augmentation relies on rotation and reŕection of training

images, adding no statistical information on the morphology. This type of augmentation is,

thus, mainly a way to help a classiőer understand the rotational invariant nature of radio

galaxy images. Nowadays, this could be achieved by directly using equivariant models that

incorporate such symmetry constraints inherently and show potential to improve classiőer

training without relying exclusively on augmentation [Bo21].

Here, we evaluate the augmentation achieved by using a combined data set of real and

generated images (i.e. wGAN-supported augmentation) by comparing it to using the

classically augmented (real-only) data set. The combined data set is created before starting

the classiőer training with a őxed ratio between the number of generated 𝑖𝑔 and real images

𝑖𝑟 , denoted 𝜆 = 𝑖𝑔/𝑖𝑟 . We study the range 𝜆 = 1, ..., 4 and the class distribution of the
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Fig. 4: Closest matching pairs of generated and real images.

generated images is designed such that the combined data set is balanced. For the real-only

training runs, class weights are introduced to the loss function to account for the class

imbalance in the data set.

We train a simple classiőer, namely a fully-connected neural network with three hidden

layers and four output nodes. The classiőer is trained for 12,500 epochs with a batch

size of 100 and a learning rate of 5 · 10
−4. Training takes on average 3.5 seconds per

epoch on an NVIDIA V100 GPU for real-only runs. This setup is not optimised to reach

maximal classiőcation accuracies as the goal of this study is only to compare classical with

wGAN-supported augmentation.

We observe a signiőcant improvement when increasing the number of generated images in

the combined data set. As shown in Fig. 5 the real-only training run enters into over-training

(i.e. the value of the loss function increases, while the training accuracy deviates further

from the validation accuracy) much earlier than training runs using a combined training

data set. The start of the over-trained period depends on 𝜆, where we observe that adding

more generated images to the data set shifts the start to later training iterations, while the

validation loss score continues to decrease and the validation accuracy score (not shown)

increases.

In order to compare the overall performance between different training setups, the multi-

class Brier score [Br50] is used to determine the best training iteration for each of the

ten statistically independent training runs for our őve different training setups. The Brier

score is essentially the mean squared error of the predicted probabilities of a classiőer

for all classes. This has the advantage that also the certainty of the classiőer’s decision

is considered, which winner-takes-all FOMs such as accuracy do not take into account.

The performance of the best models (i.e. models with minimal Brier score) is evaluated on
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an independent test set that contains real data only using commonly applied metrics such

as accuracy, precision, recall, and F1 score. The F1 score is the harmonic mean between

precision and recall. The results for the F1 score are depicted in Fig. 6, indicating that

training runs using the combined data set with 𝜆 = 4 achieve an F1 score that is (23 ± 2) %

higher than for the real-only training runs.
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Fig. 5: Validation loss during training of the classiőer for different values of 𝜆. The solid line represents

the mean of ten independent training runs and the shaded area represents the symmetrised standard

deviation.
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Fig. 6: Performance of the best model on an independent test set. We show the mean of ten independent

training runs, where the uncertainty is given as the symmetrised standard deviation.

6 Discussion

Previous approaches employing generative models to simulate images of radio galaxies are

based on variational autoencoders (VAE) [Ba21; Ma18; Ma19]. Therefore our GAN-based

approach is novel in the őeld of radio astronomy. In this work, we demonstrate that we
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are able to generate highly realistic, artiőcial images of radio sources. The quality of the

generated images is evaluated in different ways and with different metrics. After visual

inspection of a large number of generated images, our generated images do not suffer from

issues known from other state-of-the-art simulations based on generative networks. In

summary, we őnd:

• The resolution of the generated images is as good as the resolution of the images we

train on.

• The generated images have a similar noise level as the preprocessed training examples.

• We do not observe any pseudo-textures or pseudo-structures in the generated images.

The images generated with the wGAN can be put to use for applications such as classiőer

training. As a result, our contribution represents a major improvement for simulations of

radio galaxies based on generative networks. Butter et al. [Bu21b] showed for toy models

that an ampliőcation of training statistics with generative models is possible. Our work

represents an example of this GANplyőcation with real astrophysical data. For a recent

particle physics application see [Bi22].

The presented method allows to amplify the performance of a simple classiőcation model

substantially by an increase in the F1 score of 23 % for a ratio of 𝜆 = 4 between generated

and real images and can be particularly useful for applications with unbalanced data sets.

The application of wGAN-supported augmentation to more complex classiőers such as

CNNs is left for future work.
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