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Abstract: Interoperability between contact to contactless images in fingerprint matching is a key
factor in the success of contactless fingerprinting devices, which have recently witnessed an increas-
ing demand for biometric authentication. However, due to the presence of perspective distortion
and the absence of elastic deformation in contactless fingerphotos, direct matching between contact-
less fingerprint probe images and legacy contact-based gallery images produces a low accuracy. In
this paper, to improve interoperability, we propose a coupled deep learning framework that consists
of two Conditional Generative Adversarial Networks. Generative modeling is employed to find a
projection that maximizes the pairwise correlation between these two domains in a common latent
embedding subspace. Extensive experiments on three challenging datasets demonstrate significant
performance improvements over the state-of-the-art methods and two top-performing commercial
off-the-shelf SDKs, i.e., Verifinger 12.0 and Innovatrics. We also achieve a high-performance gain
by combining multiple fingers of the same subject using a score fusion model.
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1 Introduction

A contact-based fingerprint biometric system can be vulnerable to latent fingerprints from
the impression of previous subjects, low-contrast regions due to the presence of dust and
dirt on the sensor platen, and the high risk of infection with the SARS-CoV-2 virus. Fur-
thermore, contact-based fingerprints also suffer from elastic deformation due to the uneven
distribution of pressure onto the platen which severely affects the ridge patterns [Pr21]. To
address these limitations, a contactless fingerphoto device has been proposed [SLK04]
which does not require any specialized sensor technologies and produces images free of
elastic deformation [Li18]. The success of contactless fingerphoto devices depends on their
ability to match against legacy contact-based fingerprint databases.

However, most of the previous cross-domain matching algorithms are designed to improve
the interoperability between contact to contactless fingerprints using only images from a
single finger [LK18, LK19]. In fact, very few comprehensive studies are found in the lit-
erature on multi-finger contactless fingerphoto matching. In this paper, we devise several
strategies to effectively utilize the multi-finger input from a subject for improving interop-
erability.
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Fig. 1: Some example images of contactless and contact-based fingerprint pairs. (a) A Multimodal
Dataset, (b) Non-Contact Fingerprint Dataset-v1, (c) PolyU Contactless Database.

In recent years, deep learning algorithms have been extensively used in cross-sensor finger-
print matching [LK19, TK21, Al21, Gr21]. Many of these methods employed a Siamese-
like network to directly compare the contact-based fingerprint to a contactless finger-
photo [LK19, Al21, TK21]. However, it is inherently difficult to learn a consistent deep
representation from the contactless fingerphotos because of the perspective distortion oc-
curring in the peripheral areas of the fingerphotos. In addition, direct matching using a
Siamese-like network is also not efficient, as the Siamese network is not rich enough to
learn a similarity metric in a cross-domain matching scenario.

In this study, we hypothesize that a contactless fingerphoto and a contact-based fingerprint
possess a latent similarity in a low-dimensional feature subspace. So, to exploit this latent
similarity, we project both the fingerphoto and the fingerprint into a common embedding
subspace using a coupled learning framework that uses Generative Adversarial Networks
(GANs) [Go14]. The goal of the research presented in this paper is to build a framework
based on a Coupled GAN (CpGAN) architecture [LT16] to find the hidden relationship
between the feature embedding of each domain for cross-domain fingerprint matching.
Likewise, the framework can also apply to improve interoperability in intra-domain cross-
sensor matching. The main contributions of this paper are:

• A coupled GAN cross-domain (contact to contactless) fingerprint recognition model
for more accurate cross-matching.

• A multi-finger contact-based fingerprint versus multi-finger contactless fingerphoto
matching framework for increased interoperability during cross-matching.

• Extensive experiments on three challenging datasets, and a comparison of the pro-
posed CpGAN model with the state-of-the-art methods and two top-performing
commercial off-the-shelf (COTS) matchers.

