Real-time programming using a
real-time language of intermediate

level

B. EICHENAUER
Elektronik System GmbH, Minchen, W. Germany

1. Introduction

The higher programming languages such as
ALGOL 60, FORTRAN and PL /1 for digital com-
puter systems used in business, technology and
science have enabled users with little knowledge
of the systems themselves to use them cost-
effectively in practice. On the other hand, users
who wish to solve real-time problems by digital
computers must have comprehensive experience
in handling their particular types of machines,
and have to spend much time in formulation and
debugging of programs.

The last few years have seen several attempts
to simplify the use of digital computers in the
field of real-time applications. Today, there are
.essentially three views on how the difficulties can
be overcome.

The first way, pursued since the beginning of
the sixties, involves the development of special-
purpose packages [1, 2, 3] and problem-oriented
languages [4, 5, 6,7] for special fields in real-
time applications.

Experience in the use of special-purpose
packages and of problem-oriented languages
shows that differences between problems in one
application field are usually so substantial that
only a small part of the field for which a package
or a language was made can be covered. With the
development of technology, packages and problem-
oriented languages have to be modified, resulting
in a great number of packages, problem-oriented
languages and dialects of these languages. In the
field of automatic check-out, for instance, there
are at least 30 languages and dialects, but to my
knowledge not one of these languages can com-
pletely formulate the simple function test problem
treated below on language level.

The second way to overcome the difficulties

involves the development of intermediate-level
languages like CORALG66 [8], allowing only for the
algorithmic program parts which can be translated
in efficient code. In these languages most of the
features relevant to real-time programming, i.e.
tasking, timing and process-I1/0, are left quite
open. Real-time programming is carried out by
calling the functions of the target-computer
operating system.

This means of simplifying the problem may
allow faster formulation of programs, as com-
pared with assembler programming, but the main
disadvantages of current methods are still present.
For instance, every user must know the actual
surrounding manufacturer software nearly as well
as when using assembler languages. The docu-
mentation and the portability of programs is
restricted by the dependence of the target compu-
ter.

The third method, used, for example, in
INDACS8 [9], PAS1 [10] and PEARL [11], consists
in adding to algorithmic language features of
intermediate level a sufficient set of basic real-
time and I/0 features of comparable language
level. As the algorithmic features of intermediate-
level languages such as ALGOL or FORTRAN can
be used to formulate any numerical algorithms,
the basic real-time features should allow separa-
tion of application problems in loosely connected
processes [12], and formulation of any corres-
pondence of a process with the surrounding world.

A detailed explanation of the above set of
language elements cannot be given here. Instead,
we describe the solution of a simplified automation
problem in the process and experiment automation
real-time language PEARL, which we believe to
be the most advanced language for real-time
programming at present.

115

TEST STATION 1

) N — 1

Fig. 1

2. Programming example

The example is taken from the PEARL report
[11].

2.1 Problem

Figure 1 shows a test installation consisting of
two identical test stations and of a programmable
power supply. The function test for four different
types of diode has to be carried out at the test
stations.

After the start of the automation program by
the operator the computer switches on the power
supplies of the two test stations (output to
POWERSUPPLY) and adjusts the reverse voltage
depending on the type of diode to be tested (output
to VOLTAGESELECTOR).

The first step of the function test is to connect

116

o S D
@ i —4RED!
——————————— -
T \T__ ________ —<QCONCT1
—) » CURRI
= »STARTS
TEST STATION 2
® I =" T T T {GREEN2
® = S I T 3RED2
S R S —_—Teie)\ [0
PN
b —» CURR2
. —»START2
POWER
— SUPPLY
<VOLTAGESELECTOR
~{POWERSUPPLY

Test installation

the diode to one of the test stations. Then the
start button of the chosen test station is pressed
to start the test program of the station (input from
STARTI1 resp. START?2).

The test program applies the reverse voltage
to the diode (output to CONCT1 resp. CONCT2),
measures the reverse current (input from CURR1
resp. CURR2) and removes the reverse voltage
(output to CONCT1 resp. CONCT2).

If the measured reverse current exceeds a
type-dependent maximum, a red lamp on the
instrument panel has to be switched on for 2 sec
(output to REDI1 resp. RED2). Otherwise a green
lamp is switched on (output to GREEN1 resp.
GREEN2).

The number of diodes not operating and the
total number of diodes are counted for every test
station and must be recorded at the end of the
test period, or the type of diode must be changed.

