
cba

Gregor Engels, Regina Hebig, Matthias Tichy (Hrsg.): SE 2023,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2023 125

Vudenc: Vulnerability Detection with Deep Learning on a
Natural Codebase for Python – Summary

Laura Wartschinski1, Yannic Noller1, Thomas Vogel1 ,2, Timo Kehrer1 ,3, Lars Grunske1

Abstract: In this extended abstract, we summarize our work on Vudenc published in the journal
Information and Software Technology (IST) in 2022 [Wa22]. Vudenc uses deep learning to learn
features of vulnerable code from a real-world Python codebase and a network of long-short-term
memory cells (LSTM) is then used to detect vulnerabilities in code at a fine-grained level.

Keywords: Vulnerability detection; Python; Deep learning

Context. Developing secure software system is important to mitigate vulnerabilities that
otherwise could be exploited and have severe consequences such as loss, disclosure, or
manipulation of data, or system failures. To avoid or at least reduce code flaws causing
vulnerabilities, constructive engineering approaches can be used but need to be comple-
mented by analyatical techniques to detect vulnerabilities. However, a manual detection of
vulnerabilities requires expert knowledge and is time-consuming, and must therefore be
supported by automated techniques.

Objective. We aim for an automated vulnerability detection technique that should achieve a
high accuracy, point developers directly to vulnerable code fragments, scale to real-world
software, generalize across the boundaries of a specific software project, and require no or
only a moderate manual effort for the setup or configuration. We decided to focus on Python
software, which has not been addressed yet by vulnerability detection with deep learning.

Method. To achieve these objectives, we developed Vudenc (Vulnerability Detection with
Deep Learning on a Natural Codebase). It leverages deep learning to detect vulnerabilities in
Python software. For this purpose, it automatically learns features of vulnerable code directly
from a large and real-world Python codebase that we mined from GitHub and comprises
(before filtering) 25,040 vulnerability-fixing commits in 14,686 different repositories.
This dataset was labeled automatically according to the commit context and covers seven
vulnerability types: SQL injection, Cross-site scripting (XSS), Command injection, Cross-
site request forgery (XSRF), Remote Code Execution, Path disclosure, and Open Redirect.
Accordingly, Vudenc can learn features for these types and detect vulnerabilities of these
types. Using this dataset for training, Vudenc applies a word2vec model to identify
semantically similar code tokens and provide a vector representation for deep learning.
1 Humboldt-Universität zu Berlin, Department of Computer Science, Unter den Linden 6, 10099 Berlin, Germany.
{wartschinski, noller, thomas.vogel, kehrer, grunske}@informatik.hu-berlin.de

2 University of Paderborn, Department of Computer Science, Warburger Straße 100, 33098 Paderborn, Germany.
3 University of Bern, Department of Computer Science, Hochschulstrasse 6, 3012 Bern, Switzerland.

https://creativecommons.org/licenses/by-sa/4.0/


126 Laura Wartschinski, Yannic Noller, Thomas Vogel, Timo Kehrer, Lars Grunske

Particularly, a network of long-short-term memory cells (LSTM) is used to classify
vulnerable code token sequences at a fine-grained level, highlight the specific areas in the
source code that are likely to contain vulnerabilities, and provide confidence levels for its
predictions.

Results. After determining suitable hyperparameters for the word2vec model and the LSTM
model, we experimentally evaluated Vudenc on a test dataset of 1,009 vulnerability-fixing
commits from different GitHub repositories and with different vulnerability types. Vudenc
achieves a precision (i.e., the fraction of true positives in all positive predictions) of
82%-96%, indicating a very low false positive rate. The achieved recall (i.e., the rate of
positives that were correctly identified in comparison to the total number of actual positives)
of 78%–87% means that just 13%-22% of the samples labeled as vulnerable were missed.
The overall F1 score (i.e., the harmonic mean of precision and recall) ranges from 80%-90%,
which we see as a very satisfying result especially when considering related work and their
effectiveness.

Conclusions. Our experimental results suggest that Vudenc is capable of outperforming
most of its competitors in terms of vulnerably detection capabilities on real-world software.
A comparable accuracy was only achieved on synthetic benchmarks, within single projects,
or on a much coarser level of granularity such as entire source code files. In contrast,
Vudenc uses a real-word dataset across multiple projects and detects vulnerabilities at the
level of code fragments.

Data Availability. We provide a replication package covering the implementation and
documentation of Vudenc on GitHub4 and the following datasets on Zenode: the plain and
embedded datasets for the seven types of vulnerabilities5, the dataset of commits including
their diff files mined from Github6, and the Python corpus for training the word2vec model
as well as one trained model7.

Bibliography
[Wa22] Wartschinski, Laura; Noller, Yannic; Vogel, Thomas; Kehrer, Timo; Grunske, Lars: VUDENC:

Vulnerability Detection with Deep Learning on a Natural Codebase for Python. Information
and Software Technology, 144:106809, 2022.

4 https://github.com/LauraWartschinski/VulnerabilityDetection

5 https://doi.org/10.5281/zenodo.3559841

6 https://doi.org/10.5281/zenodo.3559203

7 https://doi.org/10.5281/zenodo.3559480

https://github.com/LauraWartschinski/VulnerabilityDetection
https://doi.org/10.5281/zenodo.3559841
https://doi.org/10.5281/zenodo.3559203
https://doi.org/10.5281/zenodo.3559480

