
Model-driven Engineering for Dynamic Data Structures∗

Jan H. Boockmann, Kerstin Jacob, Gerald Lüttgen
Software Technologies Research Group, University of Bamberg, Germany

{firstname.lastname}@swt-bamberg.de

Abstract

Model-driven engineering (MDE) has become a key
technology in such diverse fields as signal processing,
control engineering and software engineering. Our re-
search has adopted the MDE paradigm for the analysis
of complex software involving dynamic data structures,
e.g., of device driver managers that employ custom list
structures. Here, the central model studied by us is
logic predicates that describe data structure shapes.

This paper highlights aspects of our research on how
shape predicates can support a range of activities: au-
tomated code generation for defensive programming,
visualization for program comprehension and test case
generation and formal verification for quality assur-
ance. We discuss the commonalities and differences to
the MDE of control-intensive systems and outline how
our test case generation approach may be adapted to
complex object-oriented software.

Keywords: model-driven engineering, shape pred-
icate, program comprehension, test case generation

1 Introduction

Model-driven engineering (MDE) [10] has vastly broad-
ened the role of software models from documentation
and analysis artifacts to drivers for automation. It
has found its way into many application areas and is
nowadays supported by a variety of academic and com-
mercial tools; consider, e.g., signal processing with its
block diagrams and NI’s LabView tool1, control engi-
neering with its added state machines and Mathwork’s
Simulink/Stateflow2, and software engineering with its
class diagrams and Yatta’s UML Lab3. Notable here
is the use of visual languages and the support of a va-
riety of development and quality assurance activities,
especially code and test case generation, simulation,
and verification by model checking (see Figure 1, items
labelled (1) and (3)).

Our research highlighted in Section 2 adopts the
MDE paradigm for the analysis of complex software
systems with dynamic data structures. Such pointer-
based structures are typically encapsulated in program-

∗This research is partially supported by the German Research
Foundation (DFG) under project DSI2 (grant no. LU 1748/4-2).

1http://ni.com/de-de/shop/labview/
2http://de.mathworks.com/products/stateflow.html
3http://uml-lab.com

Model

(1) state machine
(2) shape predicate
(3) UML class diagram with OCL constraints

Code
Generation

(1) e.g. VHDL

(2) secure wrappers
for input valida-
tion (see Sect. 2.2)

(3) class and method
templates

Test Case
Generation

(1) conformance
testing

(2) negative test data
(see Sect. 2.4)

(3) negative test data
(see Sect. 3)

Simulation &
Visualization

(1) state machine
execution

(2) program state
comprehension
(see Sect. 2.3)

(3) object/class dia-
gram visualization

Formal
Verification

(1) model checking

(2) shape predicate
extraction
(see Sect. 2.5)

(3) contract-based
verification

Figure 1: Application context of model-driven engineering
in the context of (1) state machines, (2) shape predicates,
and (3) UML class diagrams with OCL constraints.

ming libraries or run-time environments. One particu-
lar focus of us is system-level software that uses highly
customized, nested dynamic data structures, e.g., for
device driver4 and file system management, in order
to achieve highly performant solutions. Understanding
and verifying such software is crucial for developing de-
pendable, reliable, and secure systems. In our domain,
the models of interest are not visual but logical, namely
shape predicates phrased in, e.g., separation logic [15],
which characterize complex pointer structures such as
doubly-linked lists that contain lists or topological sort
trees with lists that run through tree nodes.

Similar to classical MDE models, shape predicates
can be used for various activities (see Figure 1, items
labelled (2)): automatic generation of wrapper code for
pointer input validation at trust boundaries [17], test
case generation for structural integrity checks of the dy-
namic data structures behind pointers [1], visualization
of evolving structures within memory graphs [4, 5], and

4http://libusb.info/

http://ni.com/de-de/shop/labview/
http://de.mathworks.com/products/stateflow.html
http://uml-lab.com
http://libusb.info/

formal program verification with tools such as KeY5.
While shape predicates may be provided by engineers
during software design, one focus of our research is pro-
gram comprehension, e.g., in the context of software
reengineering, where we extract shape predicates from
program executions [3] and use our visualization tools
for debugging complex program states [5].