Channel 1,Bit 1-6

BVOLTAGE -
SELECTOR
Channel 2,Bit 1-2 »POWER -
' SUPPLY
Channel 2, Bit 3-4 »RED1
Digital | channel 2,Bit 5-6
Output » GREEN1
Device: Channel 3,Bit1-2
DIGOUT FRER2

Channel 3,Bit3-4 BGREEN2

Channel 3,Bit5-6

$CONCT1
Channel 1 Channel 4,Bit1-2 »CONCT?2
Computer: Channel: | channel 2-3
—N
COMP CHAN Channel 4
= A/D Con- [Channel 1 4CURRI
verter:
Interrupt line 3 ADCMUX R ADCMUX | Channel 2 4CURR2
CON-
SOLE
1/0 Device:
Interrupt line 4 TTY READY TTY
Interrupt line 12 START!
Interrupt line 13 START2
Fig. 2 Configuration of process periphery
2.2 Configuration of the computing system have to be identified by names.

The automation algorithm for the function test
Figure 2 shows the configuration of a hypothetical problem has been divided into three parallel resp.
computing system servicing the test installation. quasi-parallel executable program parts named
TESTPROB, TEST1 and TEST2.
The main-task TESTPROB is activated by the
‘2.3 Automation program operator by input to the standard-1I/0-device
CONSOLE (e.g. with the control statement:
The PEARL automation program consists of two ACTIVATE TESTPROB PRIO 3).
program sections — the so-called SYSTEM-section To allow for parallel working of the test
and the PROBLEM-section. In the system section stations the service programs for the stations are
the configuration of the computing system shown isolated by introducing the tasks TEST1 and TEST2.
in Fig. 2 is described. To allow for configuration- TEST1 resp. TEST2 will be activated after inter-
independent programming of automation algorithms rupt STARTI1 resp. START2 has occurred.
in the problem division, all process end-points

MODULE LIBRARY DIODETEST;
/* PEARL EXAMPLE PROGRAM: FUNCTION TEST PROBLEM =*/

SYSTEM;
/* CONNECTION OF STANDARD DEVICES: */
comMp <=> CHAN;
CHAN % 1 -> DIGOUT;
* 2 % 1,12 <= ADCMUX;
— <-> CONSOLE: TTY;

117

/* PROCESS END POINTS: */

VOLTAGESELECTOR: <= DIGOUT * 1 * 1,6;
POWERSUPPLY: <- * 2 % 1,2;
RED1: <- * 2 % 3,2;
GREEN1: <- *x 2 x 5,2;
RED2: <~ * 3 % 1,2;
GREENZ2: <- * 3 x 3,2;
CONCT1: <- *x 3 % 5,2;
CONCT2: <~ * 4 x 1,2;
CURR1: -> ADCMUX * 1;
CURRZ2: => * 2;
/* CONNECTIONS OF INTERRUPTS: */
CONTACT(3) <- ADCMUX * R;
CONTACT(4) <- TTY * READY;
START1: CONTACT(12) <- :
START2: CONTACT(13) <- :
/* END OF SYSTEM DIVISION =/
PROBLEM;
DCL (START1,START2) VAL INTERRUPT;
TASK TESTPROB GLOBAL HANDLE:
BEGIN
DCL /* STANDARD OUTPUT DEVICE: */

STANDARDWRITE VAL DVC = CONSOLE,

/* VARIABLES TO COUNT THE NUMBER OF TESTOBJECTS: =/

(TOTAL1,TOTAL2,NOGO1,NOGO2) INT := O,

/* VARIABLE TO STORE THE UPPER LIMIT OF REVERSE CURRENT:

TYPECURR INT,

/* STRINGS TO ADJUST THE POWERSUPPLY TO REVERSE VOLTAGE:

ADJUST(1:4) VAL BIN(6) = (°1060°B,*100°B,°10°B,*1°B),

/* UPPER LIMITS OF REVERSE CURRENT:
MAXCURR(1:4) VAL INT = (50,35,28,20),
/* COMMON CHARACTER STRINGS: =/
TEXT1 VAL CHAR(13) = °TEST STATION °,
TEXT2 VAL CHAR(28)
TEXT3 VAL CHAR(27) = °NUMBER OF INFERIOR GOODS
/* COMMON FORMATS: =*/
COM1 VAL FORMAT = F°S(13),S(1),5(28),,L",
COM2 VAL FORMAT F*(16)C,S(27) °;
- /* TEST PROCEDURE: */
DCL TEST PROC REENTRANT =
((UAMP, CONNECTOR,REDLAMP,GREENLAMP) VAL DVC,
(TOTALNUMBER ,NOGONUMBER) INT)
BEGIN DCL CURRENT INT;
TOTALNUMBER := TOTALNUMBER + 1;
/* MEASURE REVERSE CURRENT: =*/
MOVE °1°B TO CONNECTOR;
MOVE UAMP TO CURRENT;
MOVE °10°B TO CONNECTOR;