2 Related work

Several early works have been performed in the past decade to develop novel algorithms to
improve the interoperability between contact-based fingerprint and contactless fingerphoto
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Fig. 2: Overview of the preprocessing steps: segmenting the skin from background, histogram equal-
ization, rotation correction, reliability estimation, and ROI cropping. The steps will effectively re-
move the differences between the contact-based fingerprints and the contactless fingerphotos such
as color, size, and orientation.

sensors [LK18, LK19, Gr21, TK21]. Lin et al. [LK18] presented a deformation correction
model to correct the deformation on the fingerphotos for contact to contactless matching.
Recently, they proposed a multi-Siamese network [LK19] with a distance-aware loss func-
tion to accurately match a fingerphoto with a contact-based fingerprint. Their framework
consists of three sub-networks. Each of the sub-networks has two inputs: fingerphoto and
fingerprint. The fingerprint representation vectors from these sub-nets are concatenated for
a more accurate cross-domain matching. A minutiae attention network based on a Siamese
architecture and a reciprocal distance loss function was proposed in [TK21]. Although
these networks achieved a remarkable improvement over the state-of-the-art approaches,
their application is limited due to the challenges associated with cross-domain matching.
Specifically, the large intra-class variation due to the significant differences in sensing
technologies makes it more difficult for Siamese-like networks to tackle, as the Siamese
architecture is mainly designed for learning a similarity metric in the same domain.

In recent years, GAN architectures [Go14] have been widely adopted for applications
like cross-domain image generation [TPW17] and synthetic fingerprint generation [MA18,
EGJ22], etc. These techniques provide an effective way to map a source distribution into
a target distribution by learning a generator network, G, and a discriminator network, D,
using a min-max optimization game. The conditional GAN (cGAN) was introduced by
Mirza et al. [MO14] where both the generator and the discriminator are conditioned on an
additional input, such as labels, texts, or images. Liu [LT16] proposed a Coupled GAN,
a framework that consists of a pair of GANs, each of which is responsible for generating
images in one domain.

In our work, we employ a Coupled GAN framework which consists of two cGANs and a
multi-loss objective function. In contrast to extracting handcrafted minutiae-based features
for direct comparison, in this method, we project both the contactless fingerphoto and
contact-based fingerprint in to a common low-dimensional embedding subspace using the
generative modeling [Go14] of the coupled GAN framework for indirect matching.
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Fig. 3: Block diagram of the proposed Coupled GAN architecture. It consists of two conditional
GAN sub-networks. The generators of both GANs use the same architecture that allows matching
both domains in an embedded low-dimensional feature space.

3 Proposed method

In this section, we elaborate on our proposed method for cross-domain fingerprint recogni-
tion. As shown in Figure 3, the proposed method is constructed using a coupled framework
that consists of two sub-networks, where each sub-network is a cGAN architecture made
up of a generator and a discriminator.

3.1 Preprocessing

We have performed an elaborate preprocessing scheme to reduce the variations of finger-
prints from different sensors. Figure 2 illustrates the overview of the key preprocessing
steps. First, we segmented the skin from the background of an input image, then converted
the image to grayscale to perform histogram equalization. Afterward, an accurate rotation
correction was performed. To make sure that both the fingerprints and fingerphotos are
similar, these steps were applied to both the fingerphotos and fingerprints.

Due to the image capturing process of contactless fingerphotos, some of the ridges of the
minutiae points are quite blurry which leads us to perform a quality assessment to discard
the bad quality images. Hence, our second preprocessing step is only applied to the finger-
photos, which is made up of orientation and reliability estimation. In reliability estimation,
if the edges of these fingerphoto images are not well defined, they were excluded from the
dataset. Otherwise, the algorithm moves on to core point detection and ROI cropping. The
output size for all images was scaled to 256x256 pixels. In addition to preprocessing, we
performed normalization to make samples align to the standard resolution, i.e., 500 DPI.
We also performed heavy data augmentation like random rotation, horizontal flipping, and
random cropping to increase the amount of the training data.
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Fig. 4: The block diagram of the proposed score fusion model for multi-finger cross-domain match-
ing. For each finger, we train a dedicated CpGAN verifier, and we train another CpGAN verifier by
concatenating the fingerphotos and the fingerprints of all the fingers in a channel-wise manner.

