
New Type Checking Rules for OCL Expressions

Andy Schürr

Institute for Software Technology
University of the Federal Armed Forces, Munich

D-85577 Neubiberg, Germany
e-mail: Andy.Schuerr@unibw-muenchen.de

Abstract: The Object Constraint Language OCL is an integral part of UML, the
Unified Modeling Language standard. It has been added to Rational’s UML core as
a logic-based sublanguage for the definition of integrity constraints (invariants) on
class diagrams as well as for the definition of pre- and postconditions of operations.
Despite of the fact that OCL is called a statically typed language its type checking
rules are not precisely (enough) defined in the UML standard version 1.3. Further-
more, they have certain deficiencies concerning the treatment of collection manipu-
lating operations. This paper sketches three different approaches for the definition of
modified OCL type checking rules. These proposals are based on our experiences
with the design of a rather similar constraint language that is part of the graph trans-
formation language PROGRES.

1 Introduction

The object constraint language OCLwas from the very beginning an integral part of
OMG’s versions 1.x of the UML standard. Nevertheless, many UML books do not explain
OCL in detail or even neglect the existence of OCL completely. In its current form OCL
(version 1.3) suffers from the same problems as many parts of the UML standard: it neither
possesses a precise static semantics nor a precise dynamic semantics definition [UML00].
These are the reasons, why groups of researchers are now active to refine and redesign
parts of OCL in order to influence the UML 2.0 definition process [AN89], [Co00],
[PUM00].

It is the purpose of this paper to apply our experiences with the development of the graph
transformation language PROGRES to OCL. PROGRES is a visual, executable specifica-
tion language that combines a subset of UML class diagrams for the definition of graph
schemata with graph transformation rules for the definition of object structure manipula-
tions and with OCL-like path expressions for the definition of integrity constraints and
complex graph queries [Schü97], [SWZ97].

The PROGRESpath expression sublanguageis similar to OCL with respect to the follow-
ing properties:

• It is related to UML-like class diagrams in the same way as OCL.
• It combines the usual expressions for the manipulation of boolean values, strings, in-

tegers, and so forth with path expressions for navigation along associations, too.
• It distinguishes between partially defined and always defined path expressions as well

as between single object returning and collection (set) returning path expressions.

On the other hand, there exists a long list of significant differences between PROGRES
path expressions and OCL including the following items:

(1) Our path expressions have a well defined set of type checking rules expressed as pred-
icate logic formulas.

(2) Furthermore, PROGRES has a precisely defined, but nevertheless still rather abstract
operational semantics based on nonmonotonic reasoning and fixpoint theory.

(3) Its dynamic semantics definition distinguishes between terminating computations that
return the undefined resultnil and nonterminating computations with unknown results.

In the following we will focus our interest on topic (1) above, i.e. the construction of ap-
propriateOCL type checking rulesbased on our experiences with the formal definition of
the PROGRES language, the vast body of knowledge about type checking polymorphic
specification and programming languages in general [AN89], [CW85], and a recently pub-
lished paper about the OCL language’s type system [Cl99]. This paper presents for the first
time a precise definition of the OCL type checking rules, but excludes the problems ad-
dressed here concerning operations on collections (sets) of different types.

The discussion of the addressed type checking problems is organized as follows: In the fol-
lowing Section 2 we explain the problems with the currently circulating version of the
OCL type checking rules for collection operators likeunion, intersection, andincludesAll.
Furthermore, we show that variants of this problem affect the type checking rules for the
comparison of objects or collections of objects, too. Section 3 presents the PROGRES so-
lution for these problems, which follows the lines of the type checking approach invented
for the logic-based language LOGIN [AN89]. It relies on the fact that our class hierarchies
have to be lattices, i.e. that any pair of classes possesses at most one smallest common su-
perclass and at most one greatest common subclass (Any or Nil in the worst case). Section
4 presents a slightly different solution for the presented type checking problems, which
works with the powerset of all OCL types and avoids thereby the restriction of class hier-
archies to lattices.