We believe that our MDE-inspired techniques devel-
oped for dynamic data structures have also something
to offer the MDE of object-oriented software which also
require structural integrity checks. Typically, object-
oriented structures are modeled, e.g., by UML class
diagrams with OCL constraints [7] or, alternatively, in
Alloy [16]. While most MDE tools focus on code gen-
eration (e.g., UML Lab 3), visualization (e.g., USE 6),
and verification (e.g., KeY5), the activity of test gener-
ation is, in our opinion, not yet supported to full extent.
We outline in Section 3 how our test case generation
technique based on shape predicates may be lifted to
object-oriented software and benefit the validation of
object structures passed to methods.

2 MDE for Programs with Dynamic
Data Structures

Dynamic data structures are essential for storing, re-
trieving, and operating on information, which makes
their correct functioning highly relevant for system cor-
rectness. Our work uses shape predicates [8] as models
of dynamic data structures for various automation pur-
poses: wrapper generation for input validation, visual-
ization for program comprehension, test case genera-
tion, and formal verification for quality assurance. In
the following, we discuss our different approaches for
automation based on shape predicate models, as well
as the analogies and differences to the traditional MDE
of control-intensive systems.

2.1 Modeling Dynamic Data Structures

Dynamic data structures can be modeled, e.g., by
shape predicates [8], to reason about their structural
properties exhibited at runtime. For example, a binary
tree, where each node has a left and a right reference,
has to fulfil three structural constraints: child nodes
must be distinct, cycles must not exist, and each node
must have at most one parent node.

Separation logic [15] has been used successfully in
research and industry projects as a modeling language
to concisely define dynamic data structures. The logic
simplifies the modeling of program heaps via its sepa-
rating conjunction operator “∗”, which divides a heap
into disjoint segments. This allows one to elegantly ex-
press inductive data types that characterize dynamic
data structures, including structures with backlinks,
e.g., doubly-linked lists.

5http://key-project.org
6www.db.informatik.uni-bremen.de/projects/USE-2.3.1/

The following separation logic predicate bt encodes
the linkage pattern exhibited by a binary tree:

bt(n)
def
= (emp ∧ n = nil)

∨(∃l, r. n 7→ 〈l, r〉 ∗ bt(l) ∗ bt(r))

Here, the base case of an empty tree, i.e., an empty
heap segment, is specified by the predefined predi-
cate “emp”, and value “nil” denotes a null pointer.
In the inductive case, operator “7→” in n 7→ 〈l, r〉 in-
dicates that argument n points to a valid memory re-
gion containing two pointers “〈l, r〉”. The predicate is
subsequently invoked twice with l and r as argument,
respectively. The separating conjunction requires the
memory regions of the left sub-tree, the right sub-tree,
and the current node to be disjoint, and thus implicitly
handles all three mentioned constraints.

In contrast, specification languages built upon
classical logic, such as the Java Modeling Lan-
guage (JML) [13], require explicit statements about
memory separation, typically resulting in less concise
specifications. Nevertheless, JML is often considered
more engineering friendly, because specifications are
written similar to boolean expressions in Java. How-
ever, less expressive pattern-based languages than JML
and separation logic may be preferred in an MDE ap-
proach for particular activities such as visualization,
due to their intuitive appeal.

1 void print_bt_wrapped(struct bt* root) {

2 struct mem_pool* mp = mem_pool_init();

3 bt(mp, root); // evaluate predicate bt

4 print_bt(root); // invoke function

5 mem_pool_free(mp);

6 }

7 void bt(struct mem_pool* mp, struct bt* this) {

8 if (!(this == 0)) {

9 struct bt* left = bt_left(mp, this);

10 struct bt* right = bt_right(mp, this);

11 // label memory region as visited

12 mem_chunk(mp, ((void*)this), sizeof(struct bt));

13 bt(mp, left); bt(mp, right);

14 }

15 }

Figure 2: Secure wrapper excerpt generated for predicate
bt by the approach of [17].