3.2 Network architecture

Our proposed CpGAN framework, as illustrated in Figure 3, consists of two cGAN sub-
networks. The fingerphoto sub-network is dedicated to reconstructing the synthetic fin-
gerphoto image. Similarly, the fingerprint sub-network is only dedicated to the fingerprint
reconstruction. Each cGAN sub-network is composed of a generator and a discriminator,
and each generator is composed of an encoder and a decoder. These two sub-networks are
connected by a contrastive loss that compares the embedded feature vectors of the two
encoders. To optimize the network effectively, we create one imposter pair for every gen-
uine pair. The total loss function for this model is given by Eqn 3. The dimension of the
embedded feature vector is 1,024.

For multi-finger matching, we propose a score fusion model, as illustrated in Figure 4.
For each finger position, we train a dedicated CpGAN model using the fingerphoto and
fingerprint pair of that finger. Then, we train another CpGAN model by concatenating the
fingerphotos and the fingerprints of all the fingers in a channel-wise manner. The output of
the model is then normalized using min-max normalization and then averaged to produce
a single score, as shown in Figure 4.

3.3 CpGAN objective function

In this study, we employ the contrastive loss function (Lcont ). It pulls the genuine pairs
(i.e., inputs from the same subject) toward each other in a common embedding subspace,
and, concurrently, pushes the impostor pairs (i.e., inputs from different subjects) away
from each other. Let xph (xpr) is the input fingerphoto (fingerprint), zph (zpr) is the latent
embedding of fingerphoto (fingerprint), and Y denote the label of the input pairs. If the
input pairs (xph,xpr) belong to the same subject (a genuine pair), then Y = 0, and Y =
1 if they belong to the two different subjects (an imposter pair). The term Dw(xph,xpr)
represents the L2-norm distance to measure the similarities between the output vectors
(zph,zpr) generated by mapping (xph,xpr) to their corresponding latent, respectively. If m
denotes the margin that defines a radius on the embedding space, then the contrastive loss
can be defined by the following equation:
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Lconst = (Y )
1
2
{max(0,(m−Dw(xph,xpr)}2 +(1−Y )

1
2

Dw(xph,xpr)2· (1)

Furthermore, we have utilized the adversarial loss [Go14] to train the generators and the
discriminators of both conditional GANs. Let Dph be the discriminator of the fingerphoto
cGAN and Dpr be the discriminator of the fingerprint cGAN. Now, using the notions of
Eqn 1, the adversarial loss for both of the cGANs is given as:

Lph
adv = min

G
max

D
[Eyph∼Pd(y)[logDph(yph|xph)]+Ez∼Pz(z)[log(1−Dph(Gph(z|xph)))]],

Lpr
adv = min

G
max

D
[Eypr∼Pd(y)[logDpr(ypr|xpr)]+Ez∼Pz(z)[log(1−Dpr(Gpr(z|xpr)))]]·

(2)

Total adversarial loss is the combination of these two losses. Here, yph (ypr) denotes the
real fingerphoto (fingerprint) data. It is worth mentioning that yph (ypr) and the condition
given by xph (xpr) are the same.

In addition to the adversarial loss, we also employ identity loss calculated from the latent
embedding subspace of the fingerphoto and the fingerprint cGAN modules. It helps to
build a more discriminative embedding subspace that further enhances the performance
of cross-domain fingerprint recognition. To calculate the loss, we first subtract the latent
embedding vectors and then feed them into a softmax layer of two neurons. Finally, the
binary cross-entropy loss is calculated from the outputs of the softmax layer.

The L2 loss measures the reconstruction error between the synthesized fingerprint and
the corresponding input fingerprint image. The overall objective function of our proposed
CpGAN model is given as the summation of all the above-mentioned losses.

Ltotal = Lcons +λ1Lident +λ2Ladv +λ3L2, (3)

where λ1, λ2, and λ3 are the hyperparameters to control the effect of each loss function.

4 Experiments and results

In this section, we briefly describe the training datasets and the protocol setup for our ex-
periments. Then, we show the efficacy of our proposed CpGAN method for cross-domain
fingerprint matching by comparing its performance with the commercial off-the-shelf
matchers and the state-of-the-art methods such as Minutiae Attention [TK21]. We also
explore the effect of combining multi-fingers on interoperability using our score fusion
model.