Both solutions of the type checking problem are closely related to each other due to the
fact that it is always possible to transform a given class hierarchy into a (for the program-
mer hidden) lattice, which can be used for type checking purposes [Ai87]. The additional
classes of this lattice represent the needed nonsingleton sets of the second type checking
approach. Unfortunately, both approaches are too complex for the average OCL user, who
does not want care about class lattices or sets of types.

Therefore, Section 5 presents yet another solution, which (1) works for all kinds of class
hierarchies, (2) returns the same results as the type checking rules of the OCL standard ver-
sion 1.3 as long as the standard rules do not reject a given OCL expression, and (3) simply
determines a more general supertype, where the type checking rules of Section 4 process
nonsingleton sets of types. It is our opinion that these type checking rules constitute the
proper compromise between the restrictiveness and simplicity of the type checking rules
of the OCL standard on one hand and the expressiveness and complexity of the solutions
of Section 3 and 4 on the other hand. They should be incorporated into OCL version 2.0
and become part of the currently existing OCL processing tools as explained in Section 6
of this paper.

2 Problems with Type Checking OCL Expressions

In the following we show that the implicitely defined OCL version 1.3 type checking rules
in [UML00] often return unwanted results and should be changed in the future version 2.0.

For this purpose let us assume that the OCL types
(classes)Employee (of our University) andStudent
are subtypes ofPerson as shown in Fig. 1. Further-
more, let us assume that an OCL expressionName-
Expr computes an object which is a member (direct
or indirect instance) of the typeName, and that an
OCL expressionNameSExpr computes a set of
members of the typeName.

The OCL standard version 1.3 with its template-like declarations of predefined operations
such as

set->union(set2 : Set(T)): Set(T) and set->intersection(set2 : Set(T)): Set(T)

probably requires that the type of the OCL expressions

XSExpr->union(YSExpr) and XSExpr->intersection(YSExpr)

is set(X) if Y is a subtype (subclass) ofX and undefined otherwise. This has the conse-
quence that the OCL expressions

EmployeeSExpr->union(StudentSExpr) and

EmployeeSExpr->intersection(PersonSExpr)

are illegal, whereas

EmployeeSExpr.oclAsType(Person)->asSet->union(StudentSExpr) and

PersonSExpr->intersection(EmployeeSExpr)

are legal expressions of typeset(Person). This interpretation of the template-like declara-
ration of OCL standard operations has the following unwanted consequences:

• PersonSExpr->union(StudentSExpr) and StudentSExpr->union(PersonSExpr) have
different types despite of the fact that set union is a commutative operation,

• set(EmployeeExpr) is not the type ofPersonSExpr->intersection(EmployeeSExpr), and
• EmployeeSExpr->includes(StudentExpr) and EmployeeExpr = StudentExpr are legal

boolean expressions (the standard requires that the type of the second argument of
these expressions is of typeOCLAny, i.e. allows any element), whereas

• EmployeeSExpr->includesAll(StudentSExpr) and EmployeeSExpr = StudentSExpr are
illegal boolean expressions.

As a consequence, the standard type checking rules arenot completewith respect to the
OCL language’s dynamic semantics as required in [Cl99]. Some reasonable OCL expres-
sions with a well-defined dynamic semantics are illegal with respect to the standard type
checking rules. Even worse the given rules often return types which are too general, and
they return different results for expressions which obviously have the same dynamic se-
mantics.

Therefore, some OCL explanations use already a different interpretation for the signatures
of OCL collection operations such asunion andintersection. They require for expressions

Person

Employee Student

Fig. 1: A simple UML class hierarchy

XSExpr->someOperation(YSExpr) with someOperation ∈ {union, intersection, … }

the existence of a (smallest) common supertype ofX andY, which is then used as param-
eterT of the involved operation template

set->someOperation(set2 : Set(T)): Set(T) .

Such a smallest common supertype always exists due to the fact that all non-collection
types are subtypes ofOclAny. At a first glance this interpretation of the OCL standard
solves almost all problems mentioned above as long as the multiple inheritance concept
is not used.