2.2 Generating Wrappers For Input Validation

To ensure that data provided to software compo-
nents at trust boundaries adheres to the expected
constraints, the defensive programming paradigm de-
mands a thorough input validation. However, writ-
ing input validation code manually is an error-prone
task, especially for complex objects such as dynamic
data structures. This is not unlike the situation when
implementing sequential control software from concur-
rent state machines, which motivated the automation
of coding. To automatically generate secure wrappers

http://key-project.org
www.db.informatik.uni-bremen.de/projects/USE-2.3.1/

which check whether a referenced memory structure
meets its specification, the work in [17] employs sepa-
ration logic shape predicates for specifying the format
of data exchanged at trust boundaries.

We studied in [6] how high-level data structure in-
formation can be translated to separation logic shape
predicates, to make the approach of [17] more accessi-
ble to engineers. Figure 2 depicts an excerpt of a secure
wrapper generated for our binary tree structure. The
excerpt evaluates the bt predicate for the memory loca-
tion specified by pointer root before invoking method
print bt; separation logic semantics is obeyed by stor-
ing visited memory regions in struct mem pool.

Figure 3: The cyclic RTL tree structure observed in the
GNU compiler, visualized as a flat memory graph (left)
and shape predicate summarization using the binary tree
segment (mid left) and directed acyclic graph segment pred-
icate in unfolded (mid right) and folded state (right).

2.3 Visualizing Memory Structures

Another focus of our research is the debugging of ex-
ecutable code. We are especially concerned with pro-
gram comprehension by enhancing the visualization of
program heaps with information about dynamic data
structures contained in the code. While the majority of
MDE tools usually simulate models, our visualization
approach utilizes our models, i.e., shape predicates, to
analyze a program state observed during debugging.

Our work in [5] introduces MGE (Memory Graph
Explorer), a memory analyzer and visualizer that com-
bines a shape predicate-based memory graph abstrac-
tion with an interactive visualization. Separation logic
shape predicates are matched against the observed
memory graph to identify and name data structure in-
stances. Thereby, the objects associated with an iden-
tified structure can be summarized in an interactive
visualization. In contrast to existing tools for mem-
ory graph visualization, our predicate-based abstrac-
tion can also derive meaningful summarizations for cor-
rupt data structure instances, where one or multiple
references have been set incorrectly. These deviations
often cause bugs and make debugging necessary in the
first place. In addition, our approach offers adjustable
abstractions for large heaps.

Figure 3 displays four different visualizations ob-
tained from MGE for a tree-like structure used by
the GNU compiler, which incorrectly contains a cycle
in the program state, causing the compiler to crash.
While the curved visualization style for cyclic edges

already makes the cycle location obvious, this mecha-
nism does not scale to large graphs. Our abstraction
employed by MGE is able to identify groups of objects
that adhere to a certain shape predicate and group
them in the visualization. Folding these groups of ob-
jects together and representing them as a single group
node retains a comprehensible visualization. Regard-
ing our binary tree example in Figure 3, a binary tree
segment predicate identifies four groups of objects and
the generalized directed acyclic graph segment predi-
cate identifies three groups, thus drastically simplifying
the manual search effort for the faulty cyclic edge.

class Long {}

class LinkedHashMap {
 Entry head;
 Entry tail;
 Entry[] table;}
class Entry {
 Entry after;
 Entry before;
 Entry next;
 Long value;
 MyKey key;}

class MyKey {}

:<java.util.LinkedHashMap>.table[_](.next)*

Figure 4: Definition of a heap pattern (top) for the
java.util.LinkedHashMap class (left), for transforming a
flat (mid) to a summarized memory graph (right).

While the ability of reusing shape predicates to in-
form program state visualization is beneficial, it is cum-
bersome to specify each object structure to be summa-
rized during debugging as a shape predicate. To tackle
this problem, our work in [4] extends MGE with the
concept of heap patterns, a lightweight language paired
with an evaluation semantics to characterize and iden-
tify object structures. Albeit less expressive than sep-
aration logic, heap patterns enable an intuitive style
of specifying object structures. They still achieve a
coarse-grained abstraction that is sufficient for detect-
ing unexpected object sharing and informing visualiza-
tion with object group hierarchies.