4.1 Datasets

We train the CpGAN model on an in-house fingerprint dataset called the Multimodal
Dataset (2008, 2009, 2012, 2013). It consists of four subsets. The Multimodal-2012 is
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Set Dataset Subject Finger Impression
Train Multimodal-2012 714 2106 2106
Test Multimodal-2013 286 1218 1218

Tab. 1: Statistics of Multimodal Dataset. It
shows the number of subjects and image pairs
after preprocessing steps are applied.

Set Subject Finger Impression
Test 129 516 516

Tab. 2: Statistics of the Non-Contact Finger-
print Dataset-v1. We reserved this dataset only
to evaluate the CpGAN on commercial finger-
photo vs Crossmatch Guardian matching.

Dataset Subject Finger Impression
Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088

NIST 302 200 2,000 7,701
Total 2,089 20,810 61,086

Tab. 3: Compiled dataset for pretraining the
CpGAN model for contactless fingerphoto vs
contact-based fingerprint matching.

Dataset Subject Finger Impression
Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088
Multimodal-2013 286 2,860 16,549

Total 2,175 21,670 69,934

Tab. 4: Compiled dataset for pretraining the
CpGAN model for commercial fingerphoto vs
Crossmatch Guardian matching.

Set
Finger Train Test

Network
Proposed CpGAN Verifinger 12.0 Innovatrics

Position Images Images AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%)

Test All 2106 1218
ResNet-18 99.55 2.38

96.73 4.83 98.64 4.33U-Net 99.59 2.38
DenseNet 99.45 2.38

Individual

2 423 228

U-Net

99.60 2.23 97.86 1.93 99.25 2.30
3 362 215 98.92 4.19 96.91 3.82 98.93 2.38
4 310 192 98.92 5.21 97.35 5.40 96.53 9.96
7 404 230 99.55 2.17 97.40 3.20 99.41 2.76
8 350 193 99.17 4.66 96.99 4.51 98.89 4.88
9 257 160 98.41 5.63 93.90 8.33 96.67 8.46

Tab. 5: Comparison between CpGAN and two top-ranking commercial off-the-shelf matchers for in-
dividual fingerphoto vs its corresponding fingerprint matching on the Multimodal-2013 Dataset. Our
proposed CpGAN model with U-Net based generator performs slightly better than the commercial
matchers on both test images and individual finger positions. Additionally, among different finger
positions, the index finger of both hands performs slightly better than other fingers.

a set of 791 subjects and a total of 69,934 impression pairs, whereas, the Multimodal-
2013 contains 286 subjects and a total of 16,549 impression pairs. Each subject, in both of
these datasets, has a varying number of fingers from a total of six available fingers: right
index (2), right middle (3), right ring (4), left index (7), left middle (8), and left ring (9).
The contact-based set consists of 800x750-sized fingerprints with a resolution of 500 PPI
and the contactless set consists of fingerphotos of size 512x512 with similar resolution to
fingerprints. In contrast, the Multimodal-2009 contains only a total of 31,297 fingerprint
images and the Multimodal-2008 contains only finger roll images.

In our first experiment, we tested our CpGAN model for contact to contactless matching
on the Multimodal dataset. Table 1 shows the statistics of the Multimodal Dataset. Due
to rigorous image quality assessment, a significant number of bad-quality images were
excluded. To pretrain the proposed model, we also built a compiled dataset, shown in
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Number of Finger Train Test Proposed Score Fusion Innovatrics
Fingers Position Images Images AUC(%) EER(%) AUC(%) EER(%)

2 2,3 263 174 99.70 1.72 98.96 3.03
2 3,4 209 146 99.52 2.74 97.64 8.86
2 7,8 239 160 99.76 1.87 99.99 0.00
2 8,9 183 111 99.68 2.70 99.99 0.00
3 2,3,7 185 145 99.88 1.38 97.55 2.92
3 2,3,4 166 119 99.90 1.68 97.29 2.92
3 3,7,8 158 117 99.99 0.00 99.99 0.00
4 2,3,7,8 139 98 100.0 0.00 100.0 0.00

Tab. 6: Comparison between the score fusion model and the commercial off-the-shelf matcher on
multi-fingerphotos vs multi-fingerprints matching.