Fig. 2 presents one example of an UML class diagram that uses multiple inheritance. Both
Stud(ent)Ass(istants) andUniBwStudents are subtypes (subclasses) ofEmployee andStu-
dent. Probably such a class diagram is ill-designed, but it is legal. Refering to this class
diagram we can explain our problems with the suggested new OCL type checking rules.
Let us start with computing the types of the two expressions

(1) StudAssSExpr->union(UniBwStudentSExpr)
(2) EmployeeSExpr->intersection(StudentSExpr)

Using the new "smallest common supertype" rule we have to conclude that

• theunion of aStudAssSExpr and aUniBwStudentSExpr has not a single, but two small-
est common supertypesset(Employee) andset(Student),

• whereas theintersection of anEmployeeSExpr and aStudentSExpr has the most gen-
eral typeset(Person).

Both results are rather unwanted. In the case of theunion expression we either have to
work with a set of OCL types or we have to replace the type set{set(Employee), set(Stu-
dent)} by the common supertypeset(Person). Similar problems occur when we regard the
(symmetric) difference of two collections or the inclusion or exclusion of single elements
from collections. In many cases the standard OCL type checking rules as well as the sug-
gested new type checking rules force the OCL user to addtype castsat various places. Fur-
thermore, the proposed type checking rules do not only return useless type information in
many cases, but still permit the construction of many useless expressions, which could be
recognized at compile time. Consider for instance the expressions

Person

Employee Student

Professor Assistant UniBwStudent

StudAss

Fig. 2: Example of a ill-designed but legal UML class hierarchy

(3) ProfessorSExpr->intersection(AssistantSExpr)
(4) ProfessorSExpr - AssistantSExpr1

(5) ProfessorExpr = AssistentExpr

We know from the class diagram of Fig. 2 that the first expression always returns the emp-
ty set, that the second expression always returns the collection computed by its subexpres-
sionProfessorSExpr, and that the third expression always returns the resultfalse.

3 Type Checking OCL Expressions - the Lattice Solution

It is possible to circumvent some of the type checking problems discussed in Section 2 by
requiring that any two types (classes) haveat most one smallest common supertype(super-
class)scs andat most one greatest common subtype(subclass)gcs. These restrictions to-
gether with the existence of a greatest typeOclAny and a smallest typeOclNil ensure that
all constructed type hierarchies are lattices (in the mathematical sense of word).

Therefore, the class diagram of Fig. 2 is illegal, which is recognized by an incrementallat-
tice checking algorithm. An automatically workingcompletion algorithmadopted from
[Ai87] transforms the class diagram of Fig. 2 into the class diagram of Fig. 3 by adding a
single classEmployeeStud (cf. [SWZ97] for further details).

Relying on the automatically constructed class diagram of Fig. 3 we can introduce the fol-
lowing OCL type checking rules:

1 The "-" operator defines the difference between two sets of elements. It is a matter of debate whether a future
OCL version should not use a syntax for set difference which is more similar to the syntax for set union and set
intersection.

OCLAny

Person

Employee Student

Professor Assistant EmployeeStud

StudAss UniBwStudent

Fig. 3: Redesigned class hierarchy with lattice property

OCLNil

(1) Type[[expr1->union(expr2)] := scs(Type[expr1], Type[expr2]),
if scs(Type[expr1], Type[expr2]) ≠ set(OclAny)

(2) Type[[expr1->intersection(expr2)] := gcs(Type[expr1], Type[expr2]),
if gcs(Type[expr1], Type[expr2]) set(OclNil)

(3) Type[[expr1-> excluding(expr2)] := Type[expr1],
if gcs(Type[expr1], Type[expr2]) ≠ set(OclNil)

(4) Type[[expr1 = expr2] := boolean,
if gcs(Type[expr1], Type[expr2]) ≠ set(OclNil)

with scs(t, t’) being the smallest common supertype oft and t’ and withgcs(t, t’) being the
greatest common subtype oft and t’. The functionscs returns the typeOclAny (or set/bag/
sequence(OclAny) for sets, bags, and sequences) if the common supertype does not exist;
the functiongcs returnsOclNil (or set/bag/sequence(OclNil) for sets, bags, and sequences)
if the common subtype does not exist.

