
PEARL-Rundschau, Heft 1, Band 3, April 1982 15

A PEARL Softwaresystem for Mutti-Processor Systems

Dr. P. Elzer1), Dr. H.-J. Schneider, Friedrichshafen

Most of today's and all future systems will be
processor based. There is a trend to multi­
processor-systems. This ist true for all types
of systems, not excluding airborne ones. Up to
now the majority of these systems is programmed
in assembly language, a very awkward and ex­
pensive j ob.

Seeing the difficulties arising from low level
coding, Dornier System implemented a High-Order­
Language-System based on PEARL to program Multi­
Processor-Systems in an airborne or similar
environment. From this environment certain condi­
tions for the implementation resulted. lt was
necessary to minimize the overhead produced by
the operating system. The generated code was
optimized to a very high efficiency with respect
to time and memory.

Originally the aim of PEARL was process-control.
Due to the application area here, subsetting of
PEARL was possible. This was done with high effi­
ciency of code and a smaller modular operating
system in mind.

On the other hand extensions to allow distributed
processing were implemented.

The systems consists of

- Language (Subset of BASIC-PEARL)

- Compiler

- Assembler

- Li nker/Loader

- Testing aids

- Special hardware for testing

lt exists on a host-computer and is written in
FORTRAN for portability. The target processors as

1lcurrently with Brown Boverie & Cie., Ladenburg

implemented up to now are DORNIER DP 432, AEG 80-20
and DORNIER DP 426, which is based on an INTEL 8026.

The system was successfully used in several appli­
cations.

1. Introducti on

lt is a well known fact that High-Order Languages
(HOL's) are one of the most successful means to
improve the productivity of programmers as well as
the quality of programs. For several years, however,
there was a heated discussion among experts as to
whether or not this was also true for real-time
and other time-critical applications, like e.g.
avionics or guidance and control applications. But
mostly this discussion was not very well supported
by quantitative data, and it was therefore felt
necessary to conduct a study (1) on the applicabi­
lity of High-Order Languages to guidance and con­
trol. The task was also, to find out, which special
aspects had tobe taken into consideration in this
- admittedly difficult - application area. The
study concentrated on the Language PEARL (= Pro­
cess and Experiment Realtime Automation Language),

because it was the most promising candidate lan­
guage in the defense environment.

The results were very encourageing. lt turned out
that all of the relevant problems could be formu­
lated in the language. lt was not even necessary
to exploit its full descriptive power. There was
one exception, however: PEARL did not contain yet
all the elements necessary for the programming of
distributed systems and had therefore tobe
slightly expanded for this purpose.

Another important result was that the efficiency
of the compiler and the size of the underlying
operating system were of crucial importance for
the usefulness of a HOL in guidance and control
applications. The reasons for this are that, in
this class of applications memory, however cheap,

16

still is subject to severe limitations like phy­
sical size, energy consumption, or weight. Dynamic
efficiency of the programs is of importance, too,

because guidance and control processes tend tobe
extremely time-critical.

It also turned out that translators for HOL's in

guidance and control had to provide very elaborate
test and integration aids because of the intrinsic
difficulties in testing and integrating embedded
computer systems.

It was therefore decided that Dornier System should
develop a PEARL translation system under contract
with the German MOD (BMVg) which fulfilled the
following requirements:

- Extreme Efficiency of the compiled code

- Elimination of Operating System Overhead
as far as possible

- Possibility to program distributed systems

- Possibility to separate code-elements in
RAM from those in PROM-type memory Optional
support for system integration

- Adaptability to various target processors

- Easy transportability between host-pro-
cessors

It was also obvious that it would not be sufficient
to just develop a compiler. It was rather necessary
to develop an entire PEARL translation system for
distributed systems which consited of the following
components:

- Compiler-generator

- Compiler front-end

- Code generator

- Assembler

- Library management

- Modular operating system

- Linking loader

- Test and Integration aids

The construction principles of that system, and
details about its implementation have already
been published several times (3, 4, 5, 6).

2. The Language PEARL

The development and the properties of PEARL have
also already been rather broadly published, e.g.

PEARL-Rundschau, Heft 1, Band 3, April 1982

in (7, 8). For the purposes of this paper it is
therefore sufficient to concentrate on the proper­
ties of the implementation by DORNIER-Systems.

3. The PEARL-Implementation by Dornier System

As already mentioned above, the characteristics
of the PEARL-implementation by Dornier System
are mainly dictated by the requirements of its
application area. They are most obviously re­
flected in the choice of the implemented lan­
guage subset.

3.1 The Language Subset

For the reasons mentioned above, those language

elements were not implemented from which it was
known that they would result in paar object code
efficiency or unnecessary overhead at runtime.

In particular such elements are:

- File handling (on-board computers usually
are not equipped with magnetic background

storage devices)

- Formatting (an board there are practically
no printing devices and the few which
there are, can easily be handled by stream

output of character strings)

- Absolute time (time is usually counted
relative to 'mission start')

- Signals (exception handling is a source of
huge overhead and it is mandatory that un­
planned software conditions da not occur
during the operational phase of a system)

- Structures (Application studies showed
that measurement data are usually of

homogeneous type).