Set
Finger Test

Network
Proposed CpGAN Verifinger 12.0 Innovatrics

Position Images AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%)

Test All 516
ResNet-18 97.33 6.59

94.65 11.12 97.07 6.90UNET 97.37 6.59
DenseNet 97.13 6.59

Individual

7 129

U-Net

98.76 3.88 97.46 4.96 98.73 3.45
8 129 97.41 4.65 94.52 8.76 96.88 6.83
9 129 98.18 5.43 96.21 6.93 98.11 5.98

10 129 92.05 15.50 88.01 21.01 93.15 13.12

Tab. 7: Comparison with the commercial off-the-shelf matchers for individual fingerphoto vs
Guardian fingerprint matching on the Non-Contact Fingerprint Dataset-v1. Our proposed CpGAN
model outperforms the commercial matchers on both the test set and the individual finger positions.

Table 3. In addition, for multi-finger matching, we combine two, three, and four individual
fingers of a subject (see Table 6).

To further evaluate the cross-matching performance of our proposed framework on a com-
mercial fingerphoto device and the Crossmatch Guardian fingerprint, we employed another
in-house dataset called the Non-Contact Fingerprint Dataset-v1. Table 2 shows the statis-
tics of the dataset. A total of 516 impression pairs are available from the left index (7), left
middle (8), left ring (9), and left little (10) finger.

To comparatively evaluate the performance of our proposed framework, we also tested
our model on the PolyU dataset [LK18]. It has a total of 2,880 contact to contactless
impressions pairs from 320 individual fingers. We employed the standard experimental
settings [LK18, Gr21, TK21], i.e., 160 fingers each with 12 impression pairs are set for
training, and the remaining 160 fingers, each with 6 impression pairs, are set for testing.
Figure 1 depicts a set of samples of these three aforementioned datasets.

4.2 Implementation details

We implement the U-Net architecture [RFB15] as the generator for both the fingerphoto
and the fingerprint cGAN modules. In the experiment on a held-out validation set, we
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Number of Finger Test Proposed Score Fusion Innovatrics
Fingers Position Images AUC(%) EER(%) AUC(%) EER(%)

2 7,8 129 99.02 2.86 98.77 2.86
2 8,9 129 98.61 3.39 98.47 3.39
2 9,10 129 97.98 5.12 97.94 5.12
3 7,8,9 129 99.14 2.63 98.95 2.63
3 8,9,10 129 98.73 3.31 98.66 3.31
4 7,8,9,10 129 99.24 2.17 99.18 2.17

Tab. 8: Comparison with commercial off-the-shelf matchers on the Non-Contact Fingerprint Dataset-
v1 for multi-finger commercial fingerphotos vs multi-finger Guardian fingerprints matching proves
that the proposed score fusion model performs better than the commercial matchers in all multi-
finger combination. The best performance is achieved from four finger matching.

empirically set the hyper-parameter λ1 = 10, λ2 = 1 and λ3 = 1. We employ the Adam
optimizer [KB15] with an initial learning rate of 0.0002. We use the ReLU activation for
the generator and the Leaky ReLU [Xu15] with a slope of 0.20 for the discriminator. Due
to the lack of a large training dataset, it is very hard to train the whole network directly
for convergence. So, we pretrain both of the fingerprint cGAN modules of our Coupled
GAN framework using a compiled dataset (see Table 3) like a Siamese framework by
sharing their weights. We then employ this pretrained cGAN module to initialize both the
fingerprint and the fingerphoto cGAN modules of the proposed CpGAN framework.

4.3 Performance evaluation on individual fingerprint matching

As shown in Table 5, our proposed CpGAN model obtains an area under curve (AUC)
score of 99.59% on the Multimodal-2013 Dataset which is 2.95% higher than Verifinger
12.0 and 0.96% higher than Innovatrics. It also achieves an equal error rate (EER) score
which is 50.72% and 45.03% lower than Verifinger 12.0 and Innovatrics matchers, respec-
tively. In our work, we have experimented with several generator architectures such as
ResNet-18 [He16], U-Net [RFB15], and DenseNet [Hu17]. However, the performance of
these different generators is almost similar. Furthermore, Table 5 verifies that the proposed
CpGAN performs better than the commercial matchers on individual finger positions. For
example, on the left ring finger, we achieve an AUC score that is 4.80% higher than Ver-
ifinger 12.0 and 1.79% higher than Innovatrics.