Applying these rules to the class diagram of Fig. 3 and the expressions (1) and (2) of Sec-
tion 2 we get the following results:

Type[StudAssSExpr->union(UniBwStudentSExpr)]
= scs(set(StudAss),set(UniBwStudent)) = set(scs(StudAss,UniBwStudent))
= set(EmployeeStud)

and

Type[EmployeeSExpr->intersection(StudentSExpr)] = gcs(set(Employee),set(Student))
= set(gcs(Employee,Student)) = set(EmployeeStud)

Furthermore, the presented rules reject the expressions (3) through (5) of Section 2 due to
the fact thatProfessor andAssistant have no (greatest) common subtype except ofOclNil.

The type checking rules for other OCL operators have a similar form. The main drawback
of the presented solution are the requirements thattype hierarchies have to be latticesand
thatobjects are direct instances of a single type(class). Often these requirements enforce
the construction of better designed class hierarchies. Nevertheless, our experiences show
that it is often difficult to convince OO modelers that type hierarchies should be lattices
and to teach them how to transform a given type hierarchy into a lattice. Even if they are
supported by tools which perform this task, they have difficulties to understand the output
of such a transformation process, i.e. the needs for adding an exponential number of addi-
tional types in the worst case. Therefore, we present in the following section yet *another
variant of OCL type checking rules, which manipulate sets of OCL types instead of relying
on the lattice property of class hierarchies.

4 Type Checking OCL Expressions - the Type Set Solution

One solution for avoiding the lattice restriction for type (class) hierarchies is quite obvious:
a hidden preprocessing phase checks the lattice property for the given UML class diagrams
and adds the still needed intermediate classes without revealing their existence to the end
user as already suggested in [Ai87]. Whenever the type checking algorithm computes one
of these intermediate types for a given OCL expression, it displays its set of smallest user
defined superclasses. From a theoretical point of view the lattice construction phase may
even be omitted and the type checking rules may directly manipulatesets of OCL types.

The appropriate type checking rules, which compute sets of OCL types, have the following
form for the operatorsunion andintersection:

(5) Type[[expr1->union(expr2)] :=
rmSupertypes(allSupertypes(Type[expr1]) ∩ allSupertypes(Type[expr2])),

Type[[expr1->union(expr2)] ≠ ∅
(6) Type[[expr1->intersection(expr2)] :=

rmSupertypes(allSupertypes(Type[expr1]) ∪ allSupertypes(Type[expr2]))

where the used auxiliary functions are defined as follows (using OCL):

allSupertypes(set) = set->union(directSupertypes.allSupertypes)
-- allSupertypes computes the set of all direct and indirect supertypes of a set of types
-- including the given set of types itself but without the most general type OclAny
rmSupertypes(set) = set->reject(directSubtypes->intersection(set)->notEmpty))
-- rmSupertypes removes all types from set with direct subtypes in the set

Returning to our running example and the class diagram of Fig. 2 these new type checking
rules work as follows:

Type [StudAssSExpr->union(UniBwStudentSExpr)] =
rmSupertypes({set(StudAss),set(Assistant),set(Employee),set(Student), set(Person)} ∩
{set(UniBwStudent),set(Employee),set(Student), set(Person)})

= rmSupertypes({set(Employee), set(Student), set(Person)})
= {set(Employee),set(Student)}
Type[EmployeeSExpr->intersection(StudentSExpr)]
= rmSupertypes({set(Employee), set(Person)} ∪ {set(Student),set(Person)})

= {set(Employee),set(Student)}

The mainadvantage of using type setsin type checking rules instead of building first a
hidden lattice is related to the reason why the oclType operator of previous OCL ver-
sions has been removed in version 1.3. It has been removed because of the fact that UML
allows models, where one object is a direct instance of more than one type (class). As a
consequence, theoclType operator might return a set of types in the general case instead
of always returning a single type as one might expect. The set-oriented type checking ap-
proach has no longer any problems with the depicted situation so that it is possible to re-
introduce theoclType operator together with other means for reflection.