118

*/

: NUMBER OF TESTED DIODES = °,

'}

-— r

*/

*/

/* CONTROL OF REVERSE CURRENT: =*/
IF CURRENT > TYPECURR OR CURRENT < 2 THEN

/* NOGO BRANCH: */ MOVE ‘1°B TO REDLAMP;
DELAY 2 SEC;
MOVE ‘10°B TO REDLAMP;
NOGONUMBER :=NOGONUMBER + 1;

ELESIE
MOVE °‘1°B TO GREENLAMP;
DELAY 2 SEC;
MOVE ‘16°B TO GREENLAMP;
FI;

/* GO BRANCH: */

END /* OF TEST PROCEDURE */ ;
/* DECLARATION OF TASKS TO CONTROL THE TEST STATIONS: */
TASK TEST1: CALL TEST(CURR1,CONCT1,RED1,GREEN1,TOTAL1,NOGO1) ;
TASK TEST2: CALL TEST(CURR2,CONCT2,RED2,GREEN2, TOTAL2,NOGO2) ;

/* GET THE TYPENUMBER OF DIODE UNDER TEST: */
TYPEDEF: WRITE (DATE,TIME, ‘TYPENUMBER := *)

FORMAT((2) (,(2)C),S(14));
READ TYPECURR FROM CONSOLE FORMAT(,(2)L);
IF TYPECURR < 1 OR TYPECURR > &4 THEN
WRITE *INPUT ERROR: UNDEFINED TYPE'
FORMAT((10) C,S(34), () L) ;
GOTO TYPEDEF; FI;

/* SWITCH ON AND ADJUST POWERSUPPLY: */
MOVE ‘1°B TO POWERSUPPLY;
DELAY 2 MIN;
MOVE ADJUST(TYPECURR) TO VOLTAGESELECTOR;

/* STORE LIMIT OF REVERSE CURRENT AND INDICATE TEST BEGIN: */
TYPECURR := MAXCURR(TYPECURR);
WRITE (TIME, ‘TEST BEGIN‘) FORMAT (,SC10),(2)L);

/* CONNECT START INTERRUPTS TO CONTROL TASKS: */
ON START1 ACTIVATE TEST1;
ON START2 ACTIVATE TEST2;

/* SUSPEND MAIN TASK TESTPROB UNTIL OPERATORS® COMMAND: CONTINUE TESTPROB;
SUSPEND EXEPT TEST1,TEST2;
/* RECORD OF TEST RESULTS: */

TEST RESULTS:*,TEXT1,°1°,TEXT2,TOTAL1, TEXT3,NOGO1,
TEXT1,°2°, TEXT2,TOTAL2, TEXT3 ,NOGO2)

FORMAT(,S(15),(2)((2)L,COM1,COM2) ,P);
END /* OF MAIN TASK TESTPROB */ ;
MODEND /* OF MODULE DIODETEST #/ ;

WRITE (TIME,’

*/

1. '1800 process supervisory program (PROSPRO,/1800)", 3. 'BICEPS summary manual /BICEPS supervisory
IBM no. H 20-0473-1 (1968). control', GE Proc. Comp. Dept., A GET-3539 (1969).
2. BATES, D.G., 'PROSPRO/1800', IEEE Transactions 4. 'ATLAS abbreviated test language for avionics sys-

on Industrial Electronics and Control Instrumentation,
Vol. IECI-15, No.2, pp.70-75 (December 1968).

tems' ARINC Specification 416-1, Aeronautical Radio
Inc. (June 1969).

119

120

METSKER, G.S., 'Checkout test language: an
interpretive language designed for aerospace check-
out tasks', Fall Joint Comp. Conf., pp.1329-1336
(1968).

'Bendix OPTOL programming system', The Bendix
Corporation, Teterboro, New Jersey (March 1968).
'"PLACE The compiler for the programming language
for automatic checkout equipment', Battelle
Memorial Institute, Columbus Laboratories,
Technical Report AFAPL-TR-68-27 (May 1968).
'Official definition of CORAL66', Inter-Establishment
Committee for Computer Applications (February
1970).

CALLAWAY, A.A., 'A guide to CORAL programming’,
Royal Aircraft Establishment, Technical Report
70102 (June 1970).

10.

11.

12.

'INDAC8', Digital Equipment Corporation, Maynard,
Mass.

'PAS1 Prozess-Automationssprache 1', BBC
Mannheim.

BRANDES, J., et al., '"PEARL: A proposal for a
process and experiment automation real-time
language’', to be published by Projekt PDV, GFK
Karlsruhe.

DIJKSTRA, E.W., 'Co-operating sequential pro-
cesses', Programming Languages, F. Genuys (Ed.),
Academic Press, London (1968).

	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828