In addition, as shown in Table 6, the performance of multi-finger fusion of our proposed
score fusion model is slightly better than the commercial matchers. As the number of fin-
gers from the same subject used for multi-finger fusion increases, the performance of our
score fusion model and the commercial matchers also increases. In particular, we obtain
perfect verification performance (AUC=1.0 and EER=0.0) when we combine four fingers.

We employed the Non-Contact Fingerprint Dataset-v1 to evaluate our CpGAN model on
commercial fingerphotos after pretraining it on another compiled dataset (see Table 4). The
verification performance on this dataset is illustrated in Table 7. It has been observed that
the CpGAN model outperforms the commercial matchers by a noticeable margin based
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Methods EER (%)
Verifinger 12.0 19.31

Multi-Siamese CNN [LK19] 7.11
Minutiae Attention [TK21] 4.13

Proposed CpGAN 3.76

Tab. 9: Comparison between the CpGAN and
the state-of-the-art methods on the PolyU
dataset. Our proposed CpGAN model out-
performs others at a significant margin. It
achieves 8.9% lower EER score than the pre-
vious best Minutiae Attention model.

Experiment 1v1 2v2 3v3 4v4
Fingerphoto Position 2 2,3 2,3,7 2,3,7,8

vs AUC(%) 99.60 99.65 97.71 100.0
Fingerprint EER(%) 2.23 1.72 1.38 0.00

Commercial photo Position 7 7,8 7,8,9 7,8,9,10
vs AUC(%) 98.76 99.02 99.14 99.24

Guardian EER(%) 03.88 02.86 02.63 02.17

Tab. 10: Comparison among different number of
fingers confirms that multi-finger matching us-
ing proposed score fusion model significantly im-
proves the interoperability.
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Fig. 5: ROC and DET curve of our proposed method for contact and contactless fingerprint matching
on the Multimodal 2013 Dataset.

on both AUC and EER scores. In multi-finger fusion, as observed in Table 8, our pro-
posed score fusion model achieves significantly higher scores than the commercial match-
ers. Furthermore, as shown in Table 9, the experiment of our proposed method using the
PolyU [LK18] dataset also shows a significant improvement over the state-of-the-art meth-
ods such as Multi-Siamese CNN [LK19] and Minutiae Attention [TK21]. Our method
achieves 8.9% lower EER score than the previous best Minutiae Attention method [TK21]
on the PolyU dataset.

4.4 Performance evaluation on multi-finger fingerprint matching

The impact of multi-finger on contact to contactless fingerprint matching of our proposed
score fusion framework is demonstrated in Table 10. Figure 5-6 illustrates the effects of
multi-finger matching based on the receiver operating characteristic (ROC) and detection
error trade-off (DET) curves for different combination of multi-finger matching. From the
ROC and DET curves in Figure 5-6, we see that as the number of fingers increases the
performance of contact to contactless fingerprint matching also gradually increases, and
the four finger fusion gives us the best AUC and EER scores. Therefore, the experimental
results prove that combining multiple fingers of the same subject significantly improves
the interoperability of cross-domain fingerprint matching.
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Fig. 6: ROC and DET curve of our proposed method for commercial fingerphotos vs Guardian fin-
gerprint matching on the Non-Contact Fingerprint Dataset-v1.

5 Conclusion

We proposed a new framework, CpGAN, for matching contact to contactless fingerprints
from different sensors for improving the interoperability. We thoroughly evaluated the pro-
posed CpGAN model on several challenging datasets. From our performance evaluation,
we observe that our proposed CpGAN model, after pretraining on a large, compiled fin-
gerprint dataset, achieves significantly better results than the state-of-the-art methods pre-
sented in the literature and the commercial off-the-shelf matchers. It also demonstrates the
effectiveness of implementing comprehensive data preprocessing and multiple loss func-
tions. Furthermore, the experiments using our proposed score fusion model on multi-finger
settings show further improvement in interoperability.
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