The fact that objects may be direct instances of more then one type (class) had an important
impact on the definition of the type checking rule (2’) above. This rule does not make any
attempts to compute a set of greatest common subtypes of the types of the regarded sub-
expressions. Therefore, the computed type set of

Type[EmployeeSExpr->intersection(StudentSExpr)] =
{set(Employee),set(Student)} ≠ set(EmployeeStud)

is independent of the fact whether the class diagram of Fig. 2 or the class diagram of Fig. 3
is regarded. This is due to the fact that an object may be a member (direct instance) of both
types (classes)Employee andStudent without being an instance of a subtype (subclass) of
these two types (classes). Therefore, the object set of the members ofEmployeeStud is a
proper subset of the intersection of the object sets of the members ofEmployee andStu-
dent in the general case.

5 Type Checking OCL Expressions - the Simple Solution

The previously presented type checking solutions are either too restrictive or too complex
to be useful for the average OCL user. The solution based on lattices enforces UML users
to redesign their class hierarchies in certain cases, the solution based on sets of types is
very unnatural for software developers familiar with the type checking rules of program-
ming languages. Therefore, we have to find another solution with the following properties:

• The new type checking rules accept more expressions than the standard rules and they
return in certain cases more specific types than the standard rules.

• The new rules return for any legal expression a single type which is a supertype of the
type of its computed result (if any regarded object is a direct instance of a single type).

• The new rules are identical to the rules presented in Section 3 as long as the regarded
type hierarchies are lattices (after completion withOCLAny andOCLNil).

• The new rules approximate nonsingleton type sets computed by the rules of Section 4
by a unique smallest common supertype (OCLAny in the worst case).

Applying the new type checking rules to the OCL expressions (1) and (2) of Section 3 we
expect therefore the following results for the class hierarchy of Fig. 2:

Type [StudAssistantSExpr->union(UniBwStudentSExpr)] = set(Person)
Type[EmployeeSExpr->intersection(StudentSExpr)] = set(Person)

Due to lack of space we cannot present the complete set of modified type checking rules
for all OCL operators nor prove that the modified rules fulfill indeed the above listed re-
quirements. To give the reader nevertheless an impression how the needed modifications
look like we conclude this section with a presention of the redesigned rules for the opera-
torsunion, intersection, excluding, and equality for collections:

(1’’) Type[[expr1->union(expr2)] := up(scs({Type[expr1], Type[expr2]}))
(2’’) Type[[expr1->intersection(expr2)] := up(gcs({Type[expr1], Type[expr2]})),

if gcs({Type[expr1], Type[expr2]}) ≠ ∅
(3’’) Type[[expr1-> excluding(expr2)] := Type[expr1],

if gcs({Type[expr1], Type[expr2]}) ≠ ∅
(4’’) Type[[expr1 = expr2] := boolean, if gcs({Type[expr1], Type[expr2]}) ≠ ∅

The needed auxiliary functions are defined as follows:

up(TSet) := if TSet = { t } then t else up(scs(TSet))
scs(TSet) := { t ∈OCLType | ∀ts ∈TSet: ts conformsTo t ∧

¬∃ t’ ∈TSet: ∀ts ∈TSet: ts conformsTo t’ ∧
t ≠ t’ ∧ t’ conformsTo t }

gcs(TSet) := { t ∈OCLType | ∀ts ∈TSet: t conformsTo ts ∧
¬∃ t’ ∈TSet: ∀ts ∈TSet: t’ conformsTo ts ∧

t ≠ t’ ∧ t conformsTo t’ }

The functionsscs andgcs compute the set of smallest common supertypes and greatest
common subtypes of a given set of types wrt. the partial order defined by theconformsTo
relation, whereas the recursively defined functionup replaces a set of types by a singletype
approximation. This approximation is the smallest common supertype of a regarded set of
typesTSet, which is computed as follows: Applied toTSet the functionup either returns

the single element ofTSet or calls itself applied to the smallest common supertype set of
TSet2.

