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Abstract: The heterogeneity of future living environments will increase the necessity
to create applications that can run on any device. In the context of graphics applica-
tions, some kind of simplification must be included to enable rendering on devices with
less computation power. Using perception to guide such a simplification is a common
approach. However, existing methods generate levels of detail in advance, and only a
selection is performed during run-time. In simulations, this not sufficient because an
object will change over time.

We present a framework that adapts a simulation using perceptual measures. We
use a visual salience model to extract regions where detail can be modified. This in-
formation is calculated during run-time, and by using a dynamic data structure, the
representation is adapted without a definition of levels of detail in advance. We in-
cluded the system in a physics library and so created an interactive and continuous
simulation level of detail.

1 Introduction

Physical behavior of objects in a 3d scene create the impression of a real-world scenario.
Simulations of fabrics and liquids, for example, require expensive calculations, and if
accuracy is not crucial, a reduction in the number of simulated objects leads to a decrease
in computation time. In real-time applications, such as games, a reduction may be applied
as long as the plausibility is retained, e.g. a human would rate the visible outcome as
valid. In this work, we propose to use perceptual information when altering detail, and we
present a framework to modify the detail of a simulation during run-time. This adaptation
is not bound to a predefined set of simulation levels of detail (SLODs). Thus, it can adapt
to any hardware without manual adjustments. With this system, it is theoretically possible
to transfer a running simulation from a high-performance system to another, maybe lower-
powered device. A user is no longer bound to a specific hardware at a distinct location.

By simulation, we thereby mean changes to the surface representation based on physical
laws. These changes, for example, can be introduced due to gravitation or compression of
an object. Usually, objects are decomposed into multiple parts to increase detail, i.e. accu-
racy, of the simulation. Our framework will control this decomposition, and to complete
this task, perceptual measures are used to steer the applied modifications, e.g. a reduction
or increase in detail.
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To account for perceptual information, a visual salience model is used. An object is con-
sidered salient if it figuratively “pops out” of its surround. We utilize a 3d visual salience
model and include animation-specific features, e.g. motion. The Bidirectional Saliency
Weight Distribution Function (BSWDF) [SK11] allows us to extract regions of interest
within a 3d scenario, and thus we can account for areas that are important for a human
spectator. Due to the inclusion of animation-specific features, regions that are modified by
the simulation are taken into account as well.

We derive a Model-View-Controller-system that extracts, alters, and displays simulated
objects. Our prototype is based on a soft-body simulation. A soft-body, which covers
materials like cloth or fabrics, is well suited for dynamic adaptation as individual parts
of a soft-body-simulation can be removed to reduce the accuracy. Our results show that
real-time updates can be achieved using nowadays hardware.

After giving this introduction, we continue to look at related work. In section 3, we present
our framework. Afterwards, the saliency features are derived, and the according BSWDF
is defined. In section 5, we give some notes regarding the complete system and present
performance measures as well as achieved results in section 6. We close with a conclusion
and present intended future work.

2 Related Work

Soft-body objects have a high computational demand, and these are neither rigid, fluid,
nor gaseous. To reduce simulation complexity of fluids and gaseous materials, point-based
animations have been studied by several researchers. Mueller et al. [MKN™'04] presented
a separated data layout to reduce the size of the simulation data. Adams et al. proposed
the “adaptively sampled particle fluids” approach [APKGO7]. Single nodes are collapsed
or expanded to reduce the size of the simulation. Similar to Mueller et al., a separated data
layout is chosen.

The accuracy of a simulation can be modified during run-time by using multi-resolution
representations. Beaudoin and Keyser [BK04] replace simulations of plants with approx-
imations. These approximations are generated during a preprocess, and individual parts
of a plant are exchanged using a recursive algorithm. Visual artifacts are avoided with
smooth transitions. This geometric approach is both a LOD and SLOD as the detail in the
representation and the simulation is reduced. It, however, requires to traverse the represen-
tation each time it is accessed, and the recursive algorithm does not account for perceptual
information.

The perception of a human spectator can be modeled with visual salience as done by Itti
et al. [IKN98]. Their method represents the processes of early vision, which cannot be
influenced by tasks or other cognitive-related factors. For rendering, saliency information
can be used to preserve detail in important regions [SK10, FSG09, LVJ05].

In [SK10], we presented a dynamic data structure, which selects a representation for ren-
dering using a priority value. Carmona and Froehlich [CF11] proposed a similar approach
simultaneously, and they presented a theoretical optimal algorithm for priority selection.
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This priority, for example, can be saliency information, such as curvature of the sur-
face. For general computation of saliency within a 3d scenario, the BSWDF has been de-
fined [SK11]. This allows to model visual salience of an object without explicit projection
into 2d space. In combination with the TreeCut, a perception-based LOD is established.