On the other hand certain extensions had tobe
provided for the programming of distributed

systems. However, it was a strict policy to keep
them very small in order not to deviate too much

from the original PEARL. Another important design
criterium for these multicomputer extensions was
that they had tobe 'strategy independent', i. e.
the user should be enabled to implement whatever

concept be deemed optimal for the safety - or
redundancy-strategy of his application. These
considerations resulted in the following extensions:

PEARL-Rundschau, Heft 1, Band 3, April 1982

- Declaration of entities with the attribute
'NET GLOBAL' of types 'variable',
'semaphore' and 'task'. These entities
are then either copied into or made known
to every processor in the distributed system.

- Operations on such entities. This was
achieved without additional statements or
operators, just by extending the semantics
of existing operations (overloading).

Besides, there is a facility for the connection to
'external' tasks or procedures, which may e.g. be
written in Assembler. Last, but not least, runtime
checks can be inserted on a statement-by-statement
basis by means of 'check/nocheck' statements.

3.2 The Compiler Front-End and its Technology

The technology, which had tobe used for the trans­
lator, was determined by-the requirements of
adaptability to various target processors and easy
transportabi l i ty wi th respect to the hast pro­
cessor. This led to the usual separation into a
'front-end' which is independent of the target
rnachine and translates PEARL into machine-inde­
pendent intermediate code.

The compiler front-end is written in FORTRAN for
the following reasons:

- FORTRAN translators are available for
nearly every possible hast computer

- A compiler, written in FORTRAN, is much
more readable and much easier to main­
tain than any other one which is con­
structed according to an elaborate boot­
strapping technology.

lt turned out that this decision was the right
one. The front-end could be adapted to the follo­
wing host-computers with an effort of a few
man-days each:

DEC PDP-11/70 and 11/44
AEG-Telefunken 80-20/4
Siemens 7760
DEC POP 10

Fig. 1 shows an overview over the structure of the
entire translation system.

The intermediate representation had tobe chosen
according to the requirement ofmaximum code effi­
ciency. Therefore it was not possible to use one
of the usual virtual machine· representations, be-

17

cause these usually do not contain any rnore all the
inforrnation which was there in the source program
and which is necessary for optimization. Besides,
modern target processors usually have a more power­
ful instruction set than the one wnich happens to
be implemented in a particular virtual machine
architecture. This, too, leads to codeineffi­
ciencies.

Therefore it was decided to use a completely target­
independent intermediate representation, the
so-called 'triple-code'. In principle it is a
numeric representation of the program, where the
individual operation is of the form:

operator, operand 1, operand 2

To sum up: the compiler front-end is written in
FORTRAN and translates PEARL-Source programs into
triple-code. lt can detect approximately 200 differ­
ent syntactical and semantical errors and identifies
them by statement number, name of object and addi­
tional information, if necessary.

During translation the following listings can be
produced on request:

- Source listing

- Cross-Reference listings for the following-
objects with their respective attributes
(e. g. ' GLOBAL')

• Variables

•Tasks

• Semaphores

• Procedures

•Labels

•Dations

- Hierarchies of procedure calls
- Process hierarchy
- Synchronization structure
- Location of variables

3.3 The Code-generator

lt produces symbolic assembly code with relative
adresses for the target processor in question. This
second intermediate layer has the disadvantage of
an additional translation step, which may cost ·some

- Linkage of the operating system components
required by the program

- Sorting of task-control-blocks nnd code
segments

18

- Output of the control sequence for the
l i nki ng l oader

3.6 Linking-Loader

This tool performs the linkag~ process proper anrl
produces absolute code. In case it cannot be taken
from the vendor's software it is delivered together
with the PEARL-System and is functionally integrated
into the pre-linker.

3.7 Modular Operating System

This is a unique feature of the DORNIER PEARL-System.
lt allows efficient use of PEARL even in the smallest
target configurations. This is achieveJ by abandoning
the concept of an underlying, more or less autonomous
and "monol i ti c" operati ng system. lt i s repl aced by
a set of routines which are automatically linked to
the application program according to its require­
ments. These routines operate on task-control-blocks,
time-order-blocks, etc. which are provided by the
compiler. Thus it was possible to reduce the size of
the operating system kernel to a mere 300 to 500
16-bit words, depending on the quality of the in­
struction set of the target processor. This kernel
includes the following functions:

- Initialization

- Dispatcher

- An exit routine, which is executed if the
system knows that there will be no task
switchin_g

time during translation, but this is more
than balanced by the advantages. So, e.g. the
assembler-listing provides an excellent means

for final compiler testing and for easy linkage
of external routines.