Heap patterns use a regular expression-like language
to describe paths in a memory graph. A collection of
paths that belong to the same heap pattern and orig-
inate from the same root object, describes a group of
objects. Figure 4 shows a description of the type in-
formation for class java.util.LinkedHashMap and a
heap pattern characterizing the objects associated with
this class at runtime. This heap pattern matches paths
starting at objects of class LinkedHashMap, followed
by an arbitrary object in the table array, followed
by dereferencing the next reference an arbitrary num-
ber of times. Considering the table array alone does
not suffice to capture all objects related to a Linked-

HashMap, because objects sharing the same hash are
chained via attribute next. Enriching the flat memory
graph visualization from Figure 4 with this heap pat-
tern allows us to summarize all data structure related
objects and display them as a single group node.

(1)

1

2 3

left right

(2)

1

2 3

left right

right

(3)

1

2 3

left right

right

Figure 5: A valid exemplary binary tree (1) and two invalid
trees (2–3) generated by a single mutation on instance level.

2.4 Generating Test Cases

Model-based testing traditionally centers around be-
havioral models, e.g., state machines or UML activity
diagrams, in contrast to structural models. While this
is beneficial for generating test steps, it makes pro-
ducing concrete test data difficult, especially when the
structure of objects is complex, as is the case for dy-
namic data structures. Similar to the wrapper genera-
tion topic introduced in Section 2.2, we are particularly
interested in validating the correctness of an input vali-
dation method. Although wrappers can in principle be
generated automatically, manually written code might
yield better performance, and testing can further en-
hance trust.

To this extent, our work in [1] introduces a novel
mutation-based approach for the automatic generation
of test inputs for input validation methods for dynamic
data structures. Negative test inputs, i.e., invalid data
structure instances, are of particular interest. Exist-
ing approaches in the field of bounded-exhaustive test-
ing [14] have difficulties in generating negative test in-
puts for complex data structures, simply because the
number of invalid data structure instances is often sig-
nificantly larger than the number of valid ones. In the
light of this, our approach stands out in that it gener-
ates small test suites of representative inputs.

Our approach receives a shape predicate of a data
structure as input. In a first step, we derive positive
test inputs up to a certain size (bound), i.e., valid
data structure instances that pass input validation.
These instances are then mutated wrt. their pointer
fields to derive mutated and possibly invalid test in-
puts, which should be detected by the input valida-
tion (see Figure 5). Further work [2] has extended our
approach with value mutations to corrupt data struc-
tures that reason about payload values, such as binary
search trees (BST), AVL trees (AVL), and red-black
trees (RBT). A preliminary evaluation (see Table 1)
shows that our approach produces fewer test inputs
than the prior state-of-the-art tool Korat [14] while
achieving an equally high instruction coverage.

2.5 Extracting Shape Predicates for Verification

Separation logic not only enables a concise characteri-
zation of complex object structures, but it also lends it-
self to the verification of programs operating on shared
mutable data structures. The well-known verifier Veri-
Fast [18] supports separation logic for C and Java pro-

Table 1: Preliminary evaluation benchmark results that re-
port, for the approaches Korat [14] and our single muta-
tion, the number of generated negative test inputs and their
achieved instruction coverage (prefix ‘*’ denotes optimal
coverage) for a data structure’s input validation method

Data
structure

Bound
(#nodes)

Korat Our Approach

#neg.
inputs

instr.
cov.

#neg.
inputs

instr.
cov.

BST
1 3 84% 2 84%
2 184 *94% 19 *94%

AVL
1 7 80% 3 80%
2 1640 *89% 30 *89%

RBT
1 15 29% 4 29%
2 8236 *92% 35 *92%

grams and checks whether a given program complies
with its specification encoded as a contract in the form
of pre- and postconditions to methods. When verifying
code containing dynamic data structures, a verifier typ-
ically requires an inductive shape predicate, like pred-
icate bt, describing the run-time structure of the data
structure. This is problematic because many software
engineers have little training in formal methods.