It is quite obvious that the new rules behave like the ones introduced in section 3 as long
as our type hierarchies are (semi-)lattices, i.e. as long asscs andgcs return singleton sets.
Furthermore, our running example shows that the modified rules accept OCL expressions
which are rejected by the standard type checking rules and that they compute more specific
types under certain circumstances. Furthermore, it is worth-while to notice that the new
rules require the existence of the greatest typeOCLAny, but that they do not require the
existence of the smallest typeOCLNil. All calls to functiongcs, which return the empty set
of types (instead ofOCLNil), correspond to forbidden situations, where static analysis is
already able to determine the result of the regarded expression:

• The intersection of two sets is the empty set if their static types do not possess a com-
mon subtype.

• The comparison of two elements or sets of elements yieldsfalse if their static types do
not possess a common subtype.

• The exclusion of a set S1 from another set S2 is always equal to S2 if the static types
of S1 and S2 do not possess a common subtype.

The formal definition of this last variant of OCL type checking rules seems to be rather
complex compared with the rules of section 3. Nevertheless, we believe that the basic idea
behind the definition of these rules is quite intuitve so that the average OCL user will have
no problems to understand the generated error messages.

6 Conclusions and Future Work

In this paper we have discussed one category of OCL type checking problems and present-
ed three different solutions for the problem. The first solution relies on the construction of
type hierarchies, where any pair of types possesses (at most) one smallest common super-
type and (at most) one greatest common subtype. Furthermore, it assumes that objects are
direct instances of a single type. The second solution avoids these restrictions. It uses sets
of types as extensional representations for missing uniquely defined supertypes or sub-
types. Due to the fact that its accompanying type checking rules are too complex to be use-
ful in practice a third solution has been developed. It makes no assumptions concerning
the structure of a regarded type hierarchy and computes a single type for any legal OCL
expression (instead of a set of types). Compared with the currently valid type checking
rules of the OCL standard, the proposed new rules have the following advantages:

• They accept reasonable expressions such asS1->union(S2), where the type ofS1 com-
forms to the type ofS2 but not the other way round, which are rejected nowadays.

• They reject useless expressions such asS1->intersection(S2), where the type ofS1 and
the type ofS2 do not possess a common subtype, which are accepted nowadays.

• They compute more specific types for expressions such asS1->intersection(S2), where
the type ofS2 conforms to the type ofS1 (S2 instead ofS1).

2 Computations of functionup obviously terminate as long as we are dealing with finite type hierarchies, where
any t1 conformsTo t2 conformsTo … conformsTo tn chain is finite.

Nevertheless, many other questions concerning the OCL standard version 1.3 still have to
be addressed. This includes e.g. the fact that operators for the definition of transitive clo-
sures, default values for partially defined expressions, selection of elements from singleton
sets, etc. are missing. Furthermore, it would be possible to define more sophicisticated type
checking rules which keep track of lower and upper boundaries for collection computing
subexpressions, distinguish between object level and type level expressions, and take care
of nondeterministic selections of set elements, one of the suggested extensions for OCL
version 1.4 [Kl00]. It is the subject for future work to write down such a complete set of
OCL type checking rules based on the proposed OCL meta model in [RG99] . These new
type checking rules should become part of already existing OCL toolkits such as the Dres-
den OCL compiler [HDF00] or the OCL toolkit from Bremen [RG00].

