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1. Introduction

The higher programming languages such as
ALGOL 60, FORTRAN and PL /1 for digital com-
puter systems used in business, technology and
science have enabled users with little knowledge
of the systems themselves to use them cost-
effectively in practice. On the other hand, users
who wish to solve real-time problems by digital
computers must have comprehensive experience
in handling their particular types of machines,
and have to spend much time in formulation and
debugging of programs.

The last few years have seen several attempts
to simplify the use of digital computers in the
field of real-time applications. Today, there are
.essentially three views on how the difficulties can
be overcome.

The first way, pursued since the beginning of
the sixties, involves the development of special-
purpose packages [1, 2, 3] and problem-oriented
languages [4, 5, 6,7] for special fields in real-
time applications.

Experience in the use of special-purpose
packages and of problem-oriented languages
shows that differences between problems in one
application field are usually so substantial that
only a small part of the field for which a package
or a language was made can be covered. With the
development of technology, packages and problem-
oriented languages have to be modified, resulting
in a great number of packages, problem-oriented
languages and dialects of these languages. In the
field of automatic check-out, for instance, there
are at least 30 languages and dialects, but to my
knowledge not one of these languages can com-
pletely formulate the simple function test problem
treated below on language level.

The second way to overcome the difficulties

involves the development of intermediate-level
languages like CORALG66 [8], allowing only for the
algorithmic program parts which can be translated
in efficient code. In these languages most of the
features relevant to real-time programming, i.e.
tasking, timing and process-I1/0, are left quite
open. Real-time programming is carried out by
calling the functions of the target-computer
operating system.

This means of simplifying the problem may
allow faster formulation of programs, as com-
pared with assembler programming, but the main
disadvantages of current methods are still present.
For instance, every user must know the actual
surrounding manufacturer software nearly as well
as when using assembler languages. The docu-
mentation and the portability of programs is
restricted by the dependence of the target compu-
ter.

The third method, used, for example, in
INDACS8 [9], PAS1 [10] and PEARL [11], consists
in adding to algorithmic language features of
intermediate level a sufficient set of basic real-
time and I/0 features of comparable language
level. As the algorithmic features of intermediate-
level languages such as ALGOL or FORTRAN can
be used to formulate any numerical algorithms,
the basic real-time features should allow separa-
tion of application problems in loosely connected
processes [12], and formulation of any corres-
pondence of a process with the surrounding world.

A detailed explanation of the above set of
language elements cannot be given here. Instead,
we describe the solution of a simplified automation
problem in the process and experiment automation
real-time language PEARL, which we believe to
be the most advanced language for real-time
programming at present.
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Fig. 1

2. Programming example

The example is taken from the PEARL report
[11].

2.1 Problem

Figure 1 shows a test installation consisting of
two identical test stations and of a programmable
power supply. The function test for four different
types of diode has to be carried out at the test
stations.

After the start of the automation program by
the operator the computer switches on the power
supplies of the two test stations (output to
POWERSUPPLY) and adjusts the reverse voltage
depending on the type of diode to be tested (output
to VOLTAGESELECTOR).

The first step of the function test is to connect
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Test installation

the diode to one of the test stations. Then the
start button of the chosen test station is pressed
to start the test program of the station (input from
STARTI1 resp. START?2).

The test program applies the reverse voltage
to the diode (output to CONCT1 resp. CONCT2),
measures the reverse current (input from CURR1
resp. CURR2) and removes the reverse voltage
(output to CONCT1 resp. CONCT2).

If the measured reverse current exceeds a
type-dependent maximum, a red lamp on the
instrument panel has to be switched on for 2 sec
(output to REDI1 resp. RED2). Otherwise a green
lamp is switched on (output to GREEN1 resp.
GREEN2).

The number of diodes not operating and the
total number of diodes are counted for every test
station and must be recorded at the end of the
test period, or the type of diode must be changed.
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Fig. 2  Configuration of process periphery
2.2 Configuration of the computing system have to be identified by names.

The automation algorithm for the function test
Figure 2 shows the configuration of a hypothetical problem has been divided into three parallel resp.
computing system servicing the test installation. quasi-parallel executable program parts named
TESTPROB, TEST1 and TEST2.
The main-task TESTPROB is activated by the
‘2.3 Automation program operator by input to the standard-1I/0-device
CONSOLE (e.g. with the control statement:
The PEARL automation program consists of two ACTIVATE TESTPROB PRIO 3).
program sections — the so-called SYSTEM-section To allow for parallel working of the test
and the PROBLEM-section. In the system section  stations the service programs for the stations are
the configuration of the computing system shown isolated by introducing the tasks TEST1 and TEST2.
in Fig. 2 is described. To allow for configuration- TEST1 resp. TEST2 will be activated after inter-
independent programming of automation algorithms rupt STARTI1 resp. START2 has occurred.
in the problem division, all process end-points

MODULE LIBRARY DIODETEST;
/* PEARL EXAMPLE PROGRAM: FUNCTION TEST PROBLEM =*/

SYSTEM;
/* CONNECTION OF STANDARD DEVICES: */
comMp <=>  CHAN;
CHAN % 1 ->  DIGOUT;
* 2 % 1,12 <= ADCMUX;
— <-> CONSOLE: TTY;
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/* PROCESS END POINTS: */