Our work in [3] addresses this problem by automati-
cally deriving candidate shape predicates from a set of
data structure instances obtained from memory snap-
shots taken at runtime. This serves a similar purpose
to extracting class diagrams from code, namely sup-
porting engineers with complex modeling tasks. To
handle memory graphs containing possibly nested data
structures, we first decompose the input graphs into
sub-graphs, each of which exhibits a single data struc-
ture. Then, we generate candidate shape predicates
of increasing complexity and retain only those that
lend themselves to characterize the memory graphs
provided as input. Our search algorithm also tack-
les complex shape predicates that require additional
arguments to encode backlinks. The following separa-
tion logic predicate btp encodes a binary tree with an
additional argument p to encode a parent pointer:

btp(n, p, s)
def
= (emp ∧ n = nil ∧ s = 0)

∨(∃ l, r, s1, s2. n 7→ 〈l, r, p〉
∗ bt(l, n, s1) ∗ bt(r, n, s2)

∧ s = 1 + s1 + s2)

The shape constraints (in roman font) of predicate btp
are automatically extracted by our approach and may
further be refined by verification engineers to also con-
sider additional properties, such as the size of the data
structure (in bold font), or payload values and their
relationships, such as sortedness.

CabinCrewPilot FlightAttendant
experience: Integer

isPilot
1 0..*

isSeniorFA
0..* 1

1 0..*
isCopilot

0..* 1..6
isFA

1 CabinCrew inv pilotAndCopilotAreDistinct:

2 (self.isPilot <> self.isCopilot)

3 CabinCrew inv seniorFAIsAmongFAs:

4 self.isFA->includes(self.isSeniorFA)

5 FlightAttendant inv experienceIsGreaterThanZero:

6 (self.experience > 0)

7 CabinCrew inv seniorFAHasMostExperience:

8 self.isFA->forAll(f:FlightAttendant |

9 (self.isSeniorFA.experience >= f.experience))

c1: CabinCrew

f1: FlightAttendant
experience = 10 8

isSeniorFA

f2: FlightAttendant
experience = 8

f3: FlightAttendant
experience = 9

isFA

isFA

p1: Pilot

p2: Pilot

isFA

isCopilot

isPilot

isPilot

Figure 6: UML class diagram (top) with OCL con-
straints (mid), and object diagram (bottom) of a valid in-
stance with a candidate value mutation ¬ and association
mutation ­.

3 Test Case Generation for Object-
oriented Software

While dynamic data structures employ a regular, recur-
sive pointer structure, the object structure of object-
oriented software is more diverse in terms of classes
and associations. In the course of MDE, code genera-
tion (e.g., by UML Lab3), verification (e.g., by KeY5),
and visualization (e.g., by USE6) approaches have been
developed that handle such diverse structures. How-
ever, the area of test case generation is, in our experi-
ence, not yet fully supported.

Just as with dynamic data structures, it is necessary
to check the object structure in order to identify poten-
tially corrupt data passed through interfaces. Due to
the diversity of references and constraints, such input
validation may not be trivial to implement and should
be tested thoroughly. We believe that our MDE-
inspired test case generation technique developed in
the context of dynamic data structures [1] can also be
applied to object-oriented software and help us to pro-
duce small sets of concrete, characteristic test inputs.

As a running example consider, a simple object-
oriented system for managing the cabin crew on an
airplane, i.e., pilots and flight attendants (FA), and the
rules for their team formation. The structural proper-
ties of such object systems are typically modeled with
UML class diagrams enriched with OCL constraints [7]
or, e.g., in the Alloy specification language [16]. Our

system’s structure is shown as a class diagram in Fig-
ure 6 (top) with four OCL constraints (bottom): The
cabin crew consists of a pilot and a copilot, which must
be distinct (see pilotAndCopilotAreDistinct). In
addition, the cabin crew has at least one senior flight
attendant and up to five additional flight attendants
with at least one year of experience (see seniorFAIsA-
mongFAs and experienceIsGreaterThanZero). The
senior flight attendant has the most experience of all
attendants (see seniorFAHasMostExperience).