At the moment code-generators exist for the follo­
wing target processors:

- DORNIER-MUDAS DP 432/433

- AEG-Telefunken 80-20

- DORNIER-MUDAS DP 426 (INTEL 8086-based)

3.4 Assembler

This component is necessary for the reasons given
above. lt is fully integrated into the translator
system, bus usually adopted from the support soft­
ware provided by the vendor of the target processor.

PEARL-Rundschau, Heft 1, Band 3, April 1982

3. 5 Pre-L inker

In case the linking-loader, which is provided by
the vendor of the target processor, is not capable
of handling the multi-module structure of PEARL­
Programs, apre-linker is provided, which performs
the following-functions:

- Identification of program modules tobe linked
together

- Distribution of code into RAM or ROM

- Distribution of program modules over the
various processors of the distributed
system

- Completeness check for the definition of
global entiti es

The following functional modules can then be
added automatically according to the require­
ments of the application program:

- Clock-routines

- Interrupt handler

- Activation of tasks

- Task-termination (regular)

- Task-termination (irregular; by 'TERMINATE')

- Suspension of tasks

- Continuation of suspended tasks

- Deletion of a schedule ('PREVENT')

- Inter-processor communication

- User command interface

- Character I/0 ('GET' ,'PUT')

- Procedure entry/exit

- Array ind2xing

- Arithmetic routines for FLOAT and
DURATION types

- Comparison routines for FLOAT and
DURATION types

- Type conversion routines

- Standard functions (ABS, SIGN)

- Handling of runtime errors

If all operating system services are invoked, it
uses up to 4 to 6 K of 16-bit words, depending
on the architecture of the target processor.

3.8 Library management

In order tobe able to fully exploit the possibilities
of the modular structure of PEARL programs and to

PEARL-Rundschau, Heft 1, Band 3, April 1982

enable the user to expand his system-library by him­
self, a special library management package is

provided.

It contains the following functions:

- Inclusion of a new module

- Deletion of a module

- Listing of the Directory

- Modification of module names

3.9 Test and Integration Aids

Firstly, these include all the above mentioned
listings which are produced by the compiler and
serve as refere~ce-documents for the user during

test and integration.

Additionally there are runtime checks,which are on

request inserted into the program either by the
compiler or as operating system routines. The follo­
wing errors can be monitored:

- Array index overflow

- Division by zero

- Range Violation

Conversion errors

These runtime checks can be enabled or disabled
by the 'check/nocheck' feature.

Furthermore, several trace-routines can be built

into the code:

- Jump trace

- Subroutine trace

- Cal 1 trace

- Task trace

Another important component is the debugger,
which can be loaded together with the object
program. It supports the following test functions:

- Activation and continuation of tasks

- Set and reset of breakpoints

Output of environment information at
breakpoi nts

- Input and display of values of variables

- Exit from Debugger (and return to normal
execution of the program)

The design of this debugger allows for tv10 modes
of operation:

- Debugging on assembler level

- Debugging on source level

The first mode has already been implemented, the
second one is being designed.

4. Application of the System

This PEARL Translator system has already been

successfully used in several applications. Two
of them are completed:

- A training simulator for the anti-aircraft
tank 'Roland' (with 6 physically distributed

processors)

19

- A gust alleviation system for a light aircraft

In both projects PEARL proved highly successful and
the trc:;1slator system fulfilled the expectations.

5. References

1 Sc h n e i der, H.-J.: Modulare Software
für Flugfuehrung (Modular Software for Guidance
and Control), Dornier System, Report, June 1978.

·2; DIN 66253, Part 1, preliminary standard

Programmiersprache PEARL, Basic PEARL
Beuth Verlag GmbH, Berlin, Köln, 1981

'3- Sc h n e i der, H.-J.: PEARL-Software­

system für gekoppelte Klein- und Mikrorechner
(PEARL-Software System for distributed Mini­
and Microcomputers); PEARL-Rundschau, Vol. 1,
No. 4, Dec. 1980 (pp 3-5).

'4", Am an n, M.: PEARL für verteilte Systeme
(PEARL for distributed Systems), Informatik-Fach­

berichte 39, 1981, Springer-Verlag (pp 399-403).

5_ Graf, F.: PEARL für Mikrocomputer (PEARL for
microcomputers), Informatik-Fachberichte 39, 1981,
Springer-Verlag (pp 413-421).
- ·1
_6J Am an n, M., E l z er, P.: Das PEARL-über-
setzungssystem von Dornier System, Friedrichshafen

(The PEARL-Translator system by Dornier Systems,
Friedrichshafen), PEARL-Rundschau, Val. 2, No. 2,

March 1981.

~7] PEARL Subset for Avionic Applications; Agard
Advisory Report No. 90, Annex J, (A Study of
Standardization Methods for Digital Guidance and

Control Systems), May 1977.

[8] M a r t i · n, T.: PEARL at the Age of three;
Proceedings of 4th IEEE Software Engineering
Conference, Sept. 1979, (pp 106-109).

	doc03260620181025132541
	doc03260720181025132550
	doc03261020181025132857
	doc03261120181025133122