References
[Ai87] H. Ait-Kaci, R. Boyer, P. Lincoln, R. Nasr: Efficient Implementation of Lattice Opera-

tions, in: ACM Transactions on Programming Languages and Systems, vol. 19, no. 2,
ACM Press (1987), pp. 106-190

[AN89] H. Ait-Kaci, R. Nasr: Integrating Data Type Inheritance into Logic Programming, in:
M.P. Atkinson, P. Buneman, R. Morrison (Eds.): Data Types and Persistence, pp. 121-
136, Springer Verlag (1989)

[Ar00] ArgoUML Web Site, http://argouml.tigris.org/index.html (visited: 07/11/2000)
[CW85] L. Cardelli, P. Wegner: On Understanding Types, Data Abstraction and Polymorphism,

in: ACM Computing Surveys, vol. 17, no. 4, pp. 471-522, ACM Press (1985)
[Cl99] T. Clark: Typechecking UML Static Model, in: R. France, B. Rumpe (Eds.): Proc. 2nd

Int. Conf. Unified Modeling Language (UML’99), LNCS 1723, pp. 503-517, Springer
Verlag (1999)

[Co00] St. Cook, A. Kleppe, R. Mitchell et al: The Amsterdam Manifesto on OCL,
http://www.trireme.com/amsterdam/manifesto-1-5.pdf (visited: 11/07/2000)

[HDF00] H. Hussmann, B. Demuth, F. Finger: Modular Architecture for a Toolset Supporting
OCL, in: A. Evans, St. Kent (Eds.): Proc. 3rd Int. Conf. Unified Modeling Language
(UML’2000), LNCS 1939, pp. 278-293, Springer Verlag (2000)

[RG99] M. Richters, M. Gogolla: A Metamodel for OCL, in: R. France, B. Rumpe (Eds.): Proc.
2nd Int. Conf. Unified Modeling Language (UML’99), LNCS 1723, pp. 156-171,
Springer Verlag (1999)

[RG00] M. Richters, M. Gogolla: Validating UML Models and OCL Constraints, in: A. Evans,
St. Kent (Eds.): Proc. 3rd Int. Conf. Unified Modeling Language (UML’2000), LNCS
1939, pp. 265-277, Springer Verlag (2000)

[Kl00] Klasse Objecten : OCL 1.4 - The upcoming UML 1.4 version, http://www.klasse.nl/ocl/
(visited: 07/11/2000)

[Na96] M. Nagl (ed.): Building Thightly Integrared Software Development Environments,
LNCS 1170, Springer Verlag (1996)

[PUM00] The precise UML group: PUML Home Page, http://www.cs.york.ac.uk/puml/,
(visited: 07/11/2000)

[Schü97] A. Schürr: Programmed Graph Replacement Systems, in: G. Rozenberg (ed.), Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. 1: Foundations, pp.
479-546, World Scientific (1997)

[SWZ97] A. Schürr, A. Winter, and A. Zündorf: PROGRES: Language and Environment; in:
H. Ehrig, G. Engels, H-J. Kreowski, G. Rozenberg (eds.): Handbook of Graph Gram-
mars and Computing by Graph Transformation, Vol. 2: Specification and Programming,
pp. 487-550, World Scientific (1997)

[UML00] UML Revision Task Force: OMG Unified Modeling Language Specification v. 1.3. doc-
ument ad/99-06-08, Object Management Group (1999), http://www.omg.org/uml/ (vis-
ited: 07/11/2000)

[WK99] J. Warmer, A. Kleppe: OCL: The Object Constraint Language - Precise Modeling with
UML, Addison Wesley (1999)

http://argouml.tigris.org/index.html
http://www.trireme.com/amsterdam/manifesto-1-5.pdf
http://www.klasse.nl/ocl/
http://www.cs.york.ac.uk/puml/
http://www.omg.org/uml/

	P88:
	stampTemplate:
	pg: 91

	P89:
	stampTemplate:
	pg: 92

	P90:
	stampTemplate:
	pg: 93

	P91:
	stampTemplate:
	pg: 94

	P92:
	stampTemplate:
	pg: 95

	P93:
	stampTemplate:
	pg: 96

	P94:
	stampTemplate:
	pg: 97

	P95:
	stampTemplate:
	pg: 98

	P96:
	stampTemplate:
	pg: 99

	P97:
	stampTemplate:
	pg: 100

