
Model-Based Testing in Practice

Mark R. Blackburn, Robert D. Busser, Aaron M. Nauman, Travis R. Morgan

Systems and Software Consortium/T-VEC Technologies, Herndon, VA

Abstract: This paper discusses the use of model-based testing tools on a command and

control application, and describes some key guidelines and benefits that were identified

during the deployment of the model-based testing tools on this application.

1 Introduction

The integrated environment generically referred to as the Test Automation Framework

(TAF) integrates government and commercially available model development and test

generation tools. TAF integrates the DOORS® requirement management tool with the T-

VEC Tabular Modeler (TTM) that supports the Software Cost Reduction (SCR) method

[HJL96] for requirement modeling. DOORS integrates also with Simulink®, which supports

design-based models, and TAF integrates requirement models with design models to provide

full traceability from the requirements source to the generated tests, as reflected in Figure 1.

SimulinkSimulink

T-VEC SystemTTM/SCR

• Design Capture

• Simulation

• Code Generation

•Static Model Analysis

•Test Generation

•Coverage Analysis

•Test Driver Generation

•Test Results Analysis

• Requirements Capture

• Bridge From Informal Requirements to
Formal Design

Simulink

Tester

Simulink

Tester

Requirements/Design Capture

Captured Model Translation

DOORS

Figure 1. TAF Integrated Environment

Users have reported on the benefits of TAF’s model-based testing support in terms of cost

savings through test automation [St99, St00], early identification of requirement defects to

reduce rework cost [Sa00], systematic support to identify critical system defects [BBKK01],

advanced capabilities [BB04], and applicability to other domains such as security [CB03,

BC04].

197



The paper discusses model-based testing tools and processes applied to a command and

control application. The same basic processes have been applied to other applications within

other application domains such databases, smart cards, language processing, client-server,

distributed processing, avionics, and medical systems. The common process activities are

applicable to software unit, integration, and system-level testing. Models typically describe

the functional requirements of a system or component, although TAF has been applied to

modeling security properties for a database [BBNC01]. The target implementations range

from web-based to embedded systems on various platforms and operating systems (OS) and

test drivers (aka test scripts) that were generated to support automated test execution in many

languages and data formats.

2 Command and Control Monitoring Application

This company that produces the system described in this paper produces large, complex

systems that often integrate with other large, complex systems. The application discussed in

this section performs a monitoring function for many elements of an onboard command and

control system. This, like many of the other systems, continues to be evolved, and there are

often many interactions among the various systems. The requirement specifications for this

element of the system span hundreds of pages. There are many related requirements, but

conflicting requirements are difficult to identify by inspection because they often are

packaged in different volumes with many versions. In addition, the testing process is manual

and performed on a requirement-by-requirement basis, which again leaves conflicting

requirements unidentified.

The MBT focused on software-system integration functionality that is tested manually. The

objectives were to demonstrate the capabilities of the TAF tools and method and help this

company do the following:

Assess how they can formalize requirements using models

Assess where test automation is feasible

Construct and demonstrate a test automation framework tailored to their system and

environment

Estimate the return on investment (ROI) over the existing manual test process

Learn how to adopt technology and tailor processes

3 Overview

The primary system component for the pilot project is called the Onboard Monitor (OM)

element (Note: The names of the system elements have been changed to ensure anonymity

198



for this company). This element is part of a larger system called MASTER. There is

requirement and interface documentation defined for this system, but important details,

known by project personnel, were not in the documentation. The modeled requirements and

associated tests primarily relate to messages received, processed, and transferred between

various components of OM. Currently, most of the testing is manual and performed against a

target, although there is a simulator called OMIPS that is used by the development

organization to support test scripting using a language call Slang Script.

The OM system interfaces with several other system elements, as reflected in Figure 2. From

a high-level point of view, the MASTER system is composed of the OM, and other elements

that support tracking, decision logic processing for issuing commands, as well as the

interfaces to the operator.