VOLTAGESELECTOR: <= DIGOUT * 1 * 1,6;
POWERSUPPLY: <- * 2 % 1,2;
RED1: <- * 2 % 3,2;
GREEN1: <- *x 2 x 5,2;
RED2: <~ * 3 % 1,2;
GREENZ2: <- * 3 x 3,2;
CONCT1: <- *x 3 % 5,2;
CONCT2: <~ * 4 x 1,2;
CURR1: -> ADCMUX * 1;
CURRZ2: => * 2;
/* CONNECTIONS OF INTERRUPTS: */
CONTACT(3) <- ADCMUX * R;
CONTACT(4) <- TTY * READY;
START1: CONTACT(12) <- :
START2: CONTACT(13) <- :
/* END OF SYSTEM DIVISION =/
PROBLEM;
DCL (START1,START2) VAL INTERRUPT;
TASK TESTPROB GLOBAL HANDLE:
BEGIN
DCL /* STANDARD OUTPUT DEVICE: */

STANDARDWRITE VAL DVC = CONSOLE,

/* VARIABLES TO COUNT THE NUMBER OF TESTOBJECTS: =/

(TOTAL1,TOTAL2,NOGO1,NOGO2) INT := O,

/* VARIABLE TO STORE THE UPPER LIMIT OF REVERSE CURRENT:

TYPECURR INT,

/* STRINGS TO ADJUST THE POWERSUPPLY TO REVERSE VOLTAGE:

ADJUST(1:4) VAL BIN(6) = (°1060°B,*100°B,°10°B,*1°B),

/* UPPER LIMITS OF REVERSE CURRENT:
MAXCURR(1:4) VAL INT = (50,35,28,20),
/* COMMON CHARACTER STRINGS: =/
TEXT1 VAL CHAR(13) = °TEST STATION °,
TEXT2 VAL CHAR(28)
TEXT3 VAL CHAR(27) = °NUMBER OF INFERIOR GOODS
/* COMMON FORMATS: =*/
COM1 VAL FORMAT = F°S(13),S(1),5(28),,L",
COM2 VAL FORMAT F*(16)C,S(27) °;
- /* TEST PROCEDURE: */
DCL TEST PROC REENTRANT =
((UAMP, CONNECTOR,REDLAMP,GREENLAMP) VAL DVC,
(TOTALNUMBER ,NOGONUMBER) INT )
BEGIN DCL CURRENT INT;
TOTALNUMBER := TOTALNUMBER + 1;
/* MEASURE REVERSE CURRENT: =*/
MOVE °1°B TO CONNECTOR;
MOVE UAMP TO CURRENT;
MOVE °10°B TO CONNECTOR;
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/* CONTROL OF REVERSE CURRENT: =*/
IF CURRENT > TYPECURR OR CURRENT < 2 THEN

/* NOGO BRANCH: */ MOVE ‘1°B TO REDLAMP;
DELAY 2 SEC;
MOVE ‘10°B TO REDLAMP;
NOGONUMBER :=NOGONUMBER + 1;

ELESIE
MOVE °‘1°B TO GREENLAMP;
DELAY 2 SEC;
MOVE ‘16°B TO GREENLAMP;
FI;

/* GO BRANCH: */

END /* OF TEST PROCEDURE */ ;
/* DECLARATION OF TASKS TO CONTROL THE TEST STATIONS: */
TASK TEST1: CALL TEST(CURR1,CONCT1,RED1,GREEN1,TOTAL1,NOGO1) ;
TASK TEST2: CALL TEST(CURR2,CONCT2,RED2,GREEN2, TOTAL2,NOGO2) ;

/* GET THE TYPENUMBER OF DIODE UNDER TEST: */
TYPEDEF: WRITE (DATE,TIME, ‘TYPENUMBER := *)

FORMAT((2) (,(2)C),S(14));
READ TYPECURR FROM CONSOLE FORMAT(,(2)L);
IF TYPECURR < 1 OR TYPECURR > &4 THEN
WRITE *INPUT ERROR: UNDEFINED TYPE'
FORMAT( (10) C,S(34), () L) ;
GOTO TYPEDEF; FI;

/* SWITCH ON AND ADJUST POWERSUPPLY: */
MOVE ‘1°B TO POWERSUPPLY;
DELAY 2 MIN;
MOVE ADJUST(TYPECURR) TO VOLTAGESELECTOR;

/* STORE LIMIT OF REVERSE CURRENT AND INDICATE TEST BEGIN: */
TYPECURR := MAXCURR(TYPECURR);
WRITE (TIME, ‘TEST BEGIN‘) FORMAT (,SC10),(2)L);

/* CONNECT START INTERRUPTS TO CONTROL TASKS: */
ON START1 ACTIVATE TEST1;
ON START2 ACTIVATE TEST2;

/* SUSPEND MAIN TASK TESTPROB UNTIL OPERATORS® COMMAND: CONTINUE TESTPROB;
SUSPEND EXEPT TEST1,TEST2;
/* RECORD OF TEST RESULTS: */

TEST RESULTS:*,TEXT1,°1°,TEXT2,TOTAL1, TEXT3,NOGO1,
TEXT1,°2°, TEXT2,TOTAL2, TEXT3 ,NOGO2)

FORMAT(,S(15),(2)((2)L,COM1,COM2) ,P);
END /* OF MAIN TASK TESTPROB */ ;
MODEND /* OF MODULE DIODETEST #/ ;

WRITE (TIME,’

*/
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