Modeling tools for object-oriented software com-
monly offer the generation of instances of the mod-
elled structure, e.g., USE [11] and Alloy [12] gener-
ate exemplary object diagrams from a class diagram
using an OCL evaluator and an SMT solver, respec-
tively. Such tool support can be employed to gener-
ate positive test data, i.e., instances that satisfy the
given constraints [16]. However, characteristic negative
test data not satisfying the constraints is crucial for
assessing whether invalid object structures are passed
to methods. The two mutation-based approaches de-
scribed next are tailored to deriving negative test data
while reusing the above tools’ capabilities of generating
valid model instances.

Mutating at instance level In analogy with our
single pointer mutations applied to instances of dy-
namic data structures, one can construct negative test
data by injecting small faults into valid model in-
stances, e.g., by mutating associations between objects
or values within an object. Figure 6 (bottom) shows a
candidate object diagram for our CabinCrew example
with two exemplary mutations: ¬ setting the expe-
rience of the senior flight attendant to 0, thereby vi-
olating experienceIsGreaterThanZero and senior-

FAHasMostExperience, and ­ changing the target of
the isPilot association to the current copilot, thereby
violating pilotAndCopilotAreDistinct.

We consider instance mutations worthwhile to ex-
plore for object-oriented software, because they can
be applied independently of the specification language.
However, further research is required to apply our in-
stance mutation approach developed in the context of
dynamic data structures to object-oriented systems.
Suitable mutation operators for values and associations
in object-diagrams need to be proposed, and evaluated
wrt. to their achieved code coverage and fault-detection
capabilities for input validation methods.

Mutating at specification level Our instance mu-
tation approach is feasible for dynamic data structure,
because test inputs of small sizes typically suffice to
achieve a good coverage. In contrast, object-oriented
systems often operate on large program states that may
yield unmanageably large test suites when exhaustively
mutating instances.

To tackle the problem of generating a small but
characteristic set of test cases, we propose mutating

directly at specification level. Our envisaged muta-
tion operator is inspired by the concept of classifying
terms (CT) [11, 9] which derives more diverse test data
by manually providing additional constraints to spec-
ify equivalence classes among test inputs. Departing
from this, our mutation operator negates each exist-
ing constraint from the specification, thus resulting in
specifications that each describe a particular class of
negative test data.

The OCL specification of our running example con-
sists of four individual constraints each describing a
distinct property of the cabin crew system. We con-
struct mutated specifications by negating each of the
four OCL constraints, and generate instances from
these mutated specifications in the desired size. Com-
pared to instance-based mutations, the obtained nega-
tive test data can directly be linked to the incorrectly
implemented part of the specification, thereby fostering
traceability. For example, mutation ­ in Figure 6 (bot-
tom) is generated using our specification mutation
approach when negating constraint pilotAndCopi-

lotAreDistinct. In contrast, mutation ¬ invalidates
the two constraints experienceIsGreaterThanZero

and seniorFAHasMostExperience, and can thus either
be obtained by an instance mutation or by negating
both constraints.

Future work should assess whether negating sin-
gle constraints at specification level suffices to achieve
characteristic test data, or whether multiple negations
need to be considered, too. Similar to instance muta-
tions, the necessary size of generated negative test data
remains a question that requires further investigation.
This future research will strengthen the MDE of object-
oriented systems by automatically generating test data
wrt. structure and value constraint validation.

4 Conclusions

This paper presented our research on the analysis of
complex software systems with dynamic data struc-
tures, and compared and contrasted it to the tra-
ditional model-driven engineering of control-intensive
systems. Using shape predicates as structural models
of dynamic data structures, we contributed to tool-
supported methods to aid secure wrapper generation,
memory graph visualization, test case generation, and
formal verification.