Some user studies regarding simulation and perception have been performed by several
researchers [YRPF09, GDOO0S8, O’S05]. The results of the different experiments show that
the precision of physics simulations can be reduced without loosing plausibility.

3 Approach

Our approach is a combination of the TreeCut data structure — presented in [SK10] — and
a soft-body simulation provided by the Bullet physics library [Bul]. We have chosen the
library to show, on the one hand, the universal applicability of our approach, and on the
other hand, avoid the need to verify a stand-alone physics calculation.

To establish this combination, both the TreeCut and the physics library need to be ex-
tended, so that a dynamic exchange of information between both is possible. Furthermore,
to account for saliency information, a specialized BSWDF will be defined, which uses
animation-based features, such as motion. While the BSWDF is not limited to these ani-
mation features, we will focus only on these within this work.

Our framework is depicted in figure 1. The complete system is highly dynamic as the
change introduced by the simulation invokes new changes in the TreeCut representation.
We use the simulated data to derive both the visual output (View) and the influence of vi-
sual salience computation (Feedback Stage). We control the Feedback Stage of the system
with a threshold value for saliency values, and so limit the adaptation of simulation detail.

3.1 Physics Simulation

The Bullet physics library [Bul] provides various tools and data structures to compute a
physics-based simulation. This includes detection and resolving of collisions as well as
physics objects, e.g. rigid- and soft-bodies, as well as their computations

In our prototype, the Bullet library in version 2.78 is used. It provides a soft-body simu-
lation class, which is supplementary to the normal library. We leverage this fact to plug-
in our own TreeCut-SoftBody (TC-SB) that bases on the Bullet’s SoftBody-class. It
utilizes a Mass Spring System (MSS) to simulate the physical behavior. Only two data
structures — the simulation nodes and links — are required for the computation of forces.
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Figure 1: The proposed animation framework that is based on a Model-View-Controller-
design. The Model contains the dynamic representation using a TreeCut and a soft-body
simulation (TC-SB). Other representations can be added as well, which will be included
in the animation. The Controller issues the TreeCut-operations based on the results from
the Feedback Stage. The View is derived from the current representation of the Model and
can introduce, via the user, new changes into the system.

3.2 TreeCut

The TreeCut utilizes a multi-resolution representation of an object. With the help of two
core operations, refine and coarse, the detail of a local node is altered. In case of
a refine-operation, a single node is replaced with a more-detailed representation. As-
suming a tree, a node is replaced with its children. The coarse-operation is the inverse,
i.e. the children are replaced with their common parent. We use a priority-selection of
surface elements, so called surfels, to invoke a TreeCut-operation for the assigned node.

The TreeCut has been defined for geometrical LOD-methods, and thus both operations
need to be extended to correctly account for SLOD-operations. Physics calculations need
access to the surfel structure maintained by the TreeCut. We therefore use an index-based
mapping between the surfels and the simulation nodes. The MSS-simulation uses links,
and the inner structure of a mesh needs to be reestablished after a SLOD-method has been
applied. Because of the locality of the TreeCut-operations, we include an incidence list,
which avoids searching for connected links. An interpolation between the old and the new

state of the MSS is done to reduce artifacts.
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Figure 2: The refine-operation and the required steps to assure correct generation of
simulation nodes. In the first step, the incident links are extracted while the physical
properties are propagated to the child nodes in the second. In the third, the external links
are distributed among the children and interpolation is enabled.

3.3 Beginning TreeCut-Operations

In the following, we assume a refine-operation to be processed — only small adapta-
tions are required to perform a coarse-operation. To replace a simulation node with its
successors, the following steps are performed:

1. Store (old) incident links
2. Propagate physical properties
3. Create (new) incident links

4. Mark links for interpolation

When refine-ing a node, the incident links are marked for interpolation and adjacent
nodes are extracted. The physical properties of the parent node are acquired and propa-
gated. For the position information of the children, a displacement relative to their parent
is calculated. The child nodes are added to the set of simulation nodes, but are excluded
from collision calculations, for now. After propagation, the new nodes are connected with
their neighbors using local nearest neighbor search among the adjacent nodes. The created
links are added to both incident link lists of the affected nodes and are marked for inter-
polation. In figure 2, the applied steps for propagation are visualized while figure 3 shows
the interpolation.
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Figure 3: Application of the blending during the TreeCut-operations. It is performed to
avoid the generation of artifacts. From left to right, a refine-operation is performed.
From right to left, it is equivalent to the operations performed by a coarse-operation. In
the captions, the re fine-operation is explained.