Timer Types Message Types

MASTER

System

Onboard

Monitor

(OM)
Tracking

Decision

Logic

& Command

Elements
Operator

Interface

Common

Interface

Modes

Subsystems/

Components

. . .

Command

Processor

(CP)

Interface

Processor

(IP)

Data

Recorder

(DR)

Figure 2. Model Hierarchy

Figure 3 provides a high-level perspective of the typical modeling process for the program.

The objective is to use available requirement-related information, which comes in B-spec-

like requirement documents, detailed interface specifications for the various messages, and

some informal pictures that reflect analysis derived from requirement documentation and

domain knowledge of the project engineers. Requirement models are specified in TTM,

translated and T-VEC produces test vectors. The modeler, working with the requirement and

design engineers, must correct requirement defects. Interface information is used to relate

model variables to the actual system interfaces (API, message, etc.), and that supports

automatic test driver generation of scripts that execute against a host, target or simulated

system.

199



The combined company and TAF team (referred to as the MBT team) carried out the TAF

evaluation over three different phases. During the first phase, the TAF team was successful

in developing models for various requirements and scenarios that were allocated to the OM

system. Working from the documentation and knowledge from the key engineers 67

requirement threads were modeled resulting in 121 test vectors during the first 2 days of the

pilot project.

Test Vector
Generator

Test Driver
Generator

TAF Model
Translator

T-VEC Tablular Modeler

Test Environment

Tester
(Modeler)

Requirements
Engineer

Designer/Implementer

Interface

spec

Requirements

specification

Test Result
Analyzer

Test results

compared

against

expected results

Test driver is generated

from translated model

and generated tests and

executes in test

environment

Test engineer builds model to

capture required behavior

and logical variations of data

and control

Test driver object

mappings relate

model variables to

API services

Test Driver
Object Mappings

Figure 3. Model and Test Automation Overview

One of the modeled scenarios reflects the timed sequence interaction between two

subsystems of the OM system (CP and IP), and the interaction to the OM. An example

textual specification follows:

If in the Start state (mode), the incoming message is 100, the prompt is YES, and

the IP is UP, then the system should transition to the Prompt state.

If in the Start state, the incoming message 104, the prompt is YES, and the IP is

DOWN, then the system should transition to Failure state.

If in the Prompt state, the incoming message is 111, the prompt is YES, and

prompt_timeout < PROMPT_TIMEOUT (has not timed-out), then the system

should transition to the Ready state.

After developing models for a number of these different scenarios, the team discovered that

there were common models such as those reflected in Figure 2 called Timer Types and

Message Type. TTM has model-include capabilities that allow a model of the requirements

to be created once and then reused within other models for other related requirements.

Between the first and second pilot visits, the key modeler from the company developed a

model that had 52 requirement threads with 77 unique test vectors. During the second phase,

200



the MBT team focused on developing test drivers for this model. The team developed a

Slang Script that was executed through the OMIPS simulator, and produced actual results

that were observable in the data recorder logs produced by the OM system. The pilot project

helped in the following ways:

Identified limitations in the OMIPS simulator; it could execute only about 20 test

vectors per test script. The programmability of the test driver generator helped to

overcome this limitation, the team modified the test driver schema to break large

test driver script files into incremental files, each containing 15 test vectors.

Identified some design for testability issues that need to be addressed with both OM

system and OMIPS to provide more general support for test automation.

OMIPS simulator developers and the OM system developer agreed to modify both

systems in future versions to support greater testability. For example, one key

change would increase test automation by providing GUI events issued using

messages rather than by a manual interaction with the system; this would permit the

OMIPS simulator to issue a program-generated message to the OM system without

a human in the loop. Such commands could be generated by TAF.