While the classical MDE of control-intensive sys-
tems works with behavioral models and uses simulation
for their validation, our shape predicates are structural
models that drive visualizations for validating mem-
ory snapshots. In addition, while model-based testing
generates test cases from behavioral models, we em-
ploy shape predicates to generate test data for struc-
tural integrity checks. Such checks are also needed
in object-oriented software when passing object struc-
tures around, so our work on mutation-based test case
generation is also applicable there.

References

[1] J. H. Boockmann, K. Jacob, and G. Lüttgen. Towards
robustness testing of functions operating on dynamic
data structures. In Kolloquium Programmiersprachen
und Grundlagen der Programmierung (KPS), volume
2021/7, 2021.

[2] J. H. Boockmann, K. Jacob, and G. Lüttgen. Auto-
matic mutation-based test generation for data struc-
ture input validation. 2022. Submitted for publication.

[3] J. H. Boockmann and G. Lüttgen. Learning data struc-
ture shapes from memory graphs. In LPAR, volume 73
of EPiC Series in Computing, pages 151–168. Easy-
Chair, 2020.

[4] J. H. Boockmann and G. Lüttgen. Heap patterns for
memory graph visualization. IEEE, 2022. To appear
in VISSOFT.

[5] J. H. Boockmann and G. Lüttgen. Shape-analysis
driven memory graph visualization. In ICPC, pages
298–308. ACM, 2022.

[6] J. H. Boockmann, G. Lüttgen, and J. T. Mühlberg.
Generating inductive shape predicates for runtime
checking and formal verification. In ISoLA, volume
11245 of LNCS, pages 64–74. Springer, 2018.

[7] J. Cabot and M. Gogolla. Object Constraint Lan-
guage (OCL): A definitive guide. In SFM, volume 7320
of LNCS, pages 58–90. Springer, 2012.

[8] W. Chin, C. David, H. H. Nguyen, and S. Qin. Au-
tomated verification of shape, size and bag properties
via user-defined predicates in separation logic. Sci.
Comput. Program., 77(9):1006–1036, 2012.

[9] R. Clarisó and M. Gogolla. A feasibility study on us-
ing classifying terms in Alloy. In OCL, volume 2513
of CEUR Workshop Proceedings, pages 45–58. CEUR-
WS.org, 2019.

[10] A. Rodrigues da Silva. Model-driven engineering: A
survey supported by the unified conceptual model.
Comput. Lang. Syst. Struct., 43:139–155, 2015.

[11] F. Hilken, M. Gogolla, L. Burgueño, and A. Valle-
cillo. Testing models and model transformations using
classifying terms. Softw. Syst. Model., 17(3):885–912,
2018.

[12] D. Jackson. Software Abstractions — Logic, Language,
and Analysis. MIT Press, 2006.

[13] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A
notation for detailed design. In Behavioral Specifica-
tions of Businesses and Systems, volume 523 of Kluwer
Intl. Series in Engin. and Comput. Sci., pages 175–
188. Springer, 1999.

[14] A. Milicevic, S. Misailovic, D. Marinov, and S. Khur-
shid. Korat: A tool for generating structurally com-
plex test inputs. In ICSE, pages 771–774. IEEE, 2007.

[15] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In LICS, pages 55–74. IEEE,
2002.

[16] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid.
Automated test generation and mutation testing for
Alloy. In ICST, pages 264–275. IEEE, 2017.

[17] N. van Ginkel, R. Strackx, and F. Piessens. Auto-
matically generating secure wrappers for SGX enclaves
from separation logic specifications. In APLAS, vol-
ume 10695 of LNCS, pages 105–123. Springer, 2017.

[18] F. Vogels, B. Jacobs, and F. Piessens. Featherweight
VeriFast. Log. Methods Comput. Sci., 11(3), 2015.

	Introduction
	MDE for Programs with Dynamic Data Structures
	Modeling Dynamic Data Structures
	0.97[1.0]Generating Wrappers For Input Validation
	Visualizing Memory Structures
	Generating Test Cases
	0.94[1.0]Extracting Shape Predicates for Verification

	Test Case Generation for Object-oriented Software
	Conclusions