3.4 Ending TreeCut-Operation

After completion of an interpolation, old nodes and links are removed from the simulation.
We apply the following steps to complete a TreeCut-operation:

1. Finalize physical properties of the new nodes (e.g. insert collision shapes)
2. Delete old links (in sequential order)

3. Delete old nodes

First, the physical properties of the new nodes are finalized. Therefore, the collision shapes
are inserted into the simulation. The incident links are no longer interpolated.

The incident link list of the old nodes is used to extract the affected links that will be
deleted. To safely remove links, their internal order may not be altered. Otherwise, the
calculated position will differ because links are evaluated sequentially. Therefore, a linear
traversal is required for deletion, increasing the theoretical time complexity of the end-
algorithms from O(1) to O(L) where L is the number of links. However, these links will
be deleted in a lazy manner, and thus the overall time for computation is not influenced.
After marking the links for removal, the nodes are removed as well.

4 Animation Features and Saliency

Animation features are accounted for by extracting local and global motion information
that is generated during the simulation. These features will be stored in the surfel structure.

128



This allows combination with visual features as the BSWDF can be calculated during
rendering.

The result of the BSWDF is a priority value that reflects the relative importance of a surfel.
The TreeCut-evaluators use this priority to perform a reduction in simulation detail.

Definition of the BSWDF

Local motion is the relative motion of a node with respect to its previous position, i.e. its
velocity. If a single node is moved differently than others, it is considered salient. This def-
inition matches the processing of the human visual system (HVS). A refine-operation
applied to that node will increase detail. In regions where no explicit nodes are found, the
coarse-operation can safely be applied because it is unimportant for the HVS.

Global motion increases the saliency values as movable objects catch one’s attention.
However, this increase simultaneously limits the ability to focus an object [YPGO1]. Thus,
the maximal saliency value is clamped to an upper bound influenced by object’s velocity.

We define a BSWDF that operates on both motion features. Global and local features
are separated because the global features influence the local ones. Because of the restric-
tion to two motion-related features, we state that other features need to be included when
performing visual tests. In this special case, however, we give the following definition:

BSWDF(w¢,wr,, dc, Z) = lu(wy,, &) o Animation Features(we, de, &) (D

with wy, being the light, we the camera in spherical coordinates and d¢ the distance to the
camera. The o-operator applies the illumination model. In case of a Lambertian illumina-
tion, this is a multiplication. We define the Animation Features as

Animation Features(w¢, d¢, ) = Global Motion(w¢, d¢) @ Local Motion(we, de, Z)
2
The position 7 is the current surfel’s position assigned to a simulation node. If no illumi-
nation is used, the BSWDF simply evaluates to the result of the Animation Features. The

®-operator expresses the before mentioned limitation of the Local Motion features due to
the Global Motion.

S Complete System

The animation framework, as shown in figure 1, contains the physical calculations as part
of the Model. This allows to include the extensions into an existing MVC-design to pro-
vide both physical simulations and perceptual evaluation.

The Feedback Stage receives input from the Model and the View to calculate the BSWDF.
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Figure 4: The time complexity of the coarse and end-coarse-operations applied by
the TreeCut-SoftBody. A linear fit is shown that uses all generated samples. For the
refine, similar timings are achieved.

The TreeCut-evaluation is performed in parallel, and the according changes are sent to the
Controller. This executes the refine- and coarse-operations.

To allow adaptation of an object, some kind of restriction has to be imposed. In our
prototype, we use a maximal node count, but also a maximal computation time or hardware
capabilities can be utilized. For example, a maximal calculation time allows to adapt the
simulation to achieve interactive rendering.

The complete system is highly dynamic and provides self-optimization capabilities. We
include a threshold during TreeCut-evaluation to avoid repetitive change of a single node.
For example, a coarse-operations could remove a node, which will be inserted in the
next iteration again. With the threshold, the gain of inserting a node must be higher than
the penalty of removing another node including the threshold.

6 Performance and Results

We have implemented a prototype of the proposed system in C++. A cloth object is gen-
erated using a regular grid and the required LOD-hierarchy is generated in a preprocess.
The corners are fixed to create a swinging net. In the tests, only gravitation is simulated.
All results were taken on a system with an Intel i5 670 at 3.47 GHz, 8.0 GB RAM and a
nVidia GeForce 260 GTX graphics card.