The MBT team next focused on the final stages of the test automation process, including

automated test execution, results analysis, and test report generation. The team created a test

results analysis program that extracted actual outputs from the raw OM data recorder

information. These data recorder records provide the actual test outputs that are compared

against the expected outputs produced by TAF. The comparison is recorded in an HTML test

report file. Figure 4 shows the conceptual environment.

Expected Outputs

Data
Recorder
Output

Cross
Compare

Test Results Report

Test Driver
Generator

Test Driver Files
(Slang Scripting Language)

T-VEC Tabular Modeler
Models created for

functional requirements
and interfaces for message

Test Vector
Generator

PC/Windows UNIX

System
Elements
Simulator

Onboard
Monitor

(~20 processes)

Figure 4. Fully Automated Test Automation Process Flow for OM Testing

201



4 Key Guidelines

Adopt a Technology Transition Plan. Companies should adopt a technology transition plan

that grows the staff from the specialist developed in a prior project or pilot effort. The key

modeler for this company demonstrated the skills of a model-based testing technologist,

fulfilling the roles of both a modeler and test automation architect. He/she should be capable

of carrying the recommended technology transition by leading one to six people in the use of

the aforementioned process for a small set of requirements for the next release of some

system baseline. The follow-on project then has additional team members to expand the

team, where each person can mentor one to three additional people. When a company has a

base of three to four project-experienced, model-based testing technologists, a larger group

of 15 to 20 people can be trained to start a large project.

Use Model-Based Testing With Other Types of Testing. Model-based testing does not

have to be all or nothing. Model-based testing can support a large percentage of the testing

process, with a need to perform other types of testing. For example, there are two classes of

messages processed by the OM system: solicited and unsolicited. According to this

company’s resident expert, at least 70% of the messages sent to OM are unsolicited

messages, sent by other OM elements that must be processed by OM without additional

communication with the other elements. Figure 4 shows a complete end-to-end test

infrastructure and process for handling unsolicited messages.

Collaborate With Developers to Add Testability Support. For solicited messages, which

are initiated by OM, usually through manual event, there is a need to enhance the testability

of the current OM system in order to achieve complete test automation. External to the OM

system, there is a need to have better controllability to simulate the external environment

without manual intervention. It is also necessary to have some additional enhancements to

the system for predictable observability of the test outputs. The team discussed the need, with

the developer, to add a programmatic interface to the system that would allow external

programs to stimulate system events such as solicited messages. The lead developer said it

would be feasible and relatively inexpensive to implement the recommended programmatic

interface in the next release.

Use Simulation for Early and Continuous Testing. Coincidently, the OMIPS simulation

team was planning to develop a new simulator, and they were open to taking new

requirements. Although there were a few limitations in the old OMIPS simulator, the MBT

team’s use of the simulator was valuable in providing requirements to further enhance their

simulator. We were able to overcome the OMIPS limitation where the system cannot execute

a Slang Scripts with more than about 20 tests. We modified the schema to produce multiple

test driver files containing only 15 test cases each. We added a parameter that can be used to

configure the test driver schema to put any number of test cases in a single test driver file.

202



Leverage System Internals for Analyzing Actual Test Outputs. Design for testability is

key to test automation because it is important to be able to programmatically set inputs or

initiate events, as well as obtain outputs that reflect the system behavior. The OM system

receives thousands of messages but does not necessarily send out a response for each

message; however, it does have a data recorder (i.e., internal logging) that collects all

message inputs and associated process outputs. The project lead determined the raw data

recorder file could be processed to extract actual outputs for automated test results analysis.

The MBT team developed an OM test results comparison program in Perl to extract the

actual outputs from the data record file and compare them with the expected outputs

produced by the test vector generator, while producing an HTML test results report.