In a first test, we measured the performance of the dynamic SLOD-methods. In table 1,
the manipulation of a single node is presented averaged over multiple applications of each
TreeCut-operation. Each entry in the table contains the fraction of the complete processing
time along with its measured times.
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Figure 5: The performance of the simulation in dependency of the node count used.
The graphs plot the enhanced TreeCut-SoftBody and the plain SoftBody, i.e. where no
compression is applied. The results are taken over a complete test set.

The TreeCut-operations have a high overall performance. Due to the neighbor information,
both TreeCut-operations remain constant in time (see figure 4).

In a second test, the simulation time in dependency of the number of simulation nodes and
links is evaluated. A test set is defined, which consists of multiple nets with varying node
counts and compression rates. During each test, no collisions are performed.

The averaged timing result (see table 2) show that the TreeCut-SoftBody decreases the
node count and increases performance. In the results, a reduction in processing time to
approximately 47.76% is achieved (compression to 30%) despite the additional 25 inter-
polations performed each step. Figure 5 shows the linear dependency in node count of the
TreeCut-SoftBody.

In figures 6a to 6j, some images generated with the 7reeCut-simulation are shown. For
comparison, the results achieved with the Bullet’s SoftBody are included. The default
SoftBody does not have the ability to change the SLOD. If a lower detailed version is
required, a new SoftBody has to be created accordingly.

Operation N L Node-Ops [ms] Link-Ops [ms]  Complete [ms]
refine 4888 10419 0.0164 (91.14%) 0.0016 (8.94%) 0.0180
end-refine | 4889 10794 0.0017 (94.39%) 0.0001 (5.53%) 0.0018
coarse 4966 10615 0.0319 (97.61%) 0.0007 (2.39%) 0.0327
end-coarse | 4938 10917 0.0025 (99.20%)  0.000 (0.79%) 0.0025

Table 1: Different timing results when applying the TreeCut-operations to the simulation.
N denotes the average number of nodes present while L is the number of links. The Node-
Ops are all operations that affect a node of the simulation while Link-Ops modify its links.
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Method Compression N L I Total [ms]

Bullet SoftBody - 4266 8413 0 11.09

TC-SB NoCompression | 4266 8647 0 10.08
75% 3324 6931 30.5 8.40
30% 1911 4220 25.1 4.80

Table 2: Timing results with and without the feedback-loop using varying node counts.
Compression is the fraction the initial size is reduced to. N denotes the node count, L the
number of links present and I the number of interpolations. All results are averaged over a
complete test set.

7 Conclusion and Future Work

The presented system simulates a soft-body object, and the number of simulation nodes
can be reduced during run-time without a definition of discrete levels in advance. As
opposed to existing methods, we do not require a separated data layout. A SLOD-reduction
is applied based on visual salience with animation-specific features. The representation
can adapt to any hardware.

Unlike full point-based approaches, the removal of simulation nodes may not be performed
without preconditions. We store incident links to circumvent restrictions and enable dy-
namic adaptation using the TreeCut.

We defined a special BSWDF that operates on animation features, such as local motion.
The results are used to control the dynamic adaptation via the TreeCut-evaluation. Because
of the BSWDF, a human-oriented adaptation is performed.

Currently, only one TreeCut is applied for both rendering and simulation. We plan to apply
a second TreeCut, which will maintain the simulation nodes. It will then be necessary to
propagate the results of the simulation nodes to the surface representation.

When applying a TreeCut-operation, the placement of new nodes is performed using only
geometrical measures. This needs to be extended with animation and physical measures
to increase stability and feasibility. Also, a smooth surface, e.g. a moving least squares
surface, could provide more exact positions.

An implementation using the graphics card could increase performance. With the capabil-
ities of the newest shader model 5, a soft-body can be implemented without restrictions.
However, it remains to be seen what changes to the proposed system are required.

Our system can account for perception when evaluating a simulation object. User tests
have to be performed to validate the gained impression that detail is preserved and that
the simulation remains plausible even if nodes are coarsened or refined. A maximal
compression factor could be derived to identify when a simulation looses its plausibility.
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(a) SoftBody initial con- (b) After 45 steps (c) After 90 steps (d) After 180 steps
figuration

(e) TreeCut initial configu- (f) After 45 steps (g) After 90 steps (h) After 180 steps
ration

(i) TreeCut links after 45 steps (j) After 90 steps

Figure 6: Comparison of the SoftBody and the TreeCut. A fixed time step is used
to generate the different configurations. In the last row, the links of the simulation are
visualized. The highlighted links are being replaced by the TreeCut-operations. In case
of the TreeCut-SoftBody, only an approximate surface reconstruction is applied. Yet, the
detail is retained in the fast moving center region.
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