5 Results

The MBT pilot effort was successful in demonstrating an automated, end-to-end test process,

as shown in Figure 4, that could be an order of magnitude more comprehensive than manual

testing with 50% less time and cost. Prior to the pilot project, nearly all system and

integration testing was a completely manual process. The pilot demonstration resulted in a

few hundred test cases that represented several thousands of cases that are normally executed

manually when the system capability is first developed, but then manually executed many

times for each time the system is regression tested. The pilot project results are significant

because the demonstrations reflected the feasibility to apply test automation to a significant

base of the functionality of the system; for example the demonstrations were conducted using

OM message requirements that represent 70% (or possibly more) of OM message

processing, for which tests are currently performed manually. To carry out additional testing

using this TAF process will require some minor changes to OMIPS and OM.

There are many other intangible ROI benefits. This process and the supporting test

infrastructure used to support this pilot demonstration were 80% to 90% complete and

relatively stable to support all follow-on testing. In addition, the team identified several

requirements for the testing infrastructure that could further automate the process or change

the underlying process for the organization. For example: Once an automated test suite

exists, it can be run each time a build of the system occurs, allowing developers to identify

bugs earlier in the process and making it easier to understand the specific changes that

introduced a defect into the system rather than waiting weeks or months before manual

testing is performed. The pilot project requirements and models were used to tailor the TAF

training class exercise that were then delivered to company personnel that worked on

different system elements.

Another important benefit that was observed during the requirement modeling process is that

important requirement details often are not reflected in the requirement documents. Once the

model is developed, these important details are captured (from domain experts). Related

203



requirements that often span different pages in a requirement document are captured in the

same model. Companies often find that the captured models are the most valuable asset

because they not only specify requirements in a non-ambiguous manner, but they are the

source of the tests that can be generated systematically to provide complete test coverage

from the requirements.

The first use of this technology requires some learning, but the first use by other companies

indicates that even in the first use there is a significant increase in test coverage in less time

than with existing manual processes. The key ROI gains should be obtained with each

additional regression testing session that occurs. For this company, the time required for

regression testing is essentially the same as it is to test the first time. With this automated

process, the time to perform regression testing is easily less than 50% of the original time

and cost and can be as little as 10%.

6 References

[BB04] Busser, R.D., L. Boden, Adding Natural Relationships to Simulink Models to Improve

Automated Model-based Testing, Digital Avionics Systems Conference, October 2004. See

http://www.software.org/pub/externalpapers/papers/busser-2004-2.doc.

[BBNC01] Blackburn, M.R., R.D. Busser, A.M. Nauman, R. Chandramouli, Model-based Approach to

Security Test Automation, In Proceeding of Quality Week 2001, June 2001.

[BBKK01] Blackburn, M. R., R.D. Busser, R. Knickerbocker, R. Kasuda, Mars Polar Lander Fault

Identification Using Model-based Testing, NASA Software Engineering Workshop,

November 2001. See

http://www.software.org/pub/taf/downloads/mars_polar_lander_2001.pdf.

[BC04] Blackburn, M. R., R. Chandramouli, Using Model-Based Testing to Assess Smart Card

Interoperability Conformance, International Conference on Computing, Communications and

Control Technologies, Austin, August 2004.

[CB03] Chandramouli, R., M. R. Blackburn, Model-based Automated Security Functional Testing ,

7th Annual Workshop on Distributed Objects and Components Security (DOCSEC),

Baltimore, MD, April 2003.

[HJL96] Heitmeyer, C., R. Jeffords, B. Labaw, Automated Consistency Checking of Requirements

Specifications. ACM TOSEM, 5(3):231-261, 1996. See

http://chacs.nrl.navy.mil/personnel/heitmeyer.html.

[Sa00] Safford, Ed, L. Test Automation Framework, State-based and Signal Flow Examples,

Twelfth Annual Software Technology Conference, May 2000.

[St99] Statezni, David, Industrial Application of Model-Based Testing, 16th International

Conference and Exposition on Testing Computer Software, June 1999.

[St00] Statezni, David. Test Automation Framework, State-based and Signal Flow Examples,

Twelfth Annual Software Technology Conference, May 2000.